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Abstract
A set of biased notes on continuous tensor networks. As of September 30, 2021 it only

covers the basics of CMPS.

1 Introduction
Tensor network state methods are powerful to solve many-body quantum problems on the lattice,
and it is tempting to extend this success to the continuum. Abstracting away the particular opti-
mization algorithms, tensor networks work by constructing an appropriate variational submanifold
MD of the many-body Hilbert space H , on which one can e.g. minimize a Hamiltonian to find
the ground state, or approximate a real-time evolution. This submanifold grows larger as the
bond dimension D is increased, which increases precision, until the whole Hilbert space is exactly
covered (for exponentially large values of D). In contrast with the dimension of the Hilbert space
dim H that grows exponentially in the number of lattice sites N , tensor network states provide
extensive representations: their number of parameters grows only linearly in N (and polynomially
in D). In the translation invariant case, one can even work directly in the thermodynamic limit.
Finally, the compression provided by tensor network states is efficient for low energy states of
local Hamiltonians in the sense that the approximation error for local observables on these states
decreases superpolynomially in the bond dimension D.

A first method to deal with continuum problems is to bring the models to the method: tensor
network states work well already for lattice problems, so simply discretize the models and use all
the tools available on the lattice (this is the same philosophy as lattice Monte-Carlo). This is
sometimes called the numerical continuum limit, because one takes the limit of the lattice spacing
going to zero at the very end, on results obtained numerically. This method is extremely powerful
and has been used on a wide variety of problems. In many cases, the results are currently state of
the art. So why bother with anything else?

The reason is that the numerical continuum limit is not without problems. The main one, in
my opinion, is that one generally needs to extrapolate the final results to the continuum limit,
because one cannot reach an arbitrarily small lattice spacing. Indeed, one typically observes that
the approximation error increases as the lattice spacing is reduced for fixed D (or equivalently, one
needs to increase D as the lattice spacing is reduced to get the same error). The large number
of sites to consider, which are the consequence of a vanishing lattice spacing are not the root of
the problem, as one can take the thermodynamic limit easily with tensor networks. Rather, the
difficulty comes from the generically singular short distance behavior of field theories: as the lattice
spacing is reduced, proportionally more variational parameters need to be dedicated. The problem
with extrapolations is that they usually contain a degree of arbitrariness in the choice of functions
to fit, and making the right guesses requires a good theoretical understanding of the problem.
Extrapolations also break the variational nature of the results: one e.g. no longer gets rigorous
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upper bounds on the energy of the initial continuum model, which was a convenient property of
tensor network states on the lattice. There are other difficulties with the numerical continuum limit
I will not elaborate on, but an one to mention for a theoretical physicist (even if it is perhaps the
weakest) is aesthetic. If it is possible to deal with the continuum directly, it feels more satisfying
and parcimonious to do so.

This brings us to the second approach, the analytical continuum limit, which is the focus of
these notes. The idea is to keep the problem as it is, but instead to take the continuum limit of
tensor network states themselves analytically, hoping that a large fraction of the theoretical results
and numerical methods carry through. This is a seducing program that is still largely in progress,
with interesting problems even in the simplest settings. I will start with the most stabilized theory
in sec 2, the continuous matrix product states for non-relativistic quantum field theories in d = 1
space dimension. Since CMPS are less trivial to master at first than their discrete counterpart,
I will go through the needed computations slowly. I will then move to a fairly recent relativistic
extension of these states, still in d = 1 space dimension. Finally, I will discuss continuous tensor
network states in d ≥ 2 space dimensions, where the situation is more dire: part of the theory
already exists, but no general purpose algorithm for optimization has been implemented yet. I will
try to mention the (numerous) open problems along the way.

2 Continuous matrix product states (CMPS)
2.1 Hilbert space of non-relativistic field theories
Before defining the CMPS, it is helpful to say what it is an ansatz for: non-relativistic quantum
field theories in 1 space dimension. To avoid complications, we will stick to the bosonic case,
and briefly mention fermionic subtleties at the end. The corresponding Hilbert space H is the
symmetric Fock space F [L2(I)] where L2 is the space of square integrable functions on I, which is
the space interval on which the field theory is defined (e.g. [0, L] or R). Formally, the Fock space
is simply the direct sum of 1, 2, 3, .. to arbitrarily many (symmetric) particle states

F [L2(I)] =
+∞⊕
n=0

S+L
2(I)⊗n , (1)

where S+ means taking the symmetric subspace. More concretely, a state in this Hilbert space can
be represented in second quantized form as

|Ψ〉 =
+∞∑
n=0

∫
In

dx1 · · · dxn ϕn(x1, · · · , xn) ψ̂†(x1) · · · ψ̂†(xn) |Ω〉 . (2)

In this expression, ψ̂†(x) is the bosonic creation operator in x which verifies the canonical com-
mutation relations [ψ̂(x), ψ̂†(y)] = δ(x − y). The state |Ω〉 is the Fock vacuum associated to ψ̂,
i.e. the state without particles, verifying ∀x, ψ̂(x) |Ω〉 = 0. The functions ϕn(x1, · · · , xn) are the
(symmetric) n-particle wavefunctions. Note that the sum in (2) is allowed to be infinite, but a
rather strong constraint is that the state has to be normalizable, i.e. 〈ψ|ψ〉 < +∞.

