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Part I: General Overview
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Synthesized Materials: Cuprates

Quantum Wires, Low Dimensions Ultracold Gases (Optical Lattices)

Quantum Magnetism in Natural Minerals

Quantum Many-Body Systems: 
in Nature and in the Lab

Goal: Identify

new states of matter

Introduction to Frustrated Magnetism

C. Lacroix, P. Mendels, F. Mila, Springer (2011)

Quantum Physics in One Dimension,

T. Giamarchi, Clarendon Press  (2004)

Correlated Electrons in high-temperature superconductors

E. Dagotto, Rev. Mod. Phys. (1994)

Many-body physics with ultracold gases

I. Bloch, J. Dalibard & W. Zwerger, Rev. Mod. Phys.  (2008)
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Quantum Many-Body Systems: 
Superposition & Entanglement

I) Superposition of states is also a possible state

II) Entanglement: spin-1/2 particles (e.g., electrons) 

“classical”, “product state”

2 particles: 4 possible states                                                

“entangled”: not a product state

Einstein: 
«spooky action at a distance»

EPR 
‘paradox’

Alice Bob
Source of
entangled
particles
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Quantum Many-Body Systems: 
Correlations

Correlated states: 

“mean-field” picture of independent particles breaks down

➠ Expectation values of observables for particles 1 and 2 correlate with each other

a) because of entanglement

b) because of mutual interactions.

Small numerical values: need accurate methods



Quantum Many-Body Systems: 
Quantum Statistics

Exchange statistics: 

Behavior at low 
temperatures:

At T=0:

Quantum fluctuations drive
“quantum phase transitions“.

[M. Vojta, Rep. Prog. Phys. (2003)]

Bose-Einstein
Condensate
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Quantum States of Matter:
Spontaneous Breaking of Symmetries

Continuous phase transitions:

M

F

M

F

M

F

no “order”
(symmetry preserved)

finite 
“order parameter”:  
broken symmetry 

(Landau)

How to investigate this
numerically? Which
quantities to compute?

expectation values:
local observables, 
correlation functions, …
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“Topological order“: beyond Landau paradigm

Unconventional States:
Topological Phases

Nobel Prize
2016

No local order parameter, instead:

• topological invariants (integer numbers)
protection against local noise: quantum computing

• metallic surface states
dissipationless transport

Examples: integer and fractional quantum Hall effect

Phase transitions: 
jumps in transverse conductivity

Magnetic field [T]

rxy

How to investigate this
numerically? Which
quantities to compute?

topological invariants,
energy gaps, 
entanglement properties,
„Schmidt spectrum“,…
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Unconventional states:
Out-of-Equilibrium Dynamics 

Example (high-energy physics): 
heavy ion collisions

Fundamental questions: 
• How does the system ‘relax’ towards a ‘stationary state’?
• Temperature in the system?
•„Prethermalization“

[from inspirehep.net]

thermal
final state

long lived metastable  
state - exotic properties?

[Berges et al., PRL 2004]
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Out-of-Equilibrium

“Quantum Quenches”

Prepared states,

Expansions

➠ Relaxation behavior

➠ Time scales

➠ Non-Equilibrium states 

➠ Sudden change of 

parameters

U0 ➟ U

➠ “Release” atoms, remove a 

trapping potential

Collapse and Revival
of a Bose-Einstein-Condensate

‘Quantum Newton Cradle’

M. Greiner et al., Nature (2002)

T. Kinoshita et al., Nature (2006)

Quantum Simulators:
Controlled Quench Dynamics 

How to investigate this
numerically? Which
quantities to compute?

accurate methods for
time evolution with
time-independent
Hamiltonians
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Many-Body Systems Out-Of-Equilibrium:
Phonons

How to investigate this
numerically? Which
quantities to compute?

efficient approaches to
treat phonons? 

