A. Montanari (presenter) *, E. Moulin and D. Malyshev on behalf of the H.E.S.S. Collaboration

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy @ Barcelona – July 2022

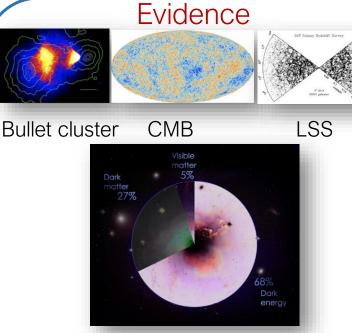
alessandro.montanari@cea.fr

H.E.S.S

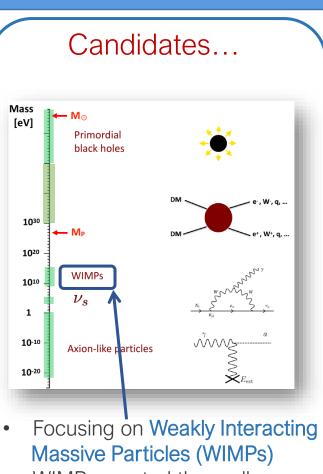
Constraints on Dark Matter annihilation signals with the H.E.S.S. Inner Galaxy Survey

Ref. A. Montanari et al. on behalf of the H.E.S.S. Collaboration; POS(ICRC2021)511

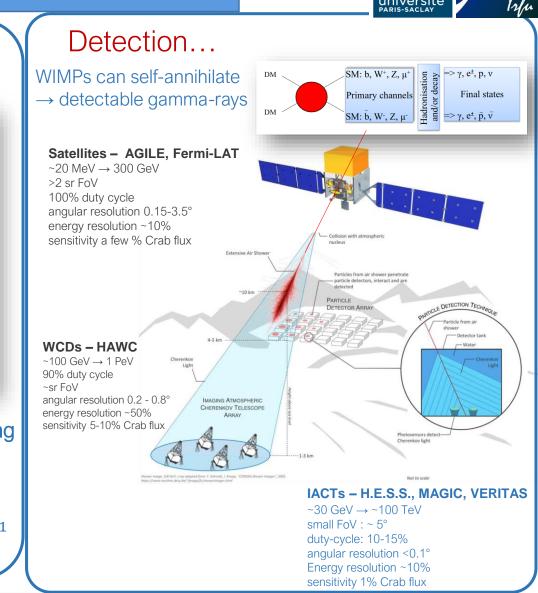
ICCUB Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA



7th Heidelberg International Symposium on **High Energy Gamma-Ray Astronomy** Barcelona, July 4-8 2022

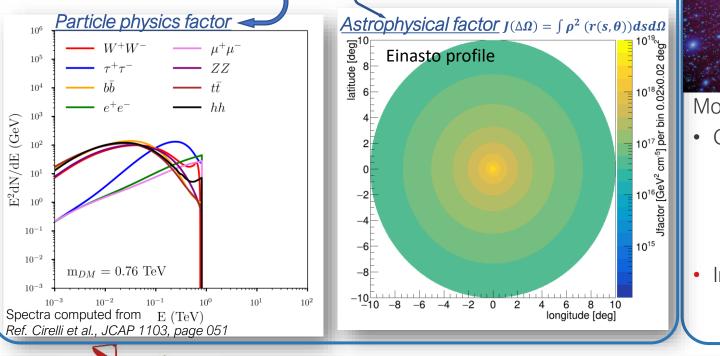


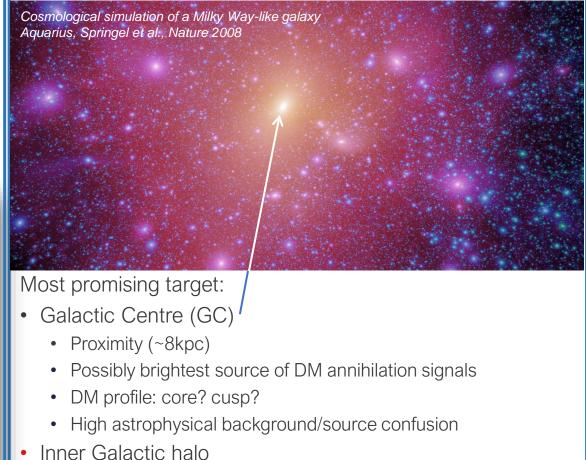
Introduction: <u>WIMPs</u> & Indirect Dark Matter search in gamma rays



- Dark Matter doesn't (DM) scatter/emit/absorb light.
- Does have mass (and hence gravity).
- About 84% of the matter in the universe.
- Forms the primordial "scaffolding" for the visible universe.
- Forms "halos" around galaxies.
- Interacts with other particles weakly or not at all (except by gravity).