It helps to have in mind a prototypical Hamiltonian that naturally lives in such a Hilbert space.
A good example is the (grand canonical) Lieb-Liniger Hamiltonian

HLL =
∫
I

∂xψ̂
†∂xψ̂ + c ψ̂†ψ̂†ψ̂ψ̂ − µψ̂†ψ̂ , (3)

which happens to be exactly solvable, and thus provides a convenient benchmark. The first term
is the kinetic term, the second is a repulsive contact interaction, while the last one corresponds
to a chemical potential forcing a non-zero particle density (otherwise the ground state would be
empty). More generally, one could consider higher order 3 point interactions ∝ ψ̂†3 ψ̂3, interactions
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extending over some range ∝
∫

dy V (x − y)ψ̂†(x)ψ̂†(y)ψ̂(x)ψ̂(y), or even terms breaking particle
conservation e.g. ∝ ψ̂†2 + ψ̂2 which would no longer yield an integrable Hamiltonian but for which
the methods we will discuss should apply. However, in this section, one should keep the kinetic
term ∂xψ̂

†∂xψ̂, which is the second quantized rewriting of the standard Schrödinger Hamiltonian
(with ~2/(2m) = 1), and that is necessary to get a physically reasonable non-relativistic model.
Remark 1 (The continuous Fock space is mostly empty). Fock spaces in the continuum are empty
compared to lattice ones, which will later yield simplifications. Indeed, for N bosons on the line,
the discrete analog of (2) is

|ψ〉 =
∑

i1,··· ,iN∈N
ci1,i2,···iNa

†i1
1 a†i22 · · · a

†iN
N |0〉 . (4)

In such a state, there can be non-zero components with 1 excitation everywhere, or even k exci-
tations everywhere for bosons. In contrast, in the continuum, one fills a continuous interval with
a countable number of particles, and thus it is mostly empty if seen as a continuum of harmonic
oscillators. For example, the state naively defined with one excitation in every infinitesimal dx, i.e.
informally “

∏
x ψ̂
†(x) |0〉 ” is ill-defined in the continuum and does not belong in the Fock space.

2.2 Definition and basic properties
Let us consider a translation invariant quantum field model for simplicity. Let Q and R be two
arbitrary D ×D complex matrices. A continuous matrix product states (CMPS) is defined as

|Q,R〉 = tr
{
P exp

[∫
I

dxQ⊗ 1+R⊗ ψ̂†(x)
]}
|Ω〉 (5)

where P is the path ordering operator, which puts largest arguments on the right1 i.e.

PO(x1)O(x2) =
{
O(x1)O(x2) if x2 > x1
O(x2)O(x2) if x2 < x1

(6)

The trace in (5) is taken over the auxiliary D × D matrix space and D is the bond dimension,
which is really the direct analog of the bond dimension of MPS. The two matrices Q and R contain
the free parameters of the state, that need to be adjusted e.g. to find the ground state of a given
Hamiltonian. Note that the state produced at least formally belongs to the appropriate field theory
Hilbert space: |Q,R〉 = tr[U0,L] |Ω〉, where U0,L is an operator acting on F [L2(I)]⊗CD. Taking a
trace gives an operator acting on the Fock space, and thus acting on |Ω〉 we ultimately get a state
in the Fock space. To make this more explicit, we can write the CMPS (5) in the wave-function
representation of (2).

Fact 1 (Wave-function representation of the CMPS). For I = [0, L] (for simplicity) CMPS admit
the expression

|Q,R〉 =
+∞∑
n=0

∫
0<x1<x2<···<xn<L

dx1 dx2 · · · dxn ϕn(x1, · · · , xn) ψ̂†(x1) · · · ψ̂†(xn) |Ω〉

with
ϕn(x1, · · · , xn) = tr

[
eQx1ReQ(x2−x1)R · · · eQ(xn−xn−1)ReQ(L−xn)

]
(7)

This can be seen as an alternative definition of CMPS. This representation has the advantage
of being more explicit in terms of the decomposition of F [L2(I)] into a direct sum, but makes the
connection with matrix product states less transparent. Let us prove the equivalence.