Example: light-harvesting systems

Energy transfer in ‚antenna systems‘

Simplified model:

ring geometry coupled to phonons

[K. Kessing, Master thesis (U. Göttingen, 2020);

K. Kessing et al., in preparation]
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F. Krausz & M. Ivanov, RMP (2009)

“Light-induced 

superconductivity”

Photo-excitation of 

Mott insulators
Photovoltaic effects

S. Wall et al., Nature Physics (2010) D. Fausti et al., Science (2011) E. Manousakis PRB (2010)

Many-Body Systems Out-Of-Equilibrium:
Highly Excited Materials

How to investigate this
numerically? Which
quantities to compute?

accurate methods for
time evolution with
time-dependent
Hamiltonians,
formation of order or
quasiparticles?
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s(w,t)

Out-of-equilibrium: 
e.g., time-dependent
optical conductivity

Finite temperature: 
structure factors of quantum magnets
(e.g., S=1 Heisenberg chain)

J. Becker et al., PRB(R) (2017)

S. Paeckel et al., PRB(R) (2020)

Ground states:
Spectral functions
(e.g., Hubbard chains)

H. Benthien & E. Jeckelmann, PRB (2007)

Many-Body Systems Out-Of-Equilibrium:

Dynamical quantities
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t
U

Heisenberg exchange: 2nd order perturbation theory for U >> t

(e.g., quantum magnets)

‚Spinless Fermions‘ 
(e.g., fully polarized extended Hubbard model):

Quantum Many-Body Systems: 
Typical Lattice Models

Hubbard model (1D):

Also bosons possible:
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Range of applications for MPS methods:
Quantities we need to compute

We have encountered various quantities, which we need to be able to compute in order to
investigate the physics of the systems of interest, for example (see hands-on session):

• Local expectation values and correlation functions, e.g.           and 

• Energy gaps: ground state energies with different quantum numbers, e.g., spin gap,

Thermodynamic limit? Large system sizes!

• Entanglement properties, e.g., von Neumann or Entanglement Entropy

• Dynamical spectral functions, e.g., 
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Basic idea: data compression (“quantum version”)

→ Graphics (acoustics, signal transmission, etc.) 

Key aspect:
Ignore modes that cannot be resolved (by the ear, the screen, ...) – excellent quality with much smaller
amount of data. 

➠ Control parameter here: entanglement.

DMRG, MPS and related methods: 
Basic Idea
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DMRG Algorithms: 
Key Aspects

A B

Schmidt decomposition:
(see black board)

S.R. White, PRL (1992); U. Schollwöck, RMP (2005)/Ann. Phys. (2011); R.M. Noack & S.R.M., AIP (2005)

: eigenstates of the reduced density matrix of A or B

• very powerful in 1D

• nonequilibrium, finite-T, linear-response dynamics

A. Daley et al., J.Stat. (2004);
S.R. White & A.E. Feiguin, PRL (2004); 

S.R.M. et al., AIP (2005); 
R.M. Noack, S.R.M. et al., Springer Lect. Notes (2008); 

A.C. Tiegel, S.R.M., et al., PRB(R) (2014)
Recent Review: S. Paeckel et al., Ann. Of Phys. (2019)

Key: entanglement entropy 

➥ the larger the entanglement in the system, the larger m

Problem in 2D: 
“area law of entanglement” - m grows exponentially with system size

➥ Frontier of today’s efforts. 

Approximation:

[See, e.g., E.M. Stoudenmire & S.R. White, Ann. Rev. Cond. Mat. Phys. (2012).]

2D:
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Entanglement Entropy in 1D (Ising-model in transv. field)
[U. Schollwöck, Rev. Mod. Phys. (2005)]

Gapped phase: constant
‘area law’

Gapless phase:
Logarithmic divergence 

DMRG: 
Entanglement Area Law
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From 1D to 2D: Schmidt values
[U. Schollwöck, Rev. Mod. Phys. (2005)]

DMRG: 
Truncation efficiency in 1D and in 2D

Need to keep much larger number of states to reach same accuracy!
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DMRG: 
Too much entanglement…

…is just annoying. 
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Matrix Product State:
Basic Idea 

Wave function of a generic many-body system (e.g. S=1/2 chain):

➟ 2N coefficients (complex numbers)

Rewrite (using singular value decomposition, SVD):

➟ 2.N matrices 

[U. Schollwöck, Annals of Physics (2011)]
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Matrix Product State:
Basic Idea 

MPS representation: local representation

Typical question: what‘s the gain? Don‘t we still have 2N basis coefficients?

