Cosmic-ray Escape from Supernova Remnants in the Circumstellar Medium

Shoma Kamijima(s.kamijima@eps.s.u-tokyo.ac.jp), Yutaka Ohira (The University of Tokyo)

Cosmic Ray(CR) Acceleration in Perpendicular Shocks

Rapid acceleration at perpendicular shocks (e.g. Jokipii 1987, Giacalone 2005, Guo & Giacalone 2010)

Gyration is important for rapid perp. shock acceleration. (e.g. Takamoto & Kirk 2015, Kamijima+2020)

CR Escape from Perpendicular Shocks

We consider

- Solve gyration → Rapid acceleration
- Magnetic field geometry
- Shape of the shock surface
- Surrounding environment

We investigate CR escape from perp. shocks of supernova remnants(SNRs) in the circumstellar medium with the Parker-spiral magnetic field.

(Kamijima+2020)

Simulation Setup

test particle simulation (upstream) + Monte-Carlo (downstream)

D RSG: $B_* = 1$ G, $R_* = 1000R_{sun}$, $V_w = 10^6$ cm/s, $P_* = 40$ yr (Betelgeuse)(Kervella+2018)

U WR stars: $B_* = 1 \text{ kG}$, $R_* = 5 R_{\text{sun}}$, $V_{\text{w}} = 10^8 \text{ cm/s}$, $P_* = 10 \text{ days}$ (Chene & St-Louis 2008, 2010)

□ shock velocity (e.g. Chevalier 1987, Moriya+2013): $E_{SN} = 10^{51}$ erg, $M_{ej} = 5M_{sun}$, $\dot{M} = 10^{-5}M_{sun}$ /yr □ density profile in the wind region: $\rho_w = \dot{M}/(4\pi V_w r^2)$

D down. flow velocity (only radial component): $u_d(r) = (3/4)u_{sh}(r/R_{sh})$ for $0 \le r \le R_{sh}$

Oblique Rotator: Early Phase Injection

Oblique Rotator: Late Phase Injection

4

Maximum Energy

[PeV]

- \Box In the early phase (t<1yr for RSGs, t<10⁻²yr for WR stars), the maximum energy is limited by the half wavelength of the wavy current sheet, $E_{\max,\lambda/2} = \pi \left(\frac{R_A}{R_{ch}}\right) e B_A R_A$.
- □ In the late phase, the maximum energy is limited by the potential difference between the equator and pole, $E_{\text{max,PD}} = \left(1 - \frac{2}{\pi} \sin \alpha_{\text{inc}}\right) \frac{u_{\text{sh}}}{c} \frac{R_A \Omega_*}{V_{\text{max}}} e B_A R_A.$
- \rightarrow SNRs that the upstream B-field amplification is insufficient could be the origin of 10 TeV break reported by CREAM, NUCLEON, DAMPE, and HAWC.