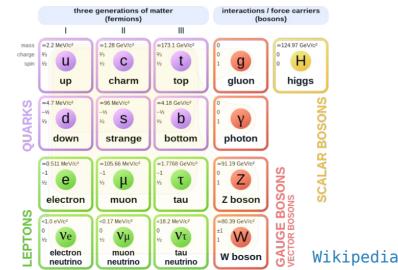
Anomalies in flavour physics

Matthew Kirk

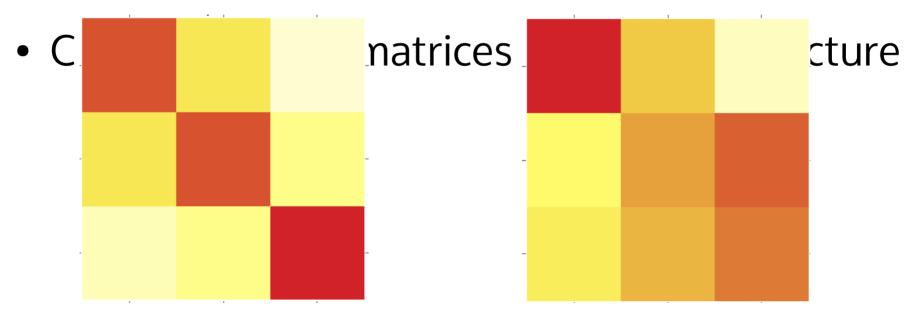
Office 622



UNIVERSITAT DE BARCELONA

Institut de Ciències del Cosmos

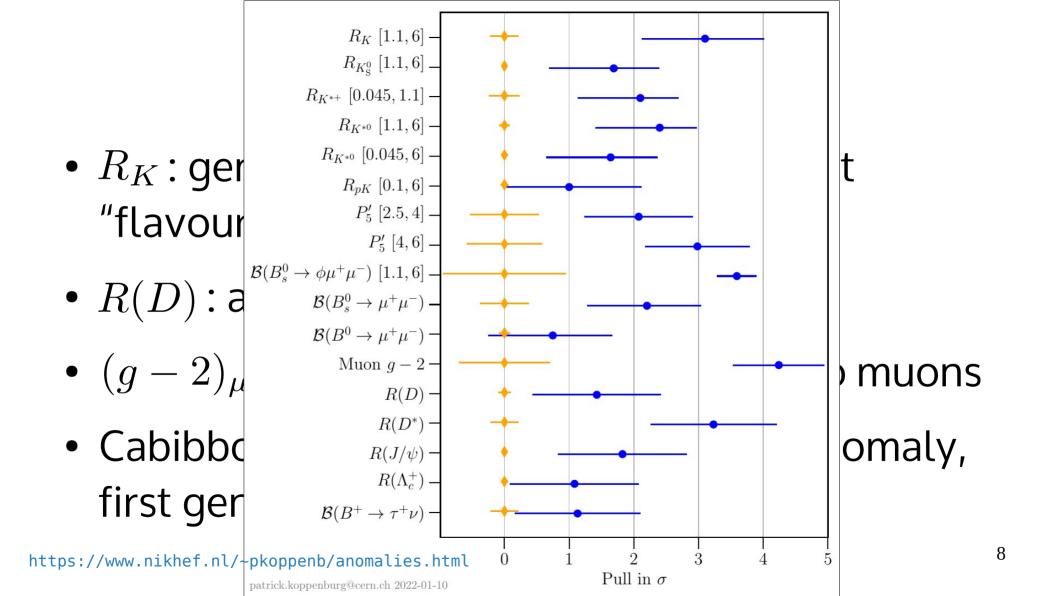
ICCUB Winter Meeting – 7 February 2022


- 3 copies of each quark and lepton
- SM says same interactions, different masses

Standard Model of Elementary Particles

- 3 copies of each quark and lepton
- SM says same interactions, different masses
- CKM and PMNS matrices have some structure

- 3 copies of each quark and lepton
- SM says same interactions, different masses


- CKM particularly governs quarks physics
- Study of quark transitions
- Big picture why is the CKM / flavour structure the way it is?

What are anomalies?

- Word with multiple meanings, even within jargon of quantum field theory
- Gauge anomalies classical symmetries, violated at quantum / loop level
- Here, measurements that doesn't agree with predictions

Flavour anomalies

- *R_K*: generally what people mean by just "flavour anomalies"
- R(D): also often included
- $(g-2)_{\mu}$: very different physics, but also muons
- Cabibbo anomaly: new theory driven anomaly, first generation quarks

 R_K

- $B \to K \mu^+ \mu^- / B \to K e^+ e^-$
- By taking the ratio, many parts of the calculation cancel
- Also experimentally many things cancel
- $b \to s \ell^+ \ell^-$

R(D)

- $B \to D\tau\nu/B \to D\ell\nu$
- Similar to R_K , ratio is easier (but not as easy)
- $b \to c \ell \nu$
- So also $R(\Lambda_c) = \Lambda_b \to \Lambda_c^+ \tau^- \nu / \Lambda_b \to \Lambda_c^+ \ell^- \nu$

 $(g-2)_{\mu}$

- Muon is spin ¹/₂ particle, electrically charged
- Has g factor, approx 2

Caibbo Angle Anomaly

- SM says CKM must be unitary
- Measurements of values using first generation quarks disagrees
- BUT: driven entirely by new theory calculations

Why are people excited (or not)?