Consider the following two aspects:

1. We can exploit this local representation for the computation of expectation values –
we do not need to store the coefficients, but only the matrices!

2. We can truncate the matrix size in a controlled way – we need to store only
relatively small matrices and still obtain a high accuracy!

[U. Schollwöck, Annals of Physics (2011)]
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Good to know & very useful:
Graphical Representation

„3-leg tensor“ (e.g., Matrix As): 

Matrix Product State:

Matrix Product Operator:

Contraction of two indices
(multiplication of two matrices)

[This is also called Penrose graphical
notation of tensors, R. Penrose (1971)]
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Useful representation of MPO-matrices:
Finite states machines

Properties & Advantages: 

• The FSM-graphs can be used as representation of the Hamiltonian/operator – unified input for all 
types of models possible

• Flexible control of time-dependence, 2D systems, observables,…

• Exact arithmethics by evaluation after construction of the operator

[Formulation with Abelian quantum numbers: S. Paeckel, T. Köhler & S.R.M., SciPost Phys. 3, 035 (2017)

Freely available, flexible MPS code using FSM: https://www.symmps.eu ]

[G.M. Crosswhite & D. Bacon, PRA (2008); G.M. Crosshwite et al. PRB (2008)]

https://symmps.eu/
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Useful representation of MPO-matrices:
Finite states machines

[SymMPS package, https://www.symmps.eu]
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Finite temperature methods:
purification & matrix product states

☞ Compute thermal density matrix via a pure state in an extended system:

P

Q
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Purification:
“Thermofields” in Liouville Space

+ references therein 

von Neumann equation Liouville equation
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Finite temperature methods:
purification & matrix product states
Purification:

1. Schmidt decomposition „backwards“:

2. Rewrite:

3. Choose/construct |y0> so that Z(0) r0 = Î

4. Rewrite:

Need to compute imaginary time evolution

5. Compute expectation values:

6. Partition function via: 

[U. Schollwöck, Annals of Physics (2011)]

P

Q
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Finite temperature methods:
purification & matrix product states

Purification:

Note: Partition function can be computed as

With Z(0) = dL (d: dimension of the Hilbert space on a site, L: number of sites in P)

This allows one to compute thermodynamic quantities via expectation values, 

thermodynamic relations, and the free energy,

[U. Schollwöck, Annals of Physics (2011)]

P

Q
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Finite temperature methods:
purification & matrix product states

Example: [A. Tiegel, PhD thesis (Göttingen, 2016)]
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Outlook 2D: 
PEPS, MERA & Tensor Networks

Projected Entangled Pair States (PEPS):

with tensors (e.g., square lattice: rank-4) 

Multiscale Entanglement Renormalization Ansatz (MERA) & tensor networks:

F. Verstraete & I. Cirac, arXiv (2004)

G. Vidal, PRL (2007)

control of entanglement via unitary transforms: 
‘disentanglers’ + block renormalization 



Part II: Phase Diagrams
and Topological Properties at T=0
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Standing waves of laser light: periodic structures

Mechanism: Stark-Effect

➠ Induced dipolemoment in neutral atoms leads to a trapping force in the periodic potential: 
“Crystals of Light”

Many-Body Systems Out-Of-Equilibrium:
Ultracold Gases & Optical Lattices

[I. Bloch et al., Rev. Mod. Phys. 80, 885 (2008)]
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Quantum Simulators: 
Correlated Systems

Idea: Use a well controlled quantum system to describe another, more difficult one 
(R.P. Feynman 1982, Y.I. Manin 1980)

➥Quantum-Many-Body-Models via ultracold gases on optical lattices

Similarity: compare electrical and mechanical networks

[I. Bloch et al., Nat. Phys. 8, 267 (2012)]
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Quantum Simulators:
some developments 

Ultracold atoms (alkaline, alkaline earths) : 
SU(2) and SU(N) Hubbard models

Ultracold polar molecules (KRb, LiCs,...): 
spin- and t-J-models

(quantum magnetism, superconductivity,...)

