SEARCHING FOR NEW GAMMA-RAY BINARIES USING Gaia

MAR CARRETERO-CASTRILLO

PhD Supervisors: Marc Ribó, Josep M. Paredes

FEBRUARY 2022

OUTLINE

1. INTRODUCTION

2. MOTIVATION

3. METHODOLOGY

4. RESULTS

5. CONCLUSIONS AND OUTLOOK

MAR CARRETERO-CASTRILLO

1. INTRODUCTION: THE GeV AND TeV SKY

New facilities since 2005-2008

New facilities

new types of gamma-ray sources _____ gamma-ray binaries

Fermi/LAT satellite (GeV)

70 65 25 20 335

290

HESS and MAGIC Cherenkov Telescopes (TeV)

1. INTRODUCTION: GAMMA-RAY BINARIES

- consist of a **massive star** and a **compact object**
- have the **maximum** of the non-thermal emission 0 at gamma-ray energies

- two of them have a confirmed pulsar
- no clear accretion signatures 0

Gamma-ray Binary System	Spectral Type	Orbital Period (days)	Distance (kpc)
LS 5039	O6.5V	3.9	2.0
LS I $+61^{\circ}303$	B0Ve	26.5	2.7
PSR B1259-63	09.5Ve	1236.7	2.3
HESS J0632 $+057$	B0Vpe	315.0	1.9
1 FGL J1018.6 - 5856	O6V	16.5	4.4
LMC P3	O5III	10.3	LMC
PSR J2032+4127	Be	17670.0	1.8
4 FGL J1405 - 6119	O6III	13.7	_
HESS J1832-093	_	86.3	_

• Only **9** are known:

• very different orbital configurations (P, e)

See Paredes & Bordas (2019) and references therein

1. INTRODUCTION: GAMMA-RAY BINARIES

Physical scenario:

Non-accreting pulsar

- Young pulsar with a relativistic wind Ο
- Particle acceleration: shock between the pulsar and stellar Ο winds or the Coriolis shock (see Bosch-Ramon et al. 2015)
- Synchrotron radiation from radio to X-rays Ο
- Gamma-ray emission: inverse Compton scattering Ο

Open questions

- Do all contain pulsars?
- Why only O and Be stars?
- What is the real population?
- Does it fit with binary stellar evolution?

- What will CTA see? \bullet
- \bullet
- \bullet
- lacksquare

Zabalza et al. (2013)

Do we know all nearby objects or just the tip of the iceberg? Are the known ones representative of the population? Relevant physical parameters to produce GeV/TeV emission?

1. INTRODUCTION: KICKS AND BINARY ORBITS

- 1. Pre-supernova (SN) orbit
 - Two massive stars in a binary system

2. SN explosion

- Remains bound if less than half of the mass is lost
- 3. Kick
 - SN ejecta moving away
 - Binary system moving on the opposite direction
 - Orbit changes (*P*, *e*)

MAR CARRETERO-CASTRILLO

THE SYSTEM

BECOMES

RUNAWAY

 $(30 - 200 \text{ km s}^{-1})$

2. MOTIVATION

- Some gamma-ray binaries have high to extremely high peculiar velocities
- Search for **runaways** among catalogs of **massive stars**

- further studied

Gamma-ray Binary System	Spectral Type	Orbital Period (days)	$\begin{array}{c} { m Distance} \\ { m (kpc)} \end{array}$
LS 5039	06.5V	3.9	2.0
LS I $+61^{\circ}303$	B0Ve	26.5	2.7
PSR B1259 - 63	09.5Ve	1236.7	2.3
$\rm HESS~J0632{+}057$	B0Vpe	315.0	1.9
1 FGL J1018.6 - 5856	O6V	16.5	4.4
LMC P3	O5III	10.3	LMC
PSR J2032 + 4127	Be	17670.0	1.8
4 FGL J1405 - 6119	O6III	13.7	—
HESS J1832-093	—	86.3	_

(1) Moldón et al. (2012), (2) Wu et al. (2017), (3) Miller Jones et al. (2018), (4) Marcote et al. (2018)

• Obtain a list of gamma-ray binary candidates to be

• Should allow us to **discover additional gamma-ray** binaries with different selection bias

3. METHODOLOGY: GOSC-Gaia DR2 CROSS-MATCH

GOSC Catalog

- Catalog of Galactic O-type stars
- The current version lists 611 O stars and 32 B,A stars

Gaia DR2

- 2nd Data Release of the astrometric mission *Gaia*
- 1,692,919,135 sources in Gaia DR2 \bullet

- 5 parameter solution
- G > 6

1//

- visibility_periods_used > 10
- |parallax_over_error| > 5
- Negative parallax
- *RUWE* < 1.15

To guarantee good astrometric data

```
• mean_varpi_factor_al \in [-0.23, 0.32]
```

GOSC-Gaia DR2 Catalog

3. METHODOLOGY: GOSC-Gaia DR2 Catalog

3. METHODOLOGY: Searching for runaway stars

Galactocentric coordinates

Galactic rotation curve

3. METHODOLOGY: Searching for runaway stars

Local Standard of Rest

- At the position of the Sun
- $(U_{\text{LSR}}, V_{\text{LSR}}, W_{\text{LSR}})$

- At the position of the star
- $(U_{\rm RSR}, V_{\rm RSR}, W_{\rm RSR})$

- $(V_{\text{TAN}}, V_{\text{RAD}}, W_{\text{RSR}})$

New Reference System

• We have used the two velocity components:

 $(V_{\mathrm{TAN}}, W_{\mathrm{RSR}})$

- Histogram with 2 km s^{-1} binning
- Most stars around (0,0) velocities, with some dispersion
- Other stars with clearly high velocities

