The Higgs: a promising portal to New Physics

Íñigo Asiáin

Institut de Ciències del Cosmos, Universitat de Barcelona

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA iasiain@icc.ub.edu February 7th, 2022

Based on: I. Asiáin, D .Espriu and F .Mescia. Phys. Rev. D 105, 015009

ICCUB Winter Meeting 2022

SM issues:

From observations:

• Only $\sim 5~\%$ is explained by ordinary matter

 $\sim 27~\%$ of dark matter which we do not know

massive neutrinos are not predicted

Internal:

• Flavour puzzle: 22 free parameters CP violation in the strong sector: $\theta_{QCD} \approx 0$ EW Hierarchy problem: $m_h \ll M_{pl}$ Gravity?

The SM Higgs boson:

- predicted in 1964
- Gives masses to
 EW gauge bosons (W, Z)
 EWSBS
- Where does it **come from**?

Fig I: The poor misunderstood Higgs boson

What is the origin of the Electroweak Symmetry Breaking Sector (EWSBS)?

What is the origin of the Electroweak Symmetry Breaking Sector (EWSBS)?

I. Asiáin

Effective Field Theory (EFT)

• **Bottom-up EFT:** Symmetries + Low Energy degrees of freedom

• No UV completion needed

- Breaks down at some energy scale. Unitarity no longer fulfilled
- Assumptions:
 - Strongly coupled dynamics with resonances at $\sqrt{S} \lesssim \Lambda \sim 4\pi v \sim 3 TeV$
 - Minimal EWSB pattern:
 - Chiral EW symmetry: $SU(2)_L \times SU(2)_R \longrightarrow SU(2)_V \{g, g'\} \rightarrow \{g, 0\}$
 - Gauge EW symmetry: $SU(2)_L \times U(1)_Y$

• Goldstones in **non-linear** realization $U(x) \rightarrow LU(x)R^{\dagger}$

• Light degrees of freedom: $\omega^{\pm}, z, W^{\pm}, Z, h$

Effective Framework

Electroweak Chiral Lagrangian (EChL)

- Extension of ChPT to EW sector
- Expansion in powers of the momentum (derivatives): $\mathscr{L}_{EChL} = \mathscr{L}_2 + \mathscr{L}_4 + \dots$

Building blocks

$$U = e^{\frac{i\omega^a \tau^a}{v}} \qquad \mathscr{F}\left(\frac{h}{v}\right) = 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 + \dots \qquad \mathscr{V}_{\mu} = \left(D_{\mu}U\right)U^{\dagger} \qquad \hat{W}_{\mu\nu}, \hat{B}_{\mu\nu}$$

Effective Framework

Electroweak Chiral Lagrangian (EChL)

- Extension of **ChPT** to EW sector
- Expansion in powers of the momentum (derivatives): $\mathscr{L}_{EChL} = \mathscr{L}_2 + \mathscr{L}_4 + \dots$

Building blocks

Effective Framework

Electroweak Chiral Lagrangian (EChL)

- Extension of **ChPT** to EW sector
- Expansion in powers of the momentum (derivatives): $\mathscr{L}_{EChL} = \mathscr{L}_2 + \mathscr{L}_4 + \dots$
- Integrate out new content at high energies

Unitarization

- Expansion in powers of the **momentum (derivatives)**
- Realistic predictions only with **unitary amplitudes**: $|t_{II}| < 1$
- Unitarization methods required: IAM, K matrix, N/D,...
- Based on **partial wave** analysis

$$t_{IJ}(s) = \frac{1}{64\pi} \int_{-1}^{1} d(\cos\theta) P_J T_I(s, \cos\theta) \approx t_{IJ}^{(2)} + t_{IJ}^{(4)} + \dots$$

• T_I fixed isospin amplitudes. In the charged basis have the form

$$T_0 = 3\mathscr{A}^{+-00} + \mathscr{A}^{++++}$$

$$T_1 = 2\mathscr{A}^{+-+-} - 2\mathscr{A}^{+-00} - \mathscr{A}^{++++}$$

$$T_2 = \mathscr{A}^{++++}$$

- Realistic predictions only with **unitary amplitudes**: $|t_{IJ}| < 1$
- Unitarization methods required: IAM, K matrix, N/D,...
- Based on **partial wave** analysis

$$t_{IJ}(s) = \frac{1}{64\pi} \int_{-1}^{1} d(\cos\theta) P_J T_I(s, \cos\theta) \approx t_{IJ}^{(2)} + t_{IJ}^{(4)} + \dots$$