Be9+ ions in a trap: 
frustrated Ising systems with 

tunable long-range interactions

Tilted Mott insulators:
Quantum Ising models



Salvatore R. Manmana

Ultracold polar molecules
dipolar t-J-V-W Model

Simplest case: weak E-fields

➠ Jz = V = W = 0, 1D for DMRG

➥ dipolar t-J⊥-chain

[A.V. Gorshkov, S.R. Manmana et al., PRL & PRA (2011)]

polar Molecules (e.g. KRb) in optical lattices: 

2 Rotational states ⇔ two Spinstates

Effective Model:

dipolar 
interaction

t: nearest-neighbor hopping
V: Coulomb-repulsion (long-range)

W: density-spin-interaction (long-ranged)
J: Heisenberg coupling (anisotropic, long-ranged)
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One-Dimensional Systems:
Luttinger Liquids 

Fermi liquid:

quasi-free quasiparticles

Interaction & geometry don’t allow for ‘quasi-free’ motion: 

collective excitations!

Spin- and charge degrees of freedom feel different influence: 

Spin-Charge-Separation!

[C. Blumenstein et al., Nat. Phys. (2011)]

Experiments:



Salvatore R. Manmana

Phase diagram of the standard 
t-J-chain

[A. Moreno, A. Muramatsu, and S.R. Manmana, PRB (2011)]

Two superconducting phases:

▪ low filling: K>1 + spin-gap ➥ Luther-Emery-liquid

▪ large filling: crossover from dominant density-density correlations to superconducting correlations

How does this translate to the t-J⊥-chain, in particular in the presence of long-range interactions?

n = (N↑+N↓)/L 
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Phase diagram of the standard t-J-chain:
How to obtain it?

[S.R. Manmana et al., PRA (2017)]Spin gap:

Finite-size 
extrapolation!

(similarly: inverse compressibility)
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Phase diagram of the standard t-J-chain:
How to obtain it?

[S.R. Manmana et al., PRA (2017)]
Luttinger parameter:
From structure factor

with

Bosonization/ theory of Luttinger liquids:

No spin gap:

With spin gap:
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Phase diagram of the standard t-J-chain:
How to obtain it?

[S.R. Manmana et al., PRA (2017)]
Dominant correlation functions: 

fit and compare exponents



Salvatore R. Manmana

Effect of long-range interactions

Numerics for Ising models / proofs for Gaussian states: 

[Deng et al., PRA 72, 063407 (2005); 

Schachenmayer et al., NJP 12 (2010) 103044; 

Schuch et al., Comm. Math. Phys. 267, 65 (2006)]

Spin gap: expect exponentially decaying correlations

algebraic decay!

Perturbation theory on 

dipolar Ising model:

[S.R. Manmana et al., PRA (2017)]
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▪ similar to standard t-J-chain, broadened superconducting region 

▪ ΔS = 0 and Kρ = 1 lines interchange

▪ ➠ additional CDW+SG-phase

▪ Spingap about 2x larger than in standard t-J-chain: 

▪ spin-anisotropy & long-ranged interactions ➠ stabilize superconducting phase

Phase diagram of the 
dipolar t-J⊥-chain

M

[S.R. Manmana et al., PRA (2017)]
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More unconventional states:
Symmetry Protected Topological Phases

➠ new kind of order at T=0 

➠ SPT phases possess a symmetry and a finite energy gap. 

➠ SPT states are short-range entangled states with a symmetry.

➠ defining properties:

(a) distinct SPT states with a given symmetry cannot smoothly deform into each other without phase 

transition, if the deformation preserves the symmetry.

(b) however, they all can smoothly deform into the same trivial product state without phase transition, 

if we break the symmetry during deformation.

