

MARÍA

2020-2023

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Current and future activities on computing and software engineering at the ICCUB Technological Unit

Jordi Portell i de Mora | ICCUB Winter Meeting

Deputy technical director

Institute of Cosmos Sciences Universitat de Barcelona

Barcelona 8 February 2022

Gaia: Data processing, validation and visualization

Most activities within the frame of the Gaia DPAC (Data Processing and Analysis Consortium):

- CU3 (Core Processing) unit, IDU (Intermediate Data Updating) system
 - Integration and test of algorithms: Instrumental calibrations, image parameters determination
 - Development of new algorithms: Attitude & Calibration bootstrap, spurious detections classification, cross-matching...
 - Recently: on-ground detection and resolution of close star pairs
 → improve catalogue resolution and completeness, specially in dense areas (e.g. clusters)
- DPCB (Data Processing Centre of Barcelona)
 - Operational runs at BSC (MareNostrum):
 5.5 years of mission, 65 TB output, 5M CPU hours,
 142E9 observations processed...
 - Two runs like this (so far!) for this cycle (prep. DR4)
 - Official backup of the full MainDB and raw TM Archive
 - Data visualization tools
- CU3 / IDT (Initial Data Treatment)
 - Support to daily operations, monitoring and resolution of onboard/onground issues

-57°49'50.481

-57°49'50.691

-57°49'50.902'

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Gaia: Data processing, validation and visualization

Most activities within the frame of the Gaia DPAC (Data Processing and Analysis Consortium):

- CU9 (Catalogue Preparation)
 - Catalogue validation for EDR3 and **DR3**: many new data types, tables, parameters...
 - Development of software tools for statistics and validation
- Project Office
 - Technical interfaces between Units and Centres; technical support to other Units
 - Estimation of database and transfer sizes
 - Curation of Operational Event Logs, development of visualization tools
 - Support to additional (typ. cross-unit) investigations

Gaia: Additional activities

Beyond DPAC, some activities related to Gaia:

- OCRE / GalacticRainCloudS:
 - Galactic Research in Cloud Services
 - Commercial Cloud Services granted by OCRE (European Initiative) to do data mining and research on Gaia (E)DR3 data
 - Spark cluster + Data lake + Linux Virtual Machines + Machine Learning services + Notebooks
 - Run large simulations, get richer statistics, find correlations, improve current models
- GDAF:
 - Gaia Data Analysis Framework
 - Hadoop + Spark + Parquet + libraries + interfaces
 - Allow queries, plots and investigations on **Big Gaia Data**
 - Formerly deployed at CESCA/CSUC, now migrating to BSC
- Gaia4Sustainability (a.k.a. GAMBONS Plus):
 - Gaia map of the brightness of natural sky
 - Evaluate and identify sources of light pollution
 - Now improving it to offer a "proof-of-concept" service to users
 - Software development including modern web technologies and GPU programming

6-DBScan

'/ irrey[Int] - Arrey(100001, 10000

Gaia: Recent achievements and outlook

• Early Data Release 3 (EDR3):

- Released 3 December 2020
- Mainly Astrometry+Photometry
- Based on 34 months of data
- Data Release 3 (DR3):
 - Scheduled <u>13 June 2022</u>
 - Lots of new data products

- Data Release 4 (DR4):
 - Full nominal mission (66 months)
 - Envisaged ~2025
 - Epoch data for all data products and sources (incl. astrometry, spectra, etc.)
- Data Release 5 (DR5):
 - Extended mission, date TBD
 - Already working on it!

	# sources in Gaia DR3	# sources in Gaia DR2	# sources in Gaia DR1
Total number of sources	1,811,709,771	1,692,919,135	1,142,679,769
	Gaia Early Data Release 3		
Number of sources with minimally 5 astrometric parameters	1,467,744,818	1,331,909,727	2,057,050
Number of 5-parameter sources	585,416,709		
Number of 6-parameter sources	882,328,109		
Number of 2-parameter sources	343,964,953	361,009,408	1,140,622,719
Gaia-CRF sources	1,614,173	556,869	2,191
Sources with mean G magnitude	1,806,254,432	1,692,919,135	1,142,679,769
Sources with mean G _{BP} -band photometry	1,542,033,472	1,381,964,755	-
Sources with mean G _{RP} -band photometry	1,554,997,939	1,383,551,713	-
	New data in Gaia Data Release 3 (pending validation)		
Sources with radial velocities	≈ 33,000,000	7,224,631	-
BP/RP spectra	> 100,000,000	-	-
RVS spectra	≈ 1,000,000	-	-
Variable source classifications	≈ 13,000,000	550,737	3,194
Object classifications	≈ 1,000,000,000	-	-
Sources with astrophysical parameters	≈ 500,000,000	161,497,595	-
Non-single stars	≈ a few 100,000	-	-
QSO host and galaxy morphological characterisation	≈ a few 1,000,000	-	-
Solar system objects	≈ 150,000	14,099	-
Reflectance spectra for solar system objects	≈ 50,000	-	-
Average BP/RP reflectance spectra of asteroids	≈ 10,000	-	-
Gaia Andromeda Photometric Survey (GAPS)	≈ 1,000,000	-	-