• T_I fixed isospin amplitudes. In the charged basis have the form

$$T_0 = 3\mathscr{A}^{+-00} + \mathscr{A}^{++++}$$

$$T_1 = 2\mathscr{A}^{+-+-} - 2\mathscr{A}^{+-00} - \mathscr{A}^{++++}$$

$$T_2 = \mathscr{A}^{++++}$$

- Realistic predictions only with **unitary amplitudes**: $|t_{IJ}| < 1$
- Unitarization methods required: IAM, K matrix, N/D,...
- Based on **partial wave** analysis

$$t_{IJ}(s) = \frac{1}{64\pi} \int_{-1}^{1} d(\cos\theta) P_J T_I(s, \cos\theta) \approx t_{IJ}^{(2)} + t_{IJ}^{(4)} + \dots$$

• T_I fixed isospin amplitudes. In the charged basis have the form

$$T_{0} = 3\mathscr{A}^{+-00} + \mathscr{A}^{++++}$$

$$T_{1} = 2\mathscr{A}^{+-+-} - 2\mathscr{A}^{+-00} - \mathscr{A}^{++++}$$

$$T_{2} = \mathscr{A}^{++++}$$
The other ones are obtained via crossing symmetry.

Unitarization

Unitarization

$$t_{IJ}^{IAM} = \underbrace{\left(t_{IJ}^{(2)}\right)^{2}}_{t_{IJ}^{(2)} - t_{IJ}^{(4)}} \xrightarrow{} M\left(a, b, \{a_{i}\}\right), \text{ width } \Gamma\left(a, b, \{a_{i}\}\right)$$

and quantum numbers IJ
$$M = \sqrt{Re \, s_{R}} \quad \Gamma = -\frac{1}{m} Im \, s_{R}$$

NLO calculation

• a full NLO $V_L V_L \rightarrow V_L V_L$ is available in the literature Too complicated for for our purposes. $In[20]:= topologies = CreateTopologies[1, 2 \rightarrow 2]; \\ amp = InsertFields[topologies, {V[3], -V[3]} \rightarrow {V[2], V[2]}, (*WW \rightarrow ZZ*) \\ InsertionLevel \rightarrow {Particles}, Model \rightarrow "EChL_custodial_p2",$ $GenericModel \rightarrow "EChL_custodial_p2"];$ Paint[amp] in total: (474 Particles insertions) diagrams in custodial limit (no e.m.)! $• Shortcut: <math>t_{II}^{(4)} = Re t_{II}^{(4)} + iIm t_{II}^{(4)}$

> Maria J. Herrero and Roberto A. Morales Phys. Rev. D104, 075013 Published 12 October 2021

NLO calculation

• a full NLO $V_L V_L \rightarrow V_L V_L$ is available in the literature. Too complicated for for our purposes.

$$topologies = CreateTopologies[1, 2 \rightarrow 2];$$

$$amp = InsertFields[topologies, {V[3], -V[3]} \rightarrow {V[2], V[2]}, (*WW \rightarrow ZZ*)$$

$$InsertionLevel \rightarrow {Particles}, Model \rightarrow "EChL_custodial_p2";$$

$$GenericModel \rightarrow "EChL_custodial_p2"];$$

$$Paint[amp]$$
in total: $(474 \text{ Particles insertions})$ diagrams in custodial limit (no e.m.)!
$$e \text{ Shortcut: } t_{IJ}^{(4)} = Re t_{IJ}^{(4)} + iIm t_{IJ}^{(4)}$$

$$e Re t_{IJ}^{(4)} : \{a_i\} - terms + NLO - ET \ amplitude$$

$$ET: Equivalence Theorem$$

$$\mathcal{A} (V_L V_L \rightarrow V_L V_L) \approx \mathcal{A} (\omega\omega \rightarrow \omega\omega) + o\left(\frac{M_V}{\sqrt{S}}\right)$$

$$e^{O(I_LC_Q A I_L} + IO(A I_L) + IO(A$$

 $\omega\,$ is the Goldstone Boson associated to V

NLO calculation

• a full NLO $V_L V_L \rightarrow V_L V_L$ is available in the literature. Too complicated for for our purposes.