Possible characterization (X.-G. Wen):

Note: “Real” Topological Phases ➠ “long-range entanglement” (Wen) 

➠What happens for long-ranged H?

http://en.wikipedia.org/w/index.php?title=Short-range_entanglement&action=edit&redlink=1
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Simple System with two SPT Phases
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Analysis of “Wen’s model”

“Entanglement Splitting” test for 2-fold degeneracy:

test topological

properties!

F. Pollmann, A. Turner, E. Berg, and M. Oshikawa, PRB 81, 064439 (2010)

Characterize topological phases via “entanglement spectrum”:

A B

λj: eigenvalues reduced density matrix,

give entanglement spectrum

•staggered magnetization along the legs:

•Spin gaps:
singlet gap:

triplet gap:

2nd triplet gap:
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Analysis of “Wen’s model”

Symmetry of the ladder: (D2 = {E,Rx,Ry,Rz}; σ: rung exchange)
➠ 8 distinct SPT phases: from projective representations, 

characterized via ‘active operators’

With

[Z.-X. Liu, Z.-B. Yang, Y.-J. Han, W. Yi, and X.-G. Wen, PRB (2012)]



Salvatore R. Manmana

Phase Diagram without and with
Long Range Interactions

➠ SPT phases seem to persist in the presence of dipolar interactions

gapped + degenerate 
entanglement spectrum

Ground-state degeneracy:
t0 phase:                                     tz phase:

S1
x+S2

x: S1
x+S2

x:

E_0 = -188.25372468551              E_0 = -188.24727291579

E_1 = -188.24741526006              E_1 = -188.24727272182

S1
x-S2

x:                                          S1
x-S2

x:

E_0 = -188.24728807477             E_0 = -188.25372545779

E_1 = -188.2472878754               E_1 = -188.24741603227

Nearest neighbor interactions:
(standard DMRG up to 400 rungs)

Long-range 1/r3 interactions:
(MPO, up to 400 rungs)

S.R. Manmana et al., PRB (rapid comm.) 87, 081106(R) (2013)

t0 tz
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A highly frustrated quantum magnet: 
SrCu2(BO3)2

•Network of orthogonal dimers in a plane: 

2D Shastry-Sutherland lattice

•Series of fractional magnetization plateaux, e.g.,           
at 1/8, 1/4, and 1/3 (+ further)

•Exotic states (e.g. spin-supersolid) in the vicinity 
or on the plateaux?

•Magnetization curve and plateaux at low fields 
are an ongoing challenge

•Theoretical treatment of the full 2D system very 
difficult

Here: Quasi-2D versions of this system

[H. Kageyama et al., PRL 82, 3168 (1999),
K. Kodama et al., Science 298, 395 (2002)]
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Shastry-Sutherland Lattice:
From 1D to 2D

• 2D system: ground state at zero field is a product of singlets for J’/J << 1

• Full 2D system too difficult ➙ take a stripe

• simplest stripe: ‘orthogonal dimer chain’ [Schulenburg & Richter, PRB 65, 054420 (2002)]

infinite series of plateaux between M = 1/4 and 1/2

• 2 orthogonal dimer chains with transverse PBC: peculiar system, ‘Shastry-Sutherland tube’

• crossover to 2D system: increase number of orthogonal dimer chains

Heisenberg model

on orthogonal dimer

network:



Salvatore R. Manmana

Quasi-1D version of the Shastry-Sutherland lattice:
“2-leg Shastry-tubes”

J’/J = 0.3 (“perturbative regime”)

J’/J = 0.66 (“intermediate regime”)

➠ Qualitative change of elementary building blocks: single triplons ➞ multi-triplon bound states

➥ Magnetization plateau of bound states of triplons

[S.R. Manmana, J.-D. Picon, K.P. 

Schmidt, and F. Mila, EPL 94, 67004 

(2011)]

Magnetization curve: Compute ground state energies at different values of Sz
total

Do a Legendre-transform
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• Excited states by injecting triplons, but fluctuations much more pronounced

• Periodic patterns of triplons: magnetization plateaux?

• At boundaries: emerging 1D structures? 

