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Abstract Jet and radiative modeling

The diffusive shock acceleration of a population of relativistic electrons on internal shocks is one of the main scenarios to
account for the multi-wavelength (MWL) flux variability observed in relativistic jets of active galactic nuclei. In addition to (1)
observations of flux variability, constraints are also provided by very-long-baseline interferometry (VLBI), which shows a large '
variety of moving and standing emission zones with distinct behavior.

We will present a model combining relativistic magneto-hydrodynamic jet simulations (MPI-AMRVAC code) with radiative
transfer (RIPTIDE code). We simulate the evolution of standing and moving emission zones in the jet and study their MWL
signatures from the radio to the X-ray band by taking into account relativistic effects (Doppler beaming and light crossing

MPI-AMRVAC (Message-Passing Interface Adaptive Mesh Refinement Advection Code) RIPTIDE code (Radiation and Integration Processes with Time Dependence) (4, 5):

Input : 2D save states from MPI-AMRVAC, observation angle 6,4 and frequency v.

Input : ambient medium, jet and ejecta initial conditions.

. o HC tation of th hrot issivity and absorpt; ters i h cell fol-
B Shock detection method visible in (2) where the electrons fluid is injected; OIHDTRALON DT VHIE SYTIEHIOMON CHUBSIVILY Al absOIPUON PATalichers Hh catil ¢ 10
lowing approximations proposed by (6);

effect (LCE)). B Evolution of the electrons fluid upper cutoff Lorentz factor e max (3) where synchrotron
We focus our attention on strong interactions between a fast moving shock and stationary recollimation shocks, to study how radiative cooling is taken into account:

such events lead to a significant perturbation of the stationary jet structure.

Sufficiently strong shock - shock interactions lead to the appearance of trailing components, which appear in the wake of the
leading moving shock. We characterize such relaxation shocks by two observational markers, one the fork pattern is visible
in the radio band in the time-distance plot of bright VLBI components and one at higher frequencies under the form of flare
echoes. Our results provide a coherent interpretation of radio VLBI observations in several radio galaxies.

B Transformation imposed by relativistic effects such as Doppler beaming and light crossing
effect (LCE) following method proposed by (7);
B The turbulent magnetic field strength Bi,, is set as a fraction of 1% of the thermal

o . . B Resolution of the radiative transfer equation along a given line of sight for an observer
energy and evolved in time in the fluid. v 4 & a glv g v

and computation of the observed synchrotron flux.

Output : 2D save states of the jet fluid and electron fluid. Output : 2D synchrotron maps as observed at the frequency v.
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show superluminal motions for low 6,4 (Fig. 2, left);
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allows to constraint the apparent speed of the jet.
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ej octa 0.1 15 | . Figure 2: Left : Apparent distance traveled by standing and moving knots in time (see legend). We display here results with LCE for 84, = 90° and 6,5 = 20° at

v = 101" Hz. Right : Light curves with flux origin (see legend) obtained at 6,5 = 90° and for v = 10'® Hz.

is visible at higher frequencies (X band) due to a fast synchrotron cooling;

is associated to a remnant emission of perturbed standing shock and/or relax-
ation shock (Fig. 2, right);

Table 1: Parameters used in simulation.

Figure 1: Electron number density n, and 7e max in the jet. The main

erturbation is located around 120 R;. following by a relaxation shock. : .
y o S => allows to probe the standing shock structure through the small flaring scale.
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