$$topologies = CreateTopologies[1, 2 \rightarrow 2];$$

$$amp = InsertFields[topologies, {V[3], -V[3]} \rightarrow {V[2], V[2]}, (*WW \rightarrow ZZ*)$$

$$InsertionLevel \rightarrow {Particles}, Model \rightarrow "EChL_custodial_p2",$$

$$GenericModel \rightarrow "EChL_custodial_p2"];$$

$$Paint[amp]$$

in total: (474 Particles insertions) diagrams in custodial limit (no e.m.)!
• Shortcut: $t_{IJ}^{(4)} = Re t_{IJ}^{(4)} + iIm t_{IJ}^{(4)}$

• $Im t_{IJ}^{(4)}$: exact calculation through perturbative Optical Theorem

$$Im t_{IJ}^{(4)}(s) = \sigma(s) |t_{IJ}^{(2)}|^2 + \sigma_h(s) |t_{h,I}^{(2)}|^2 \delta_{I0}$$

 $VV \rightarrow VV$ $VV \rightarrow hh$

Calculation!!

Previous work

• Extreme version of ET. No W^{\pm} , Z allowed at all

Espriu, Mescia, Yencho Phys. Rev. D 88, 055002

• t_{11} :Scenarios where **no scalar-isoscalar nor scalar-isotensor** poles appear

Previous work

- Extreme version of ET. No W^{\pm} , Z allowed at all Espriu, Mescia, Yencho Phys. Rev. D 88, 055002
- t_{11} :Scenarios where **no scalar-isoscalar nor scalar-isotensor** poles appear

	a	$a_4\cdot 10^4$	$a_5\cdot 10^4$	
BP1	1	3.5	-3	1.5 TeV
BP2	1	1	-1	2.0 TeV
BP3	1	0.5	-0.5	2.5 TeV
BP1'	0.9	9.5	-6.5	1.5 TeV
BP2'	0.9	5.5	-2.5	2.0 TeV
BP3'	0.9	4	-1	2.5 TeV

Our work: improves

- One step further than extreme version of ET: allow physical W[±], Z inside loops (94 → 294 one loop diagrams)
- **new** chiral parameters entering t_{11} (renormalization and evaluation)

• How the **previously calculated vector resonances** (BPs) are affected?

• Not only VBS but also IJ = 00 final states $WW \rightarrow hh$ and $hh \rightarrow hh$ ~ 1500 diagrams already renormalized (my particular hell)

• How the **previously calculated resonances** (BPs) are affected?

•
$$a_3, \zeta = 0$$

$\sqrt{s_V} \left(GeV \right)$	g = 0	g eq 0	a	$a_4\cdot 10^4$	$a_5\cdot 10^4$
BP1	$1476 - \frac{i}{2}14$	$1503 - \frac{i}{2}13$	1	3.5	-3
BP2	$2039 - \frac{i}{2}21$	$2087 - \frac{i}{2}20$	1	1	-1
BP3	$2473 - \frac{i}{2}27$	$2540 - \frac{i}{2}27$	1	0.5	-0.5
BP1'	$1479 - \frac{i}{2}42$	$1505 - \frac{i}{2}44$	0.9	9.5	-6.5
BP2'	$1981 - \frac{i}{2}97$	$2025 - \frac{i}{2}98$	0.9	5.5	-2.5
BP3'	$2481 - \frac{i}{2}183$	$2547 - \frac{i}{2}183$	0.9	4	-1

Asiáin, Espriu, Mescia. Phys. Rev. D 105, 015009

• Variations around +(2% - 3%) when physical gauge bosons are allowed

• How the **previously calculated resonances** (BPs) are affected?

