Experimental overview on B anomalies

ICCUB Winter Meeting, 7-8/02/22

Ricardo Vázquez Gómez

In this talk

- Give a broad overview of the status of the art on B-anomalies.
- * Not only LHCb results.
- Special focus on Lepton Flavour Universality tests.
- Try not to give hundreds of experimental details.

Lepton Flavour Universality in the SM

- The three families of leptons are identical with the exception of their masses (couplings with the Higgs boson).
- For the other interactions, they interact equally => **lepton flavour universality.**

Families can be mixed through the decay of • quarks and neutrinos (flavour changing currents).

weak nuclear

force

Places to look for anomalies

- * Rare decays. Loop transitions.
 - NP can be of the same size as SM contribution.
- * Experimentally convenient.
- * Theoretically clean.

- Semileptonic decays. Very abundant.
- Experimentally challenging.
- * Theory uncertainties are controllable.
 - * Need Lattice QCD to reduce uncertainties in calculations.

How to do calculations

Observables to detect New Physics

- Integrated and differential branching fractions of $b \to s\mu^+\mu^-$ and $\overline{b} \to \overline{c}\mu^+\nu_\mu$ decays.
- Angular observables.
- * Fully leptonic decays (e.g. $BR(B_s \rightarrow \mu^+ \mu^-)$).
- * Lepton Universality Tests.

Will focus on Lepton Universality Tests but anomalies are reported everywhere.

Increasing precision in the SM predictions

Kinematics of the decays

Example of $B^0 \to K^* \mu^+ \mu^-$ decay

- * The decay is governed by the angles θ_l, ϕ, θ_K (angular analysis) and the squared momentum transfer to the dilepton system ($q^2 = (p_{B^0} p_{K^*})^2$).
- * At $q^2 = 0$ the two leptons are at rest.
- * Usually lower values of q^2 have less uncertainties from the theory => many observables are measured on the low q^2 region.

Lepton Universality in rare decays

- * Very precise SM predictions.
- * QCD uncertainties cancel up to O(10-4).
- * Main experimental differences:
 - * **LHCb**: fewer efficiency for electrons than for muons and with worse resolution.
 - Belle: similar efficiency and resolution for electrons and muons.

In the SM

 $\cdot q_{max}^2 \ d\mathscr{B}(B \to H\mu^+\mu^-)$ dq^2 q_{min}^2 dq^2

ed ron

Lepton Universality summary

Lepton Universality interpretation

- Combine the information from different observables (150-250) fitting the EFT coefficients using different fitting techniques, sets of observables and theory assumptions.
- Remarkable agreement between fits from different groups despite different approaches.
- * Combined global significance of 4.3σ .
- * Discrepancies can be consistently explained by NP.

Lepton Universality in semileptonic decays - BES III

Measurements from BES-III. e⁺e⁻ collisions at * variable center-of-mass energy

$$R(K^{-}) = \frac{\mathscr{B}(D^{0} \to K^{-}\mu^{+}\nu_{\mu})}{\mathscr{B}(D^{0} \to K^{-}e^{+}\nu_{\mu})} = 0.974 \pm 0.007(\text{stat}) \pm 0.00$$

* No LFU violation signs with current sensitivity in charm decays.

Lepton Universality in semileptonic decays - LHCb/Belle

- denominator.
- Two ways of pursuing the measurements:
 - kinematic resolutions.
 - better constrained kinematics.

 $R(H_c) = \frac{\mathscr{B}(H_b \to H_c \tau^+ \nu_{\tau})}{\mathscr{B}(H_b \to H_c l^+ \nu_l)}$

Belle includes muon and electron in the denominator. LHCb includes only muons in the

* Use muonic decay of tau. Direct extraction of $R(H_c)$. Three missing neutrinos => worse

* Use hadronic decay of the tau. Need external input to extract $R(H_c)$. Tau vertex gives

Lepton Universality in semileptonic decays - summary

- * Experimental average shows 3.4σ tension with SM predictions on the $R(D) - R(D^*)$ plane.
- * $R(J/\psi)$ and $R(\Lambda_c^+)$ are compatible with the SM within 2σ .
- All measurements are still statistically limited.

What is the new model?

- * There are several ways to explain (part of) the anomalies: Z', scalar LQ, vector LQ.
 - * Masses are usually above 1 TeV.
- Different models depending on the new mediator couples more strongly to muons or to taus.

What do we expect from the future?

- LHCb is finalising its upgrade, will start the Run3 in spring. •
- Belle II is already starting to produce competitive results. •

The role of ICCUB

- * The experimental High Energy Physics group has led and is leading: * Analysis of the $B_s \rightarrow D_s^{*+} \mu^+ \nu_{\mu}$ hadronic form factors and measurement of $R(D_s^{*+})$.
 - * Analysis of LFU in $\Lambda_b \to pKl^+l^-$ (R_{pK}) and its update with full Run2 data sample.

Conclusions

- * Several measurements from different experiments show deviations from the SM in LFU tests in rare and semileptonic decays.
 - * No single 5σ observation yet.
- * Coherent theoretical explanation based on fits to data.
 - * There are few NP models that can explain the anomalies.
- * Only more data (LHCb Upgrade and Belle-II) will shed light on the anomalies.
- * People from ICCUB is leading some of the analysis.