1In this convention, the path-ordering operator P gives a reversed order compared to the one obtained with the
standard time-ordering operator. It is however merely a matter of convention, which allows to have the expression of
wavefunctions and correlation functions ordered with arguments increasing from left to right, mimicking the physical
ordering.
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Proof. The simplest method is to rewrite the original definition (5) of |Q,R〉 in an “interacting”
representation. To this end, let us define Ux,y = P exp

[∫ y
x

duQ⊗ 1+R⊗ ψ̂†(u)
]
. We can inter-

pret U as the solution of a dynamical evolution in space

∂yUx,y = Ux,y

[
Q+Rψ̂†(y)

]
(8)

Defining an interaction representation version of U as Ũx,y = Ux,yeQ(x−y), we see that it obeys

∂yŨx,y = Ũx,yR̃(y)ψ̂†(y) (9)

with R̃(y) = eQyRe−Qy. This can be integrated into Ũx,y = P exp
[∫ y
x

duR̃(u) ψ̂†(u)
]
. Finally we

have

|Q,R〉 = tr [U0,L] |Ω〉 (10)
= tr

[
Ũ0,LeQL

]
|Ω〉 (11)

= tr
{
P exp

[∫ L

0
du R̃(u) ψ̂†(u)

]
eQL

}
|Ω〉 (12)

=
+∞∑
n=0

tr
[
R̃(x1)R̃(x2) · · · R̃(xn)eQL

]
ψ̂†(x1)ψ̂†(x2) · · · ψ̂(xn) |Ω〉 (13)

which is exactly the expression in (7).

Remark 2 (Beyond translation invariance). To simplify, I considered a translation invariant state
with periodic boundary conditions in (5). Both can be relaxed, exactly as with discrete MPS: one
can make Q and R depend on x and add a boundary matrix B in the trace to get

|Q,R〉 = tr
{
B P exp

[∫
I

dxQ(x)⊗ 1+R(x)⊗ ψ̂†(x)
]}
|Ω〉 . (14)

Technically, the number of free parameters becomes infinite (a set Q(x), R(x) per point of space
x) and one needs to choose a functional ansatz for Q(x) and R(x) (e.g. a finite sum of Hermite
functions, a finite Fourier sum or a spline) to recover a finite number of parameters that fit in a
computer.
Remark 3 (Only two matrices). A striking aspect of the CMPS ansatz is that it requires only
two D × D matrices (at least in the translation invariant case). For matrix product states, the
number of matrices is given by the local physical dimension (e.g. 2 for spin 1/2, 3 for spin 1,
etc.), which is technically infinite for a chain of bosons. In the discrete, this requires artificially
truncating at (potentially very large) local physical dimensions. This is the illustration of the
drastic simplification (or compression) brought by the continuum limit for bosonic systems2. This
is in fact related to the previous remark 1 that the Fock space is almost empty and that, as a
result, double occupation in an elementary volume dx need not be considered. We will see this
more clearly in when considering the connection with the discrete.

The fact that the ansatz is parameterized by 2 matrices only in the translation invariant case
(instead of infinitely many as one would naively guess from the discrete) could be the sign that
we are simply missing a part of the Hilbert space (a bit like Gaussian states do not capture all
states). The following fact shows that this is not the case, and that the CMPS ansatz is maximally
expressive, simply because it contains sums of coherent states.

Fact 2. CMPSs are dense in the Fock space.
2In fact, in the continuum, the bosonic Fock space is not bigger than the fermionic Fock space.
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Proof. The proof is actually quite simple and works by induction. Note first that for D = 1 with
Q = 0 and R(x) = r(x) ∈ C, a CMPS is simply a field coherent state

|0, R〉 = exp
[∫

I

dx r(x)ψ̂†(x)
]
|Ω〉 (15)

The sum of two CMPSs of bond dimension D is not a CMPS of bond dimension D, but it is easy
to see that it is a CMPS of bond dimension 2×D:

|Q1, R1〉+ |Q2, R2〉 =
∣∣∣∣( Q1 0

0 Q2

)
,

(
R1 0
0 R2

)〉
. (16)

This easily generalizes to an arbitrarily linear combination by reweighing Q1 and Q2. By induction,
this shows that we can represent an arbitrary finite sum of field coherent states as a CMPS
(potentially of very large but finite D). Field coherent states form an overcomplete basis of the
Fock space, and thus can be used to approximate arbitrarily well any state in the Fock space.

This does not mean that CMPSs are good at approximating states of physical interest with a
low (or slowly growing) bond dimension D. CMPS are observed to work well in practice in the
continuum, in the same situations where MPS work well in the discrete. However, to my knowledge,
an equivalent of the strong approximation theorems known for MPS, which e.g. guarantee us
that MPS approximate the ground states of local gapped Hamiltonian with an error decaying
superpolynomially in D−1 (see e.g. [1]), do not yet exist for CMPS.
Remark 4 (The previous proof is disappointing). The previous proof is in many ways too trivial
to yield real insight. The CMPS obtained from this construction has a very large bond dimension,
and does not exploit what makes the power of CMPS: non-commuting R and Q. The density of
field coherent states in the Fock space requires space-dependent field coherent states, hence this
construction does not tell us, for example, that we can approximate arbitrary translation invariant
space in the Fock space with a translation invariant CMPS (which is what we do in practice). It
is most likely possible, and intuitively one should be able to reproduce any wavefunction ϕn with
the equation (7). However, to my knowledge, no such proof exists.

