

In a nutshell!

- Hadronic scenarios: wing-like broadening of keV peak due to synchrotron emission of secondary lepton cascade
- Neutrino peak energies reduced due to intermediate pion and muon cooling

inverse Compton dominated scenario

- Inverse Compton of secondary lepton cascade visible in LAT band
- Hadronic signatures: clearly visible only in VHE regime
- No effect of intermediate pion and muon cooling on neutrino energies

Similar results for complex (multi-pulse) and simple (single-pulse) burst. Density-related processes (photo-pion, photo-photon annihilation) depend on typical emission radius!

Multi-messenger implications

- EBL absportion: VHE emission not observable -> multi-wavelength and neutrino signatures!
- From UHECR energy budget: For subpopulation of energetic bursts require f_{p/e}~3-10 to power UHECR flux
- Basic consistency with diffuse neutrino fluxes and SED

Motivation & Methods

Motivation and research questions

• GRBs detected in high energies by Fermi-LAT are among the most energetic events of the population

- What are hadronic signatures in synchrotron and inverse Compton dominated scenarios in energetic bursts?
- Which are the implications for multi-messenger astrophysics and in connection to UHECR energy budget requirements?

Methods

- Multi-collision internal shock model (Daigne & Mochkovitch 1998) for the GRB prompt phase
 --> Different emission zones along the astrophysical jet
- Time-dependent lepto-hadronic radiation modelling with AM3 (Gao et al 2016)
 - --> coupled PDEs of leptons, hadrons, photons and neutrinos

--> maximal electron and proton energies determined self-consistently

- Systematic study of different baryonic loadings f_{p/e} (~energy transferred to non-thermal protons)
- Two prototypes:

(1) simple, single peaked with E_{iso} 10⁵⁴ erg -> SP_{E54}
(2) multi-peaked with E_{iso} 10^{54.5} erg -> MP_{E54.5}
Note: both have large emission radii!

Typical keV peak:

Multi-collision lepto-hadronic models for energetic GRBs

Spectrum in observers frame

synchrotron-dominated, simple single-pulse burst

Results: SYN-dominated

 $f_{p/e} = \epsilon_p / \epsilon_e$ 'baryonic loading'

Typical neutrino energy lower than neutral pion decay peak due to cooling of intermediate muons and pions

> Neutral pion decay peak: not observable due to EBL absorption

 Density-related processes (photo-pion, photo-photon annihilation) depend on typical emission radius
 --> defined by Lorentz factor of outflow, duration/time variability of burst

Spectrum in observers frame

 $f_{p/e} = \epsilon_p / \epsilon_e$

Results: multi-messenger

Multi-messenger hadronic signatures in light of EBL absorption:

1. Multi-wavelength:

Eg. in SYN-dominated case low (optical) and high energy-fluences are enhanced for $f_{\rm p/e}>3$

2. Neutrinos:

- point source predictions: for $f_{p/e} = 10$ number of expected neutrinos in IceCube < 3 10^{-3} (3 10^{-2}) for SP_{E54} (MP_{E54.5}) - diffuse fluxes: $f_{p/e}$ ~3-10 compatible with current IceCube limits

3. Cosmic rays:

Required baryonic loading to power UHECR flux:

$$f_{\rm p/e} \simeq 10 \cdot \frac{E_{\gamma,\rm iso}}{10^{54}\,{\rm erg}} \cdot \frac{\dot{\varepsilon}_{\rm UHECR}}{10^{44}\,{\rm erg}\,{\rm Mpc^{-3}}\,{\rm yr}} \cdot \frac{0.1\,{\rm Gpc^{-3}}\,{\rm yr}}{\dot{n}_0}\,.$$

--> $f_{p/e} \simeq$ 3-10 for the local GRB rate n_0 of energetic bursts

Sr⁻¹. 10^{-8} IceCube 2017 S^{-1} 10^{-9} limit cm^{-2} 10^{-10} [GeV IceCube Gen2 10^{-11} limit لا 10⁻¹² ب $- f_{p/e} = 3$ SP_{E54} -- MP_{E54.5} $f_{\rm p/e} = 10$ 10^{-13} 10⁵ 107 10^{9} 10^{11} *E* [GeV]

Diffuse neutrino fluxes

Diffuse fluxes calculated with 148 (93) observable GRBs for SP_{E54} (MP_{E54.5})