SMALLSATS A new opportunity for research

CUBESATS

- In 1999 a reference design is proposed: Cubesat
 - Jordi Puig Suari: California Polytechnic State University
 - Bob Twiggs: Stanford University
- Make Sputniks with present technology

CUBESATS

- They are still satellites:
 - Payload
 - Trajectory
 - Structure
 - Power
 - Communication
 - Attitude and Orbit Control

Secondary payload for the next Catalan Government Cubesat

PRESENT MISSIONS

FUTURE MISSIONS

- Change of paradigm
 - Be imaginative, be opportunistic
 - Search for simple ways to do things
 - Minimise / Avoid the need to use mechanisms (launch can be hard)
 - Use software or electronics whenever possible (more reliable)
 - Take profit of latest instrumentation technologies

FUTURE MISSIONS

- Change of paradigm
 - Keep it simple
 - Things are more predictable
 - Risks are easier to manage

They did not know it was impossible, so they did it

PROPOSED MISSIONS

4DCube: Dawn Dusk Debris Detection Cubesat

PROPOSED MISSIONS

- 3Cat-Gea
 - Payload for next generation EO satellites
 - Earth Observation
 - Camera
 - RF payload
 - Use GNSS signals

PROPOSED MISSIONS

- PhotSat
 - First IEEC Astronomical mission
 - Scan the sky to make a photometric catalogue
 - Proposed to work with a multispectral camera
 - Visible
 - NIR
 - NUV (There is little data on this side of the spectrum)

CONCLUSIONS

- SmallSats are a new opportunity for science missions
- Reduced cost allows for disruptive approaches
- Complementary with big missions
- NewSpace Strategy is creating an ecosystem that can be helpful