2.3 From CMPS to MPS
The easiest way to connect CMPS to their discrete MPS counterpart is simply to cut space into
small intervals. Let us do it in a pedestrian yet reasonably rigorous way. Let ε� L be the lattice
spacing, xj = jε for 0 ≤ j ≤ L/ε = N the discretized positions. The path-ordered exponential can
be approximated by a finite product when ε is small enough:

|Q,R〉 = tr


L/ε−1∏
j=0

exp
[
εQ+R

∫ (j+1)ε

jε

ψ̂†(x)
] |Ω〉+O(ε) . (17)

We now introduce a new discrete (or coarse grained) bosonic operator bj :

bj := 1√
ε

∫ (j+1)ε

jε

ψ̂(x) . (18)

Let us verify its commutation relations. Clearly, ∀j 6= k, [bj , b†k] = 0

[bj , b†j ] = 1
ε

∫ (j+1)ε

jε

dx
∫ (j+1)ε

jε

dy [ψ̂(x), ψ̂†(y)] (19)

= 1
ε

∫ (j+1)ε

jε

dx
∫ (j+1)ε

jε

dy δ(x− y) (20)

= 1
ε
× ε = 1 (21)
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Hence [bj , b†k] = δj,k. Note the sneaky factor
√
ε in (18) that is crucial to go from the continuum

Dirac δ to the discrete Kronecker δ. We will encounter it many times again. We now have

|Q,R〉 = tr


L/ε∏
j=1

exp
[
εQ+

√
εR b†j

] |Ω〉+O(ε) (22)

This is exactly an MPS. Indeed in the number basis |n1, n2, · · · , nN 〉 = b†n1
1 b†n2

2 · · · b†nN

N |Ω〉 we
have

|Q,R〉 =
∑

n1,n2,··· ,nN∈N
tr[An1An2 · · ·Ann ] |n1, n2, · · ·nN 〉+O(ε) (23)

where the D×D complex matrices An are obtained (at leading non-trivial order in ε) by expanding
the exponential in (22)

A0 = 1 + εQ
A1 =

√
εR

A2 = εR2/2
An = o(ε) for n ≥ 3

(24)

Although the An for n ≥ 3 can in principle be computed, they all give subleading contributions.
In fact, our starting point (18) (the discretization of the path-ordered exponential) is accurate only
to leading order in ε, and thus one is free to choose the subleading terms (for example by fixing
them to 0) without changing the continuum limit ε→ 0.

2.4 Computing expectation values
We saw previously in (7) that we could very explicitly write down the CMPS “wavefunction”,
that is, its decomposition in the natural Fock space basis. However, in general, having an explicit
expression for a state does not imply we can have compact expressions for expectation values of
local operators. Indeed, the state lives in an infinite dimensional Hilbert space, and computing
expectation values a priori requires summing over infinitely many basis elements. With matrix
product states, we know there are efficient routines to evaluate expectation values that do not
require the full summation (finite in this context, but still exponential in the system size). In the
continuum, the same fortunately remains true, and evaluating expectation values remains cheap
(polynomial cost in D).

2.4.1 The norm

Before computing expectation values of local observables, let us consider the simplest expectation
value, that of the identity (aka. the norm of |Q,R〉).

Fact 3 (Norm of a CMPS). For a translation invariant CMPS on the interval I = [0, L]:

〈Q,R|Q,R〉 = trCD⊗CD [exp(LT)] (25)

with the transfer operator T
T = Q⊗ 1+ 1⊗Q∗ +R⊗R∗ (26)

The generalization to space dependent Q,R and a non-trivial boundary matrix B is straight-
forward.

There are many proofs of this result, one that relies on the discretization but is quite transpar-
ent, one that works directly in the continuum but is less transparent, and finally one that is is both
directly in the continuum and transparent but requires more advanced mathematics (quantum Itô
calculus).
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Proof strategy 1: discretizing. From (22) we have

|Q,R〉 ' tr


L/ε∏
j=1

exp
[
εQ+

√
εR b†j

] |Ω〉 (27)

hence

〈Q,R|Q,R〉 = 〈Ω| tr


L/ε∏
j=1

exp
[
εQ∗ +

√
εR∗ bj

] tr


L/ε∏
j=1

exp
[
εQ+

√
εR b†j

] |Ω〉 (28)

= tr


L/ε∏
j=1
〈Ωj | exp

[
ε1⊗Q∗ +

√
ε1⊗R∗ bj

]
exp

[
εQ⊗ 1+

√
εR⊗ 1 b†j

]
|Ωj〉

 (29)

We could put everything into the same trace using that tr[A ⊗ B] = tr[A]tr[B]. We also used
that the bosonic vacuum is simply a tensor product of states |Ωj〉 annihilated by the bj . Finally,
expanding the exponentials to order O(ε)

〈Q,R|Q,R〉 ' tr


L/ε∏
j=1
〈Ωj | 1 + ε(1⊗Q∗ +Q⊗ 1+R⊗R∗bjb†j) +

√
ε(1⊗R∗ bj +R⊗ 1 b†j) |Ωj〉


(30)

' tr


L/ε∏
j=1

1 + εT

 ' tr


L/ε∏
j=1

exp (εT)

 ' tr [expLT] (31)