- WIMPs created thermally in the Early Universe
 - $\langle \sigma v \rangle_{\text{th}} = 3x10^{-26} \text{ cm}^3 \text{ s}^{-1}$


7 2022

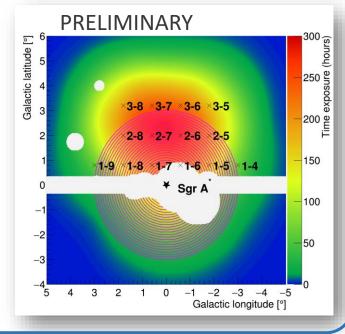

Gamma-ray flux and Dark Matter distribution

- Assuming annihilation process almost at rest
 - \rightarrow A smoking-gun signature for DM is a very distinct energy cut-off, close to the DM particle mass.
- Gamma-ray flux expected from DM annihilations:

 $\frac{d\phi_{\gamma}}{dE} (E_{\gamma}, \Delta \Omega) = \frac{\langle \sigma v \rangle}{8\pi m_{\rm DM}^2} \sum_f Br_f \frac{dN_f}{dE_{\gamma}} J(\Delta \Omega)$

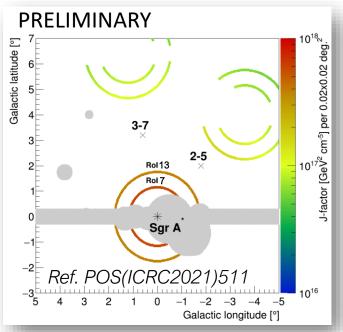
Targets for Indirect search

- Large statistics
- Galactic diffuse background



Inner Galaxy Survey dataset

- The first ever conducted VHE gamma-ray survey of the Galactic Center (GC) region.
- Aim: to provide unprecedented sensitivity to DM signals in the GC region.


Dataset: 2014-2020 observations

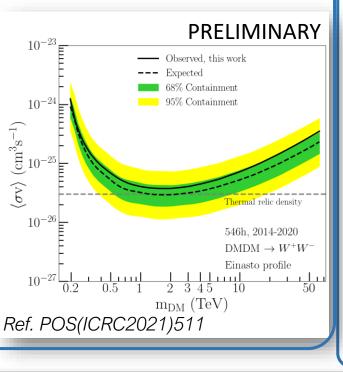
- 2014-2020 exposure map with IGS pointing positions
- Total 546 hours of high-quality data
- 25 regions of interest (ROI) defined to search for DM;
- Set of exclusion regions to avoid gamma-ray contamination in the ROIs.

Data analysis Reflected background

- method for the OFF region:Symmetric OFF to the ON
- Symmetric OFF to the ON
 wrt the pointing positions
- Excluded regions are cut symmetrically
- Cut overlapping areas and areas where OFF is closer to the GC than the ON
- The DM signal is always larger in the ON
- Repeated for all the 25 ROI and over the ~1300 runs.

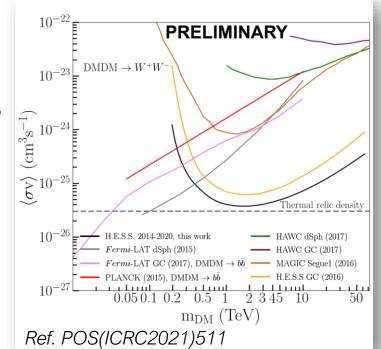
2D binned Poisson likelihood function \rightarrow energy (i) and space (j) bins Total Likelihood: $\mathcal{L} = \prod \mathcal{L}_{i,j}$

- Systematic uncertainties included via a nuisance parameter *;
 - A value of 1% is used for the determination of the limits;
- No significant excess in the FoV:
 - \rightarrow 95% C.L. upper limits on the free parameter < σv > from a log-Likelihood ratio test statistics (TS).
- Computation of expected upper limits and containment bands from independent realizations for ON and OFF measurements


* Refs: Silverwood, et al, JCAP03, 055 (2015); Lefranc, et al. Phys. Rev. D91, 122003 (2015); CTA Dark Matter Programme (2019)

<u>Upper limits on $\langle \sigma v \rangle$ </u>

H.E.S.S. upper limits


- No significant excess in the FoV:
- 95% C.L. upper limits on $\langle \sigma v \rangle$ from the TS;
- \rightarrow H.E.S.S. observed upper limits.
- Computation of expected upper limits and containment bands from independent realizations for ON and OFF measurements
- \rightarrow H.E.S.S. mean expected upper limits;
- \rightarrow Containment bands plotted at 1 σ and 2 σ level.
- Systematic uncertainty included in the limits via a nuisance parameter in the likelihood function.

Summary

Fermi-LAT dSph and GC, HAWC dSph and GC, MAGIC Segue 1, PLANCK CMB, H.E.S.S. GC (2016) and this work.

 → Most constraining limits in the TeV-energy range.

PARIS

universitė

IGS campaign with pointing positions up to 3.2° is very fruitful.
VHE observations of the GC region are unique to study WIMPs.
With the unprecedented IGS dataset:

- \rightarrow strongest constraints obtained in the TeV mass range.
- Limits computed in other channels
- \rightarrow can probe the thermal relic scale.
- The IGS is one of the H.E.S.S. legacies and it paves the way for CTA.
- More observations of the GC have already started as part of the H.E.S.S. Legacy program.