Asiáin, Espriu, Mescia. Phys. Rev. D 105, 015009

• Variations around +(2% - 3%) when physical gauge bosons are allowed

A • 7 •	
	\mathbf{n}

• How the **previously calculated resonances** (BPs) are affected?

•
$$\zeta = 0, a_3 \neq 0$$

 $W_{\gamma} \qquad \zeta = 0$
 $W_{\gamma} \qquad \zeta = 0$
 $W_{\gamma} \qquad \zeta = 0$

$\sqrt{s_V} \left(GeV \right)$	$a_3 = 0$	$a_{3} = 0.1$	$a_3 = -0.1$	$a_{3} = 0.01$	$a_3 = -0.01$
BP1	$1503 - \frac{i}{2}13$	$1795 - \frac{i}{2}11$	$1215 - \frac{i}{2}15$	$1532 - rac{i}{2}13$	$1474 - \frac{i}{2}13$
BP2	$2087 - \frac{i}{2}20$	$2721 - \frac{i}{2}15$	$1505 - \frac{i}{2}23$	$2150 - \frac{i}{2}19$	$2025 - \frac{i}{2}21$
BP1'	$1505 - \frac{i}{2}44$	$1663 - \frac{i}{2}46$	$1335 - \frac{i}{2}43$	$1520 - \frac{i}{2}44$	$1488 - \frac{i}{2}44$
BP2'	$2025 - \frac{i}{2}98$	$2278 - \frac{i}{2}104$	$1752 - \frac{i}{2}89$	$2052 - \frac{i}{2}98$	$1999 - \frac{i}{2}97$

Asiáin, Espriu, Mescia. Phys. Rev. D 105, 015009

- For reasonable values of a_3 are not significatively modified
- Inverse effect for positive and negative values

I. Asiáin

•

• How the **previously calculated resonances** (BPs) are affected?

$\sqrt{s_V} \left(GeV \right)$	$\zeta = 0$	$\zeta=0.1$	$\zeta = -0.1$	$\zeta=0.01$	$\zeta = -0.01$
BP1	$1503 - \frac{i}{2}13$	$1637 - \frac{i}{2}13$	$1377 - \frac{i}{2}14$	$1516 - \frac{i}{2}13$	$1489 - \frac{i}{2}13$
BP2	$2087 - \frac{i}{2}20$	$2393 - \frac{i}{2}18$	$1809 - \frac{i}{2}22$	$2117 - \frac{i}{2}20$	$2058 - \frac{i}{2}21$
BP1′	$1505 - \frac{i}{2}44$	$1570 - \frac{i}{2}46$	$1439 - \frac{i}{2}43$	$1510 - \frac{i}{2}45$	$1497 - \frac{i}{2}45$
BP2'	$2025 - \frac{i}{2}98$	$2136 - \frac{i}{2}100$	$1915 - \frac{i}{2}94$	$2036 - \frac{i}{2}98$	$2014 - \frac{i}{2}97$

Asiáin, Espriu, Mescia. Phys. Rev. D 105, 015009

- For reasonable values of ζ are not significatively modified
- Inverse effect for positive and negative values

I. Asiáin

Our work: objectives

- Monte Carlo @LHC to make predictions for vector/scalar BSM resonances
- Subprocess: $pp \rightarrow VVjj / hhjj$

Conclusions

- Effective field theories are powerful tools to explore High Energy Physics in a model-indepent way
- Unitary amplitudes can help to constrain anomalous couplings by studying the predicted resonances

- •An extended EWSBS typically have such resonances
- •VBS promising channel to to look for these **BSM resonances**

•LHC has not seen this resonances yet. Diboson excess at CMS with 1.9σ two years ago

Conclusions

- Effective field theories are powerful tools to explore High Energy Physics in a model-indepent way
- Unitary amplitudes can help to constrain anomalous couplings by studying the predicted resonances
- •An extended EWSBS typically have such resonances

•VBS promising on a nel to to look for these BSM resonances

•LHC has not seen this resonances yet. Diboson excess at CMS with 1.9σ two years ago

BACK UP SLIDES

I. Asiáin

The Higgs: a promising...