Remark 5 (Direct MPS version). In fact, although it is written in a slightly more cumbersome
way as if we knew nothing about tensor networks, this first proof is the direct translation of the
standard one for MPS. Φ = exp[εT]

Φ : =
∑
i≥0

Ai ⊗A∗i (32)

= 1+ ε (Q⊗ 1+ 1⊗Q∗ +R⊗R∗) + ε2(Q⊗Q∗) + · · · (33)
= exp(εT) + o(ε) (34)

this allows to understand the role of the factor
√
ε

Proof strategy 2: using the continuum wave-function. We can evaluate the norm directly in the
continuum using the wavefunction expression of the CMPS (7):

〈Q,R |Q,R〉 =
+∞∑
n=0

∫
0<x1<x2<···<xn<L

dx1 dx2 · · · dxn ϕn(x1, · · · , xn)ϕ∗n(x1, · · · , xn) (35)

For 0 < x1 < x2 < · · · < xn < L:

ϕnϕ
∗
n = tr

[
eQx1ReQ(x2−x1) · · ·ReQ(L−xn)

]
tr
[
eQ
∗x1R∗eQ

∗(x2−x1) · · ·R∗eQ
∗(L−xn)

]
(36)

= tr
[(

eQx1 ⊗ eQ
∗x1
)

(R⊗R∗)
(

eQ(x2−x1) ⊗ eQ
∗(x2−x1)

)
· · · (R⊗R∗)

(
eQ(L−xn) ⊗ eQ

∗(L−xn)
)]

(37)

= tr
[
e(Q⊗1+1⊗Q∗)x1 (R⊗R∗) e(Q⊗1+1⊗Q∗)(x2−x1) · · · (R⊗R∗) e(Q⊗1+1⊗Q∗)(L−xn)

]
(38)

We can now re-exponentiate this expression using the same technique as for the derivation of the
wavefunction representation of CMPS, with the substitution Q→ Q⊗ 1 + 1⊗Q∗, R → R ⊗ R∗,
and ψ†(x)→ 1.
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This second proof has the advantage that it is directly in the continuum, but the fact that it
works may seem a bit miraculous at first sight, and at least not obviously guessable from standard
MPS techniques. There is, finally, a neat continuum proof that uses the formalism of quantum
noise.

Proof strategy 3: quantum Itô calculus. Since the final result is the trace of an exponential, the
easiest derivation would be by differentiation, to extract the generator T directly. The need for the
formalism of quantum noise (or quantum Itô calculus) comes because differentiating expressions
containing dξ† := ψ†(x)dx is non-trivial. Indeed, we have 〈Ω|dξdξ† |Ω〉 = dx, which means that dξ
behaves more like the root of a differential rather than differential (this is the quantum equivalent
of a white noise). Hence, when expressions depend on dξ, we need to push to second order to
differentiate them, otherwise we miss squares of dξ that are of order dx (this is the quantum
equivalent of Itô’s lemma). This is just the continuum manifestation of the factor

√
ε instead of ε

in front of R that we have seen over and over again.
Let us write down again the overlap

〈Q,R |Q,R〉 = 〈Ω| tr
{
P exp

[∫
I

dxQ∗ +R∗ψ̂(x)
]

︸ ︷︷ ︸
Ũ0,L

}
tr
{
P exp

[∫
I

dxQ+Rψ̂†(x)
]

︸ ︷︷ ︸
U0,L

}
|Ω〉 (39)

= 〈Ω| tr[Ũ0,L]tr[U0,L] |Ω〉 (40)
= tr[〈Ω|U0,L ⊗ Ũ0,L |Ω〉] . (41)

To obtain T we should now differentiate 〈Ω|U0,x ⊗ Ũ0,x |Ω〉 with respect to the endpoint x, going
to second order in dξx = ψ̂(x)dx (which is ultimately what quantum stochastic calculus boils down
to):

d 〈Ω|U0,x ⊗ Ũ0,x |Ω〉 = 〈Ω|U0,x(Qdx+Rdξ)⊗ U†0,x(Q∗dx+R∗dξ†x) |Ω〉 (42)

= 〈Ω|
(
U0,x ⊗ U†0,x

) (
Q⊗ 1dx+ 1⊗Q∗dx+R⊗R∗ dξxdξ†x

)
|Ω〉 (43)

= 〈Ω|U0,x ⊗ Ũ0,x |Ω〉 Tdx (44)

hence finally 〈Q,R |Q,R〉 = tr[exp(LT)] as advertised.

Remark 6 (Subtlety: Itô vs Stratonovich). To go for (43) to (44) one needs to use the fact that dξx
acts infinitesimally after U0,x, i.e. U0,x contains dξ† only up to x−dx. As a result the vacuum |Ωx〉
is not modified, and thus we can take the expectation value directly without worrying about U .
This corresponds to the quantum Itô convention. In contrast taking the Stratonovich formulation
amounts to having dξx centered around the last x in U0,x, which gives standard differentiation
rules (no need to go to second order), but makes taking expectation values less trivial (this second
order term has to be recovered somehow).