MAR CARRETERO-CASTRILLO

Gaussian fit

- Gaussian fitting to the histograms
- Standard deviations ($\sim 9 \ {\rm km \ s}^{-1}$) have typical values for young stars (Torra et al. 2000)

Criterion for determining runaway stars

- **3σ** ellipse
- Stars inside this ellipse will be classified as field stars
- Stars outside this ellipse will be classified as runaways
- 82 runaway stars

Gaussian fit

• The Gaussian fit is affected by the runaway stars

Clipping

- Gaussian fit has improved
- Standard deviations have decreased
- After clipping, we obtained **6** more **runaway stars**

Iteration	$\mu_{V_{\mathrm{TAN}}}$	$\sigma_{V_{\mathrm{TAN}}}$	$\mu_{W_{\mathrm{RSR}}}$	$\mu_{W_{ m RSR}}$	Excluded stars
1	0.66	7.88	-2.23	8.46	82
2	0.98	7.31	-1.87	7.79	5
3	1.00	7.33	-1.83	7.75	1
4	0.96	7.27	-1.82	7.74	0

- **88** runaway stars, **24%** of the GOSC-*Gaia* DR2 catalog
- Peculiar velocities:

 $30 - 131 \text{ km s}^{-1}$

• Peculiar velocities of runaway gamma-ray binaries:

$$26 - 142 \text{ km s}^{-1}$$

Gamma-ray Binary System	GOSC Catalog	$\begin{array}{c} \operatorname{GOSC}\operatorname{-}Gaia \ \operatorname{DR2} \\ \operatorname{Catalog} \end{array}$	Classified as
LS 5039	\checkmark	\checkmark	Runaway
PSR B1259-63	×	_	_
1 FGL J1018.6 - 5856	X	_	_

4. RESULTS: EDR3

- GOSC-Gaia EDR3 catalog consists of 407 stars
- Errors and $W_{\rm RSR}$ -standard deviation have decreased
- **111** runaway stars, **27%** of the GOSC-*Gaia* EDR3 catalog
- Peculiar velocities:

 $16 - 290 \text{ km s}^{-1}$

(3-4 stars outside the plot range)

19

5. CONCLUSIONS AND OUTLOOK

- Gamma-ray binaries with an O-type star present high peculiar velocities
- We have analyzed a sample of **643 early-type** stars to search for new gamma-ray binaries
- We have found **88** runaway stars with Gaia DR2 data
- **111** runaways with Gaia EDR3 data
- Some of them could be gamma-ray binaries

- catalogs

• Conduct a similar study with a Be-star catalog

• Publish the methodology and the obtained results with both catalogs

• Search for non-thermal emission in other

• Prepare future observations of selected sources (radial velocities, photometry, radio, X-rays, etc.)

Conduct MAGIC and CTA observations

TAKE HOME MESSAGES

MAR CARRETERO-CASTRILLO

discover new gamma-ray binaries

? new gamma-ray binaries

THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?

PhD Supervisors: Marc Ribó, Josep M. Paredes

MAR CARRETERO-CASTRILLO

FEBRUARY 2022

Institut d'Estudis Espacials de Catalunya

MAR CARRETERO-CASTRILLO

BACKUP - EDR3

MAR CARRETERO-CASTRILLO

BACKUP - GOSC-Gaia DR2 vs. GOSC-Gaia EDR3

MAR CARRETERO-CASTRILLO

BACKUP - DISCOVERY METHODS

Source PSR B1259-63 PSR J2032+4127 LS 5039 LS I + 61 303HESS J0632+057 1FGL J1018.6-5856 4FGL J1405.1-6119 HESS J1832-093 LMC P3

Discovery **HESS** periastron MAGIC/VERITAS periastron HESS GPS MAGIC targeted HESS GPS Fermi/LAT periodicity search Fermi/LAT periodicity search HESS GPS Fermi/LAT periodicity search

5. PhD THESIS GOALS

SEARCH FOR NEW GAMMA-RAY BINARIES

- Search for runaway massive stars
- Search for non-thermal emission of the selected sources
- Multi-wavelength observations of the selected sources

- Observations of transients phenomena
- TeV-detection state
- Analysis of Gamma-Ray Bursts (GRBs) data (eventually VLBI observations)
- Contributions to the MAGIC Flare Advocate Team

MAGIC COLLABORATION

• TeV-detection of microquasars during the flaring

1. INTRODUCTION: GAMMA-RAY BINARIES

Physical scenario:

N II -			. •		
NO	n-a	ccre	etin	d D	sar
		••••		J F	

- Young pulsar with a relativistic wind Ο
- Particle acceleration: shock between the pulsar and stellar Ο winds or the Coriolis shock (see Bosch-Ramon et al. 2015)
- Gamma-ray emission: inverse Compton scattering Ο

Open questions

- Do all gamma-ray binaries contain pulsars? \bullet
- What are the relevant physical parameters? \bullet
- What is the actual population?

Credit: Kavli IPMU

Does it fit with the predictions of binary stellar evolution?

Where and how is the GeV/TeV emission produced?

3. METHODOLOGY: Searching for runaway stars

Local Standard of Rest

- At the position of the Sun
- $(U_{\text{LSR}}, V_{\text{LSR}}, W_{\text{LSR}})$

- At the position of the star
- $(U_{\rm RSR}, V_{\rm RSR}, W_{\rm RSR})$

- $(V_{\text{TAN}}, V_{\text{RAD}}, W_{\text{RSR}})$

MAR CARRETERO-CASTRILLO

resolució imatge

3. METHODOLOGY: Searching for runaway stars

Galactocentric coordinates

Galactic rotation curve

Reid et al. (2019)