Quasi-2D version of the Shastry-Sutherland lattice:
“4-leg Shastry-tubes”
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E/N = -0.319238530384945

E/N = -0.319179928025625

Difference in E/N: only 6e-5 !!! 

[S. White on Kagome: difference between VBC and spin-liquid ≈ 1e-3]

Quasi-2D Shastry-Sutherland lattice:
DMRG on the 1/8 plateau
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J’/J = 0.63:iPEPS (2D, thermod. limit)

Approaching the 2D Shastry-Sutherland lattice:
magnetization curve & comparison to experiments 

[Y.H. Matsuda, N. Abe, S. Takeyama, H. Kageyama, 

P. Corboz, A. Honecker, S.R. Manmana, G.R. Foltin, K.P. Schmidt, and F. Mila, PRL 111, 137204 (2013)]
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iPEPS:

DMRG with OBC:

Approaching the 2D Shastry-Sutherland lattice:
2-triplon bound states & “pinwheel structure” 

[G.R. Foltin, S.R. Manmana, and K.P. Schmidt, PRB 90, 104404 (2014)]

[P. Corboz and F. Mila, PRL 112, 147203 (2014)]
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“Numerically Exact Dynamics”:
Iterative Diagonalization

Lanczos procedure:
(Krylov space method) 

Tridiagonalization of 
Hamiltonian matrix: 

Larger systems possible
Pro’s/Con’s similar to ‘full diagonalization’

➠Need to store n vectors with dimension of H ☹

K. Lánczos (1950)

Projection of time evolution operator:
T.J. Park and J.C. Light, J. Chem. Phys (1986)

Usually n < 20 is sufficient  

Error estimate:
M. Hochbruck and C. Lubich, SIAM (1997)

[S.R. Manmana et al., AIP (2005) ]
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Time evolution with 
Matrix Product States

at each time step
Adapt basis states



Salvatore R. Manmana

Time evolution with Matrix Product States:
Trotter approach

Trotter decomposition:

Example: imaginary time evolution („iTEBD“-variant)

[Glen Evenbly, https://www.tensors.net ]

https://www.tensors.net/
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Time evolution with Matrix Product States:
Krylov-approach

Recall Lanczos projection:
(Krylov-space approach)

Very versatile, arbitrary range interactions & geometries possible
Two variants:
• „global Krylov method“: 

perform all operations without taking into account MPS structure – costly!!!
• „local Krylov method“: 

apply Lanczos-projection while ‚sweeping‘ 
through the system – sequentely updates A-matrices
(problem: what about the remaining ones?)
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Neglect overlapping 

terms in expansion

Compact matrix product
operator representation

• Hamiltonian expressed as a sum of terms

Expand                            for          :

[M. Zaletel et al, PRB 91, 165112  (2015)]

MPO based time evolution

Time evolution with Matrix Product States:
MPO-WI & WII approach
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Basic idea of TDVP:
Manifold of MPS states

Tangent space

[J. Haegeman et al, arXiv:1408.5056]

Projection onto tangent
Space to MPS manifold:

Corrects/improves
„local Krylov“ method

Time evolution with Matrix Product States:
Time-dependent variational principle



Part III: Dynamics
Spectral Functions and Full Time Evolution
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Examples

Dynamical spectral functions (also finite T, nonequilibrium) Quantum Quenches (simulate cold gases experiments)

Two-dimensional systems (this is a challenge!!!) 
Out-of-time-order, OTOCs
(chaos in quantum many body systems)
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Example 1:
Bloch Oscillations for interacting systems

Idea: tilt the lattice or apply a field and look at center of mass motion

[Probe phase diagram: A.V. Gorshkov, S.R. Manmana et al., PRL (2011); 

J. Carrasquilla, S.R. Manmana, M. Rigol PRA (2013)]

➠ Constant force “drags” particle through Brillouin zone, Bragg scattering leads to change of direction: 

➠ Bloch oscillations for non-interacting systems 

↪ effect of interactions?
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[J. Carrasquilla, S.R. Manmana & M. Rigol, PRA 87, 043606 (2013)]

Spinless fermions at half filling: Bose-Hubbard model at integer filling:

Center-of-Mass 
Motion:

Example 1:
Bloch Oscillations for interacting systems
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Time evolution of <n(k)>:

V=0 V=1<Vc V=3>Vc

➢ Non-interacting systems: some dephasing, but no relaxation

➢ Interacting systems: “better” relaxation the stronger the interaction 

Open Questions: 
Nature of (quasi-)stationary state? Effect of dissipation? Connect to condensed-matter systems? 