Back up

The Lagrangian

• The complete Lagrangian

$$\begin{split} \mathcal{L}_{2} &= -\frac{1}{2g^{2}} \mathrm{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right) - \frac{1}{2g'^{2}} \mathrm{Tr} \left(\hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \right) + \frac{v^{2}}{4} \mathcal{F}(h) \mathrm{Tr} \left(D^{\mu} U^{\dagger} D_{\mu} U \right) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h \\ &- V(h) \\ \mathcal{L}_{4} &= -ia_{3} \mathrm{Tr} \left(\hat{W}_{\mu\nu} \left[V^{\mu}, V^{\nu} \right] \right) + a_{4} \left(\mathrm{Tr} \left(V_{\mu} V_{\nu} \right) \right)^{2} + a_{5} \left(\mathrm{Tr} \left(V_{\mu} V^{\mu} \right) \right)^{2} + \frac{\gamma}{v^{4}} \left(\partial_{\mu} h \partial^{\mu} h \right)^{2} \\ &+ \frac{\delta}{v^{2}} \left(\partial_{\mu} h \partial^{\mu} h \right) \mathrm{Tr} \left(D_{\mu} U^{\dagger} D^{\mu} U \right) + \frac{\eta}{v^{2}} \left(\partial_{\mu} h \partial_{\nu} h \right) \mathrm{Tr} \left(D^{\mu} U^{\dagger} D^{\nu} U \right) \\ &+ i \chi \, \mathrm{Tr} \left(\hat{W}_{\mu\nu} V^{\mu} \right) \partial^{\nu} \mathcal{G}(h) \end{split}$$

• Building blocks

$$U = \exp\left(\frac{i\omega^a \sigma^a}{v}\right) \in SU(2)_V, \quad V_\mu = D_\mu U^\dagger U, \quad \mathcal{F}(h) = 1 + 2a\left(\frac{h}{v}\right) + b\left(\frac{h}{v}\right)^2 + \dots,$$
$$D_\mu U = \partial_\mu U + i\hat{W}_\mu U, \quad \hat{W}_\mu = g\frac{\vec{W}_\mu \cdot \vec{\sigma}}{2}, \quad \hat{W}_{\mu\nu} = \partial_\mu \hat{W}_\nu - \partial_\nu \hat{W}_\mu + i\left[\hat{W}_\mu, \hat{W}_\nu\right],$$
$$V(h) = \frac{1}{2}M_h^2 h^2 + \lambda_3 v h^3 + \frac{\lambda_4}{4}h^4 + \dots, \quad \mathcal{G}(h) = 1 + b_1\left(\frac{h}{v}\right) + b_2\left(\frac{h}{v}\right)^2 + \dots$$

I. Asiáin

Experimental bounds on chiral couplings

Couplings	Ref.	Experiments
0.89 < a < 1.13	[47]	LHC
-0.76 < b < 2.56	[48]	ATLAS
$-3.3\lambda < \lambda_3 < 8.5\lambda$	49	CMS
$ a_1 < 0.004$	[50]	LEP (S-parameter)
$-0.06 < a_2 - a_3 < 0.20$	51	LEP & LHC
$-0.0061 < a_4 < 0.0063$	52	CMS (from $WZ \rightarrow 4l$)
$ a_5 < 0.0008$	53	CMS (from $WZ/WW \rightarrow 2l2j$)

[47] J. de Blas, O. Eberhardt, and C. Krause, JHEP 07, 048 (2018), 1803.00939.

- [48] G. Aad et al. (ATLAS), JHEP 07, 108 (2020), 2001.05178.
- [49] A. M. Sirunyan et al. (CMS), JHEP 03, 257 (2021), 2011.12373.
- [50] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- [51] E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O. J. P. Éboli, and M. C. Gonzalez-Garcia, Phys. Rev. D 99, 033001 (2019), 1812.01009.
- [52] A. M. Sirunyan et al. (CMS), Phys. Lett. B 795, 281 (2019), 1901.04060.
- [53] A. M. Sirunyan et al. (CMS), Phys. Lett. B 798, 134985 (2019), 1905.07445.

The Higgs: a promising...