The reader should choose whatever proof they are comfortable with, but it is important to keep
in mind that discretizing is not necessary.
Remark 7 (Overlap of two different CMPS). The 3 previous proofs generalize immediately to
the computation of arbitrary overlaps of CMPS 〈Q1, R1|Q2, R2〉. One simply needs to formally
substitute Q∗, R∗ → Q1, R1 and Q,R→ Q2, R2.

2.4.2 Normal-ordered correlation functions

Computing general correlation functions is easy once one understands the computation of the norm.
The main tool is to introduce the generating functional of normal ordered correlation functions:

Zj′,j = 1
〈Q,R|Q,R〉

〈Q,R| exp
[∫

I

j′(x)ψ̂†(x)
]

exp
[∫

I

j(x)ψ̂(x)
]
|Q,R〉 . (45)
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Clearly, differentiating this function with respect to j, j′ gives us access to all normal-ordered
correlation functions, e.g.

〈ψ̂†(x)ψ̂(y)〉Q,R = δ

δj′(x)
δ

δj(y)Zj
′,j

∣∣∣∣
j,j′=0

(46)

Fact 4 (Generating functional). The generating functional admits the exact expression

Zj′,j = 1
tr[eLT] tr

[
P exp

(∫
I

Tj′,j
)]

(47)

where
Tj′,j(x) = T + j(x)R⊗ 1 + j′(x)1⊗R∗ (48)

Proof. The first step is to rewrite Zj′,j by commuting the two exponentials containing j′ and
j. This is done easily using the Baker-Campbell-Hausdorff formula which gives, for [X,Y ] ∝ 1,
eXeY = e[X,Y ]eY eX :

Zj′,j = 1
〈Q,R|Q,R〉

〈Q,R| exp
[∫

I

j(x)ψ̂(x)
]

exp
[∫

I

j′(x)ψ̂†(x)
]
|Q,R〉 exp

(
−
∫
I

j′j

)
(49)

= 〈Q,R+ j∗|Q,R+ j′〉
〈Q,R|Q,R〉

exp
(
−
∫
I

j′j

)
(50)

= 1
tr[eLT] tr

[
P exp

(∫
I

Tj′,j
)]

, (51)

where the exponential of j′j exactly cancels the quadratic term appearing in the overlap (obtained
straightforwardly from remark 7).

Now, from a straightforward functional differentiation of (47), we get the following fact.

Fact 5 (Normal-ordered correlation function). For 0 < x1 < x2 < · · · < xn < L:

〈: ψ̂δ1(x1)ψ̂δ2(x2) · · · ψ̂δn
n (xn) :〉Q,R = 1

tr[eLT] tr
[
ex1TR(δ1)e(x2−x1)T · · ·R(δn)e(L−xn)T

]
(52)

where δi can be either nothing or † and

R() = R⊗ 1 (53)
R(†) = 1⊗R∗ (54)

For example, this formula gives

〈ψ̂†(x)ψ̂(y)〉Q,R = 1
tr[eLT] tr

[
exT(1⊗R∗)e(y−x)T(R⊗ 1)e(L−y)T

]
(55)

Remark 8 (Exponentially decreasing). Formula (52) shows that, in complete analogy with MPS,
correlation functions for CMPS are always exponentially decreasing (at least as long as the matrices
Q,R are finite dimensional).

2.4.3 Simplifications: exploiting gauge freedom and taking the thermodynamic limit

The first thing to notice is that the norm of the CMPS looks ill-behaved in the continuum limit,
and scales ∝ (`1|r1) exp(λ1L) where λ1, |r1), |l1) are the eivenvalue with largest real part of T and
its associated right and left eigenvectors. We can cancel this behavior, without loss of generality,
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by simply substituting Q → Q − λ11. With this new choice, the leading eigenvalue of T is 0 and
all the other ones have strictly negative real part. Diagonalizing T one gets:

eLT =
D2∑
j=1

eλj |rj)(`j | −→
L→∞

|r1)(`1| (56)

and thus in the thermodynamic limit, the exponential of the transfer matrix becomes a simple
rank-1 projector.

The second step, analogous to what is done with MPS, is to go to a super-operator repre-
sentation of the transfer operator. In a nutshell we are mapping the tensor-product vector space
CD ⊗ CD to the space of matrices MD(C). We now look at a vector |v) on which T acts as a
matrix

|v) =
∑
k,l

vk,l |k〉 ⊗ |l〉 → v =
∑
k,l

vk,l |k〉 〈l| . (57)

With this mapping, we can introduce the super-operator L which reproduces the action of T on v
now written as a matrix

T|v)→ L · v = Qv + vQ† +RvR† . (58)
Remark 9 (Scaling). An obvious reason why this rewriting is advantageous is that it reduces the
complexity of the operations we have to carry. Indeed, multiplying operators acting on CD ⊗CD,
which is what is needed to compute correlation functions, naively scales like D6 whereas composing
superoperators acting simply on the left and right of a D ×D matrix scales like D3.