Example 1:
Bloch Oscillations for interacting systems
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Today‘s Frontier:
Time evolution in two dimensions?

Fixed bond-dimension m=200:

Errors grow rapidly, but some 
methods perform better than others 
at short times

Heisenberg-antiferromagnet, 
Neél initial state (product state):



Linear Response Dynamics at T=0
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Characterize Many-Body Systems:
Dynamical Spectral Functions

angle-resolved photoemission (ARPES)

(Wikipedia)

photon 

source

energy  

analyser  

( www.physics.rutgers.edu/bartgroup/)

scanning-tunneling spectroscopy

Linear response: measure quantities of type:

➠ insights into (local) density of states, excitations of the system, structure factors

http://www.physics.rutgers.edu/bartgroup/
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Linear Response:
Dynamical correlation functions

☞ time-dependent perturbation

☞ linear response:

with

☞ express via Green’s functions



Salvatore R. Manmana

Linear Response:
Spectral Functions at Finite Field
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Dynamical structure factor Sz(k,w) of a S-1/2 Heisenberg chain when changing an external magnetic field:

small B: spinons

large B: magnons

[T. Köhler, Master thesis, U. Göttingen 2013]
A.C. Tiegel, S.R.M. et al., PRB(R) (2014),

A.C. Tiegel et al. & S.R.M., PRB (2016),

E.S. Klyushina et al., S.R.M., PRB(R) (2016).
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Dynamical correlation functions:
Approach using real-time evolution

Some methods show artifacts at low 
frequencies – not TDVP



Linear Response Dynamics at T>0
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Dynamical correlation functions:
T = 0 vs. T > 0

Dynamical correlation functions at T = 0:

Dynamical correlation functions at T > 0:

➠ Need the full spectrum...difficult ☹

Ways out: continued fraction expansion, (D)DMRG, QMC,...
Here: DMRG + Chebyshev expansions
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Dynamical correlation functions at
finite T: Liouvillian formulation

Note: 1) Difference of all energies

2) MPS approach:           vector in the Liouville space spanned by 

➠ Dynamics is actually governed by Liouville equation [Barnett, Dalton (1987)]

(backward evolution in Q by Karrasch et al.)

[A.C. Tiegel et al., PRB (2014) : proof of principle calculations]
Earlier: Superoperator approach to mixed-state dynamics [Zwolak & Vidal (2004)]
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Liouville space formalism:
“Thermofields” 

+ references therein 

von Neumann equation Liouville equation
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☞ Representation via Chebyshev polynomials:

with

Dynamical correlation functions:
Chebyshev recursion

[MPS: A. Holzner et al., PRB 83, 195115 (2011); 
A. Weiße et al., RMP 78, 275 (2006)]

“Jackson damping”
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☞ use continued fraction expansion (CFE)

via Lanczos recursion

Dynamical correlation functions:
Lanczos recursion

[E. Dagotto, RMP (1994)]
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Liouvillian finite-T approach: 
comparison to exact results

Excellent agreement with exact results!

[A. Tiegel, et al., PRB (R, 2014)]



➠ New features in the spectra at T>0?