The couterterms

• The counterterms for: $\omega \omega \rightarrow \omega \omega$, $\omega \omega \rightarrow hh$ and $hh \rightarrow hh$ $\delta v_{div}^2 = \frac{\Delta}{16\pi^2} \left((b-a^2) M_h^2 + 3(a^2+2) M_W^2 \right), \quad \delta T_{div} = -\frac{\Delta}{22\pi^2 w} 3 \left(d_3 M_h^4 + 6a M_W^4 \right),$ $\delta a = \frac{\Delta}{32\pi^2 v^2} \left(6 a \left(-2a^2 + b + 1 \right) M_W^2 + (5a^3 - a(2+3b) - 3d_3(a^2 - b)) M_h^2 \right),$ $\delta b = \frac{\Delta}{22\pi^2 w^2} \left(6 \left(3a^4 - 6a^2b + b(b+2) \right) M_W^2 \right)$ $-(21a^4 - a^2(8 + 19b) + b(4 + 2b) + 6ad_3(1 + 2b - 3a^2) - 3d_4(b - a^2))M_h^2)$ $\delta\lambda_{div} = \frac{\Delta}{64\pi^2 a^4} \left(\left(5a^2 - 2b + 3\left(d_3(3d_3 - 1) + d_4\right) \right) M_h^4 - 12\left(2a^2 + 1\right) M_W^2 M_h^2 \right)$ $+18(a(2a-1)+b)M_W^4)$ $\delta\lambda_3 = \frac{\Delta}{64\pi^2 a^4} \left(36abM_W^4 + 6(3a^3 - 3ab - d_3(5a^2 + 1))M_W^2 M_h^2 \right)$ $+(-9a^3+3ab+d_3(10a^2-b)+9d_3d_4)M_b^4)$ $\delta\lambda_4 = \frac{\Delta}{64\pi^2 a^4} \left(36b^2 M_W^4 - 12(a^2 - b)(8a^2 - 2b - 9ad_3) M_W^2 M_h^2 \right)$ $+(96a^{4}+4b^{2}-d_{3}(114a^{3}-42ab)+9d_{4}^{2}+a^{2}(-64b+27d_{3}^{2}+12d_{4}))M_{b}^{4}),$ $\delta a_3 = -\frac{\Delta}{284\pi^2} \left(1 - a^2\right), \quad \delta a_4 = -\frac{\Delta}{102\pi^2} \left(1 - a^2\right)^2,$ $\delta a_5 = -\frac{\Delta}{769-2} \left(5a^4 - 2a^2(3b+2) + 3b^2 + 2 \right),$ $\delta\gamma = -\frac{\Delta}{64\pi^2}3(b-a^2)^2, \quad \delta\delta = -\frac{\Delta}{102\pi^2}(b-a^2)(7a^2-b-6), \quad \delta\eta = -\frac{\Delta}{48\pi^2}(b-a^2)^2,$ $\delta \zeta = \frac{\Delta}{\alpha c - 2} a(b - a^2) \,.$

• The counterterms for: $\omega \omega \rightarrow \omega \omega$, $\omega \omega \rightarrow hh$ and $hh \rightarrow hh$

$$\begin{split} \delta M_{h,div}^2 &= \frac{\Delta}{32\pi^2 v^2} \left(3 \left[6 \left(2a^2 + b \right) M_W^4 - 6a^2 M_W^2 M_h^2 + \left(3d_3^2 + d_4 + a^2 \right) M_h^4 \right] \right), \\ \delta M_{W,div}^2 &= \frac{\Delta}{48\pi^2 v^2} \left(M_W^2 \left[3 \left(b - a^2 \right) M_h^2 + \left(-69 + 10a^2 \right) M_W^2 \right] \right), \\ \delta Z_{h,div} &= \frac{\Delta}{16\pi^2 v^2} \left(3a^2 \left(3M_W^2 - M_h^2 \right) \right), \\ \delta Z_{\omega,div} &= \frac{\Delta}{16\pi^2 v^2} \left(\left(b - a^2 \right) M_h^2 + 3 \left(a^2 + 2 \right) M_W^2 \right) \end{split}$$

In total: 17 counterterms + 1 tadpole