Multi-collision lepto-hadronic models
for energetic GRBs
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Multi-collision lepto-hadronic models Motivation

: & Methods
for energetic GRBs
Motivation and research questions Methods
* GRBs detected in high energies by Fermi-LAT are among e Multi-collisioninternal shock model (Daigne &
the most energetic events of the population Mochkovitch 1998) for the GRB prompt phase

o --> Different emission zones along the astrophysical jet
> : .. .
it a0  Time-dependentlepto-hadronicradiation modelling
. R 3 with AM3 (Gao et al 2016)
B 52 o O --> coupled PDEs of leptons, hadrons, photons and
F 5 neutrinos
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& so- b BAT short: 29 GRas < ° --> maximal electron and proton energies determined
¢ GBM long: 108 GRBs R |f . |
¢ GBM short: 8 GRBs £ g selr-consistent \
b b e g 2 * Systematic study of different baryonicloadingsf,
M - % (~energy transferred to non-thermal protons)
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Redshift * Two prototypes:
 What are hadronic signatures in synchrotron and inverse (1) simple, single peaked with E;;, 10>* erg -> SP¢s,
Compton dominated scenarios in energetic bursts? (2) multi-peaked with E;,, 10°%> erg -> MPgg, -

* Which are the implications for multi-messenger Note: both have large emission radiil

astrophysics and in connection to UHECR energy budget
' ?
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Multi-collision lepto-hadronic models

Typical keV peak:
generated by
synchrotron emission
of primary electrons

Synchrotron of
secondary lepton
pairs: additional flat
component, intensity
scales with f . -->
wing-like broadening
of peak

for energetic GRBs

Spectrum in observers frame
synchrotron-dominated, simple single-pulse burst

Results:
SYN-dominated

foje = /€
'baryonic loading'

Typical neutrino energy lower than

neutral pion decay peak due to cooling of
intermediate muons and pions

Neutral pion decay peak:
not observable
due to EBL absorption

/

Results similar for more complex burst.
Density-related processes (photo-pion,
photo-photonannihilation) depend on

\ GBM LAT —-— neutrinos
10~4; i
- /N
| ./' i\ \
LE) 10~ Fofrriyc)
o L1~
2, 17\
51076 Py
oy 11/ |
QO
(@)
% 2 !
------ leptonic ~ —— fpe=30
— fye=10 —— f,e=100 |\
10° 5 N3 N7 TR §T)
10 10 10 10 10 10
Eobs [eV]

typical emission radius

--> defined by Lorentz factor of outflow,
duration/time variability of burst
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Multi-collision lepto-hadronic models

Typical keV peak:
generated by
synchrotron emission
of primary electrons

inverse Compton of
secondary particle
cascade enhances HE
fluence
--> dependence on
baryonic loading
weaker than in SYN-
dominated scenario

oo

for energetic GRBs

Spectrum in observers frame
synchrotron-dominated, simple single-pulse burst

’

Results:
IC-dominated

foje = /€
'baryonic loading'

no effect of intermediate pion and muon
cooling on neutrino peak energy

Neutral pion decay peak energy
lower, because maximal energy
of primary protons lower
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Results similar for more complex burst.
Density-related processes (photo-pion,
photo-photonannihilation) depend on
typical emission radius

--> defined by Lorentz factor of outflow,
duration/time variability of burst

A. Rudolph, M. Petropoulou, Z. Bosnjak, W. Winter in preparation| annika.rudolph@desy.de



Multi-collision lepto-hadronic models Results:
for energetic GRBs RS

Multi-messenger hadronicsignatures in light of EBL absorption:

1. Multi-wavelength: Diffuse neutrino fluxes
Eg.in SYN-dominated case low (optical) and high energy- ]
fluences are enhanced for f . > 3

2. Neutrinos:
- point source predictions: for f,,, =10 number of expected
neutrinosin IceCube < 3 103 (3 102) for SPgs, (MPgc, c)
- diffuse fluxes: f,,.~3-10 compatible with current IceCube
limits

3. Cosmic rays:
Required baryonicloading to power UHECR flux:
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s fp/e ~3-10 for the local GRB rate n, of energetic Diffuse fluxes calculated with 148 (93) observable

bursts GRBs for SPgss (MPgsa 5)
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