Virgo and GW

Virgo: Contributions to the Gravitational Waves Observatory

- ICCUB Virgo participation was triggered from the Technological Unit
 - Initially aiming at contributions on Computing and Instrumentation
 - Now also outreach, data analysis and science modelling and exploitation activities
 - Full member of the Virgo Collaboration since July 2019
 - ICCUB-Virgo group has grown a lot! Now 17 members and ~6 FTEs
 - Here we just focus on computing and data analysis
- Data analysis:

Spectrogram (Normalized tile energy)

Denoising plugin (based on iterative rROF) for Bursts pipeline (unmodelled searches), up to ~2dB SNR improvement

Spectrogram (Normalized tile energy)

VIRGDICCUB

Institut de Ciències del Cosmos

UNIVERSITAT DE BARCELONA

Virgo: Contributions to the Gravitational Waves Observatory

- Data analysis:
 - Working on new **GW templates** and models:
 High eccentricity, precession, gravitational lensing...
 - Also on new **pipelines** and improved template **interfaces**

- Computing:
 - Now working on a federated **authentication service** for Virgo (in collab. with LIGO and KAGRA)
 - Soon:

optimization of Continuous Wave pipeline support to scientists

centralized monitoring of Rucio data handling and HTCondor jobs

Contributions to other Gravitational Waves projects

Einstein Telescope (ET):

- Third-generation GW observatory, expected ~2035
- 3 nested detectors, 10km arms, underground, cryogenic parts
- Now part of ESFRI roadmap
- Envisaged contributions from ICCUB:
 - Science case and data analysis
 - Outreach
 - "E-Infrastructure" (Computing & Software):

Contributions to the general computing model and architecture, efficient data handling, cloud and Big Data technologies, software engineering... Expected ~1 FTE Q2'2022

LISA:

- Space-based GW observatory, expected ~2037
- 3 detectors, 2.5 million km arms
- ICCUB contributions still being defined: probably data challenge / data analysis activities

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Other projects

PLATO

ESA mission, launch expected ~2026.

Ground-based follow-up of exoplanet candidates (GOP, Ground-based Observation Programme):

- Definition of overall architecture and requirements
- Interfaces and protocols between PLATO Data Center and Observatories
- Database and metadata
- Observational constraints
- Software implementation

Now ramping up,

~1 FTE at ICCUB expected Q2'2022

IEEC

Espacials de Catalunva

Institut d'Estudis

Nanosatellites

See talk by Chema Gómez!

Remarkably (on the software side):

- IEEC's C3SatP platform:
 CCSDS packetisation stack,
 Reed-Solomon error detection and correction,
 efficient data compression (FAPEC)
 - Feasibility to compress payload data even on a low-end OnBoard Computer (OBC)
 - High-throughput software-based data compression
 - Collaboration with our spin-off (DAPCOM)

• IEEC's PhotSat:

Support to mission definition and requirements

IEEC Institut d'Estudis Espacials de Catalunya

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Other projects and activities

- GaiaNIR:
 - Support to initial definition —
 - On-board data handling, on-ground raw data processing and initial data treatment, ... —
- **Euclid**:
 - Specific engineering tasks still being defined.

- Jasmine:
 - Also being defined: perhaps support to some PSF models, simulations, and eventually data processing/analysis —
- Additional future activities to be funded by *Planes Complementarios*: ۲
 - **Data fusion** of Gaia data with other catalogues: JPAS/JPLUS, WEAVE, Euclid, LSST... _
 - Support to other projects: WEAVE, LSST, DESI, Lattice... _

Summary

Main activities:

- Gaia
 - DPAC (data processing and validation), Cloud, Big Data, light pollution
- Virgo
 - Computing, pipelines, data analysis

Ramping up:

- PLATO
 - Ground-based followup
- Nanosatellites
 - Onboard software, data compression, mission design
- Other GW projects
 - ET (computing), LISA

Future projects:

- Euclid, Jasmine, GaiaNIR
- Growing soon! (Planes Complementarios)

Thank you

Jordi Portell (jportell@icc.ub.edu)

on behalf of the ICCUB-Tech Computing Division

DE MAEZTU

2020-2023