The third step, like in the discrete, is to note that there is a lot of redundancy in the param-
eterization of the CMPS. In particular, it is straightforward to see that conjugating the matrices
Q,R with an invertible matrix U does not change the state∣∣U−1QU,U−1RU

〉
= |Q,R〉 . (59)

This can be seen either in the original definition of the CMPS (5) or in its wave-function represen-
tation (7). This can be exploited to fix properties of Q and R, to simplify computations without
losing expressiveness. A particularly convenient choice is the so called left canonical form which
is obtained by taking U = `1 where (`1| is the leading left eigenvector of T. By definition, this
matrix verifies

`1Q+Q†`1 +R†`1R = 0 (60)
Now taking Q` = CQC−1 and R` = CRC−1 where `1 = C†C we get

Q` +Q†` +R†`R` = 0 (61)

This implies that the identity matrix, once vectorized, is a left eigenvector of T. Equivalently, this
implies that L is of the Lindblad form. In practice, one can choose, without loss of generality,
matrices verifying (61) from the beginning. Writing QL = −iK − R†LRL/2, equation (61) is
equivalent to K being self-adjoint. One can thus parameterize the CMPS directly with K self-
adjoint and RL.

Finally, all these manipulations allow to rewrite correlation functions in the thermodynamic
limit in a simpler way.

Fact 6 (Correlation functions in the thermodynamic limit in left-canonical gauge). For −∞ <
x1 < x2 < · · · < xn < +∞:

〈: ψ̂δ1(x1)ψ̂δ2(x2) · · · ψ̂δn
n (xn) :〉Q,R = tr

[
R(δ1) · e(x2−x1)L ·R(δ2) · · · e(xn−xn−1)L ·R(δn) · ρ0

]
(62)

where ρ0 is the fixed point of L, i.e. L · ρ0 = 0 normalized to tr[ρ0] = 1, R(†) · ρ := ρR† and
R() · ρ = Rρ.

This general formula gives e.g. the very compact expression for the particle density:

〈ψ̂†(x)ψ̂(x)〉 = tr[Rρ0R
†] . (63)

10



2.5 Finding the ground state variationally
Once we have explicit expressions for simple correlation functions, we can evaluate the energy
density for all non-relativistic Hamiltonians. If interactions are local, the formulas become fully
local (they do not depend on exT). Abstracting away the details, this gives an explicit function of
the matrices Q,R

〈h〉Q,R = f(Q,R) = tr[· · · ] , (64)
that one can feed to a simple minimizer (e.g. scipy.optimize.minimize) by collecting Q,R (or
better K,RL in left-canonical gauge) into a parameter vector x. As far as I know, this is simply
how it was done in 2010 in the original paper on CMPS by Verstraete and Cirac [2].

This works fairly well for low bond dimension but suffers from 2 important drawbacks limiting
the method to simple tests at low bond dimension (D < 10). There are essentially two reasons:

1. Inefficient gradient: For the minimization with gradient descent or its refinements, one
needs the gradient. Most libraries will estimate it with finite differences from the energy.
Aside from precision issues, this means the cost is now ∝ D5 (∝ D3 cost for each evaluation
of the energy multiplied by ∝ D2 components of the gradient). However, either through
an explicit derivation or using backward differentiation methods (backpropagation), one can
compute the full gradient exactly with the same asymptotic cost as the energy.

2. Singular metric: The space of CMPS is a manifold on which we are trying to follow the
steepest descent direction for minimization. The notion of “steepest” depends on the metric
on this manifold. Collecting the parameters K,RL of the CMPS into a vector x and feeding
it to a solver amounts to taking as metric the identity, i.e. we take the steepest descent for
the scalar product x · y =

∑
i xiyi. It turns out that this notion of distance is very different

from the “natural” notion of distance in the space of CMPS, especially when D is large. In
practice, this means that the energy goes down, but via a path that can be far from the
steepest, and almost flat, leading to a drastic slow down at large D.

A more principled method to minimize the energy is to use the (imaginary time) time dependent
variational principle (TDVP). The idea is simply to evolve the CMPS |x〉 := |Q,R〉 in imaginary
time

|x〉τ '
exp(−τH) |x〉√
〈x| exp(−2τH) |x〉

(65)

where the denominator is just here to normalize the state. In differential form this gives:

∂τ |x〉τ = − [H − 〈x|H |x〉τ ] |x〉τ . (66)

Imaginary time evolution should converge exponentially fast to the ground state, without plateaus
or slow down. The difficulty is that it cannot be implemented exactly: after an infinitesimal time,
the state is out of the CMPS manifold. We would like to find the “best” CMPS trajectory corre-
sponding to this evolution. Equivalently we would like to know how much we should have moved
the coefficients x to mimic the imaginary time evolution, i.e. have |xτ 〉 ' |x〉τ . In differential
form, this means