Why are people not excited?

- CAA: New theory corrections started the anomaly
- Lots of reevaulations going on
- Not a clear picture

- Some measurement that disagrees with SM, but does agree with some previously known new theory
- No previous new theory known, but easy to write something down
- No previous new theory known, but hard to write something down

- Some measurement that disagrees with SM, but does agree with some previously known new theory
 - Suggests new theory is on the right track
 - Hopefully new theory tells us something more too

- No previous new theory known, but easy to write something down
 - Lots of work to do, lots of papers to publish
 - Opportunities for all

- No previous new theory known, but hard to write something down
 - Easy to falsify, not much tweaking allowed
 - Tighly defined structure hopefully tells you something
 - And big reward for those who can

Why are people excited (or not)?

- R_K : easy to write down theories
- R(D): easy to write down theories
- $R_K + R(D)$: hard to write down theories without other effects

Why are people excited (or not)?

- R_K : simple add on to SM
- R(D): simple add on to SM
- $R_K + R(D)$: something that requires detailed framework

What are the explanations?

- Z': suggests new gauge symmetry, with flavour component
- Scalar LQ: easy to add on, suggest quark lepton unification
- Vector LQ: needs serious structure to explain mass

The future

It is not a mass peak. Now what?

 \sim 6 σ being said. What would convince us as a community?

* Provocative questions to launch the discussion

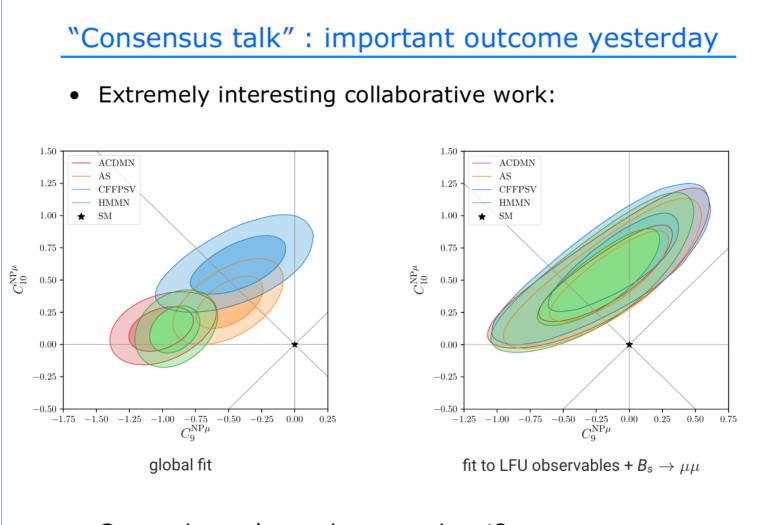
https://indico.cern.ch/event/1055778/contributions/4561385

Workshop - 21 Oct 2021

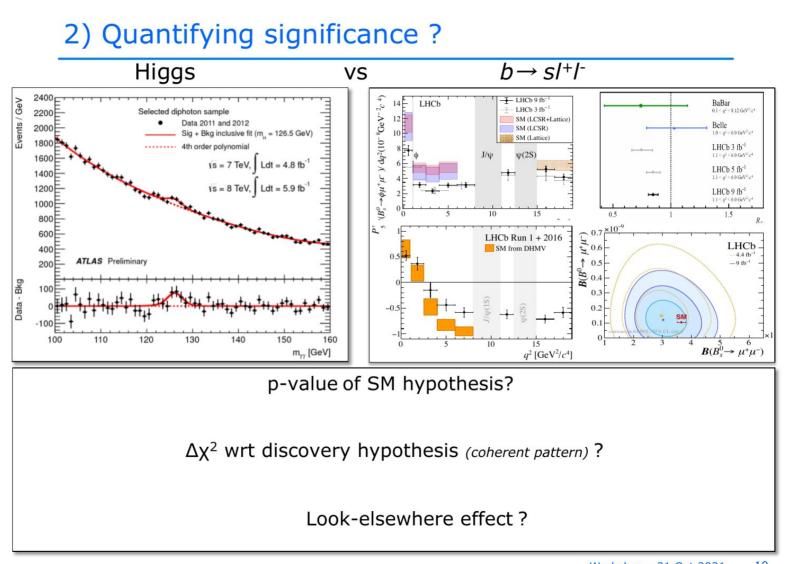
The future

b→sll Discussion: Building Consensus

How can we - HEP Community - convince ourselves (& the world..)?


1) how conservative does one need to be?

2) how to quantify the significance?


3) how to proceed from here?

Thanks!

BACKUP

Comparison when using same input?

CKM matrix (V)

- 3x3 unitary matrix by construction
- We can talk about "unitary conditions", which are SM predictions like any other
- One prediction is "first row unitarity"

$$-|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

• As recently as 2018 (1807.01146)

$$-|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994 \pm 0.0005$$

Good agreement with SM prediction

Beta decay

- 2018 value of V_{ud} uses Δ_R^V from 2006 (hep-ph/0510099)
- At end of 2018, new value of Δ_R^V (1807.10197)
- Gives $V_{ud} = 0.97370 \pm 0.00014$
- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0005$

– Using 2020 PDG for V_{us}