

Neutron Stars as physics laboratories

Dr Arnau Rios Huguet

Institute of Cosmos Sciences Universitat de Barcelona & Department of Physics University of Surrey

<u>Departament de Física</u> <u>Quàntica i Astrofísica</u>

ICC UB Winter Meeting 8 February 2022 Online/In Person

Neutron Stars as physics laboratories

1) Neutron stars in 2022

2) Dark matter

3) Superfluid critical temperature

Death of stars

Mass

<u>>100 M₀</u>

 $\underline{50\text{--}100~M_{\odot}}$

<u>25-50 M₀</u>

<u>8-25 M₀</u>

<u>0.4-8 M₀</u> 0.08-0.4 M₀ < 0.08 M₀

Death of stars

Mass

<u>>100 M₀</u>

 $\underline{50\text{--}100~M_{\odot}}$

<u>25-50 M₀</u>

<u>8-25 M₀</u>

<u>0.4-8 M₀</u> 0.08-0.4 M₀ < 0.08 M₀

Temperature provides pressure!

Degenerate matter & pressure

Pauli principle & neutron interactions provide pressure without T

Stellar Corpse CSI

 $\frac{\text{Mass}}{M \approx 1.5 M_{\odot} = 3 \times 10^{33} \text{ g}}$

 $\frac{\text{Radius}}{R \approx 10 \text{ km}}$

Mass density

$$\rho = \frac{M}{V} \approx 7 \times 10^{14} \text{ g cm}^{-3}$$

Multimessenger observations

Radio pulsar binaries

Pulsars in isolation

Multimessenger observations

Radio pulsar binaries

Pulsars in isolation

Gravitational wave binaries

Multimessenger observations

Radio pulsar binaries

Pulsars in isolation

Gravitational wave binaries

Nuclear astrophysics models

Nuclear astrophysics models

Nuclear astrophysics models

Star surface

Neutron Stars as physics laboratories

1) Neutron stars in 2022

2) Dark matter

3) Superfluid critical temperature

Exotic neutron-electron coupling

Exotic neutron-electron coupling

From atoms to neutron stars

*10*¹¹ 13

 10^{-10}

What about neutron stars?

What about neutron stars?

What about neutron stars?

 $S_g(n) = S(n) - \frac{n}{4} \frac{(-)^{s+1} y_e y_n}{m^2} = S(n) - g_0 \frac{n}{n_0} S(n_0)$

Symmetry energy

Dimensionless coupling

$$g_0 = (-)^{s+1} \frac{n_0}{S(n_0)} \frac{y_e y_n}{4m_{\phi}^2}$$

Couplings and bounds

- No bounds for + coupling
- Bounds for coupling

Neutron Stars as physics laboratories

1) Neutron stars in 2022

2) Dark matter

3) Superfluid critical temperature

From M-R to EoS

Hamiltonian

Neutron star modelling

Neutron star modelling

Observable #1 Mass-Radius relation

Observable #2

Cooling curve

Input Consistent many-body theory

Observable #3 *Glitching*

Neutron star modelling

Observable #1 Mass-Radius relation

"Normal"

Input Consistent many-body theory

Observable #2 Cooling curve

"Superfluid"

Observable #3 *Glitching*

"Superfluid"

Cooling curve of neutron stars

- Observational data available for a handful of NS
- Sensitive to <u>interior</u> physics (mostly pairing)

Yakovlev & Pethick, ARAA **42** 169 (2004)

Cooling of CasA

(c) Internal composition

(d) Pairing gaps (1S₀ & 3PF₂ channels)

(e) Atmosphere composition

Name	Process	Emissivity (erg cm ⁻³ s ⁻¹)
Modified Urca (neutron branch)	$n+n \to n+p+e^- + \bar{v}_e$ $n+p+e^- \to n+n+v_e$	$\sim 2 \times 10^{21} RT_9^8$
Modified Urea (proton branch)	$p + n \rightarrow p + p + e^{-} + v_{e}$ $p + p + e^{-} \rightarrow p + n + v_{e}$	$\sim 10^{21} R T_9^8$
Bremsstrahlungs	$n + n \rightarrow n + n + \nu + \bar{\nu}$ $n + p \rightarrow n + p + \nu + \bar{\nu}$	$\sim 10^{19} R T_{ m g}^{ m R}$
Cooper pair	$p + p \rightarrow p + p + v + v$