∇x |xτ 〉 · dx ' [H − 〈xτ |H |xτ 〉] |xτ 〉dτ (67)
where∇x is the gradient with respect to all the coefficients (seen as real coefficients), and dx = uxdτ
is an infinitesimal move of the coefficients in the direction ux (the descent direction). One way to
give a precise meaning to (67) is to take dx such that the distance between the two sides of the
equation is minimal

ux = argmin ‖∇x |xτ 〉 · ux − [H − 〈xτ |H |xτ 〉] |xτ 〉 ‖2 (68)

This corresponds to the TDVP prescription. Writing H(x) = H − 〈xτ |H |xτ 〉 this gives

ux = argmin
{
ux · <e [(∇x 〈xτ |)(∇x |xτ 〉)] · ux − 2<e [〈xτ |H(x)∇x |xτ 〉] · ux

}
. (69)
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The matrix, or bilinear form <e [(∇x 〈xτ |)(∇x |xτ 〉)] ≡ g(xτ ) is the natural metric on the MPS
tangent space induced by the Hilbert space scalar product. Assuming for simplicity that we work
with CMPS written in the left-canonical gauge such the norm is always 1, the second term is simply
the gradient of the energy. Finally we have

ux = −g(x)−1∇x〈H〉x (70)

Hence, imaginary time evolution is just gradient descent with the “natural” metric on the CMPS
tangent space! The imaginary time evolution interpretation explains why this metric in particular
makes the descent faster than a generic one. The gradient descent interpretation means one does
not need to take small time steps: one can take large steps as long as the energy goes down3.
Further, one could also use refinements of gradient descent like conjugate gradient or BFGS,
provided the metric g is taken into account4.
Remark 10 (Simplifications for local H). When the Hamiltonian is the integral of a local density,
expressed simply in terms of ψ̂(x), ψ̂†(x), one derive an explicit differential equation for Rτ , Qτ
in one step, instead of computing the gradient by backward differentiation and computing the
metric. This substantially simplifies TDVP. This is the approach followed in the lecture notes of
Vanderstraeten, Haegeman and Verstraete [3], illustrated on the Lieb-Liniger Hamiltonian.

2.6 Limitations and open problems
Continuous matrix product states are currently less developed than their discrete counterparts.
There are consequently many things we understand with MPS, that we do not with MPS. Among
those, I would like to mention three open problems.
Open Problem 1 (Parent Hamiltonian). For a MPS |A〉, under reasonably mild assumptions, one
can construct a parent Hamiltonian. The parent Hamiltonian is a gapped local Hamiltonian HA

that has the MPS as unique ground state. This is a very useful theoretical result, that allows to
reverse the logic in many instances, and start from states instead of Hamiltonians. Can one find
the same for CMPS?

No equivalent is known currently and mimicking the discrete construction is not obvious. It is
likely that the parent Hamiltonians of CMPS do not look “nice”. They are probably not the types
of local non-relativistic Hamiltonians we typically like to work with, made from a kinetic term
∂xψ̂

†(x)∂xψ̂(x) and a potential V [ψ̂†(x), ψ̂(x)]. Indeed, the parent Hamiltonian should have |Q,R〉
has unique ground state, which means it should fully constrain Q,R (up to gauges). However
expectation values of the kinetic term and generic potential only involve (traces of) the stationary
state of the Lindbladian ρ0, arbitrary polynomials in R,R†, and the commutators [Q,R] and
[Q,R†]. This seems to insufficiently constrain Q. Allowing less natural higher derivatives or
having non-local potentials seems to be needed.
Open Problem 2 (Quality of the approximation). For MPS, we know that the error of the approx-
imation of local observables decreases superpolynomially as a function of D [1] for local gapped
Hamiltonians. Can one prove an equivalent result in the continuum? Do CMPS provide provably
efficient approximations of (some) QFT ground states?
Open Problem 3 (Beyond translation invariance). In almost all of these notes, we assumed Q,R
were constants and worked in the thermodynamic limit. With MPS, one can fairly easily deal with
systems with open boundary conditions, without any translation invariance, using the density ma-
trix renormalization group (DMRG). This is an extremely efficient method, because it acts locally
on tensors, doing only linear algebraic operations (no gradient descent). Is there an equivalent
approach for CMPS?

For this latter open problems, there has been very recent progress by Tuybens et al. [4], but
the final optimization is still made with the TDVP.

3This is no longer true if one is interested in using TDVP for real-time evolution.
4In particular, one could make use of the package OptimKit developed in Ghent https://github.com/Jutho/

OptimKit.jl
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2.7 Further reading
I have skipped over regularity conditions, alternative gauges, and did not present the ansatz in
its most general form (with many species, with different statistics). The interested reader should
look at the very thorough description of Haegeman et al. [5]. For a very condensed introduction
to CMPS, the historical paper by Verstraete and Cirac still reads very well. Finally, for the
optimization of CMPS, one can look at the lecture notes of Vanderstraeten et al. [3], and an
example of state of the art numerics is to be found in Rincon et al. [6]

3 (Relativistic) continuous matrix product states (RCMPS)
To be written. Before it is, one should check arXiv:2102.07741 and arXiv:2102.07741

4 Continuous tensor network states in d ≥ 2
To be written. Before it is, one should check arXiv:1808.00976
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