Finite-T dynamics in spin-1 chains
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Spin-1 chains:
AKLT state

Sketch of the AKLT state:

• „Topological“ phase (symmetry protected topol. state, SPT)

• Exact ground state of H= …

• No local order parameter, but string order parameter
• Fractional excitations: effective S=1/2 at the edges

Nobel Prize
2016
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Spin-1 chains:
Spectral functions at T=0

S.R. White & I. Affleck, PRB (2008)
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Spin-1 chains:
Spectral functions at T=0 and T>0

DMRG, OBC, L=32:

QMC, PBC, L=64:

Two new features:

• At finite T, a new branch appears below the magnon branch

scattering of thermally excited magnons

• With OBC, a signature of the edge-state is obtained, also at T>0
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Spin-1 chains:
Spectral functions at T>0

J. Becker, T. Köhler, A.C. Tiegel, S.R. Manmana, S. Wessel, and A. Honecker, PRB 96, 060403(R) (2017).



Linear Response Dynamics 
Out-of-Equilibrium



Excitation and Recombination:
Time-resolved ARPES

Electromagnetic dressing of the electron energy spectrum of Au(111) at high 
momenta, M. Keunecke et al., PRB (rapid comm.) 102, 161403 (2020)

Direct Access to Auger Recombination in Graphene, M. Keunecke et al., arXiv:2012.01256

New developments, e.g., „Momentum Microscope“ 

Observe Floquet states?

Time-resolved
recombination processes?



Thermal and Photoexcitations:
Effect on Dynamical Properties

Heat up a spin-1 Heisenberg chain:

Finite-Temperature Dynamics and Thermal Intraband Magnon Scattering in 
Haldane Spin-One Chains, J. Becker et al., PRB (rapid comm.) 96, 060403 (2017)

Photo-enhanced excitonic correlations in a Mott insulator with nonlocal
interactions, N. Bittner et al., PRB 101, 085127 (2020)

Excite a Hubbard-system with ultrashort laser pulses:

Reason/interpretation of in-gap states: formation of
excitons (due to n.n. interaction)

• Other in-gap states / new branches in 
nonequilibrium systems? Quasiparticles?

• Relation between thermal and noneq.-excitations?

Reason for the new branch: 
magnon scattering

T/J = 1/24

T/J = 0.2

T/J = 0.4

T/J = 1



Spin-selective excitations:
Electron-hole excitation & band structure

Constantin Meyer and SRM, in preparation

Modeling of an electron-hole excitation in a correlated system: 

𝜇, 𝜈: band index of non-interacting system

Here: apply to strongly interacting system

• Non-interacting systems: well defined – but excited state is an eigenstate, no relaxation

• Interacting systems: „bands“? Scattering will influence the effect of the excitation

• Need to consider time-dependent spectral functions

• Here: systematic study of a spin-selective electron-hole excitation in a Hubbard-system with separate bands



Electron-hole excitation: 
Time-dependent spectral fct. & band structure



Electron-hole excitation:
„shadow-band“ formation

C. Meyer & S.R. Manmana, arXiv:2109.07037



Electron-hole excitation:
Stability of the „shadow-band“ 

C. Meyer & S.R. Manmana, arXiv:2109.07037



Further Developments: 
Phonons, reduce entanglement
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Purification: quantum numbers for
systems without conserved quantities

Typical example: Holstein model

Comparison of these methods: J. Stolpp et al., Comp. Phys. Comm. (2021)

„Pseudo-site approach“ [Jeckelmann & White (1998)]

Local basis optimization [e.g., C. Brockt et al. PRB (2015)] 
„pp-DMRG“ [T. Köhler, J. Stolpp & S. Paeckel SciPost (2021)]
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Significantly reduce the entanglement:
‚Mode Optimization‘

[C. Krumnow, L. Veis, Ö. Legeza & J. Eisert PRL (2016)]

Idea: apply suitable unitary transform during the sweeps to go to a basis with smaller entanglement

Reduction of the bond dimension from
8000 to ~300 and improvement of the
ground state energy!
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Conclusions & Outlook

I. Tensor Network methods very flexible and powerful tools:
Basic idea: ‚data compression‘
Ground states, phase diagrams, finite-T, spectral functions, nonequilibrium

II.  Specific realization of tensor networks in 1D: MPS/DMRG

III. Quantity controling the „quality“ of MPS: Entanglement

Frontier of today‘s research: how to deal with the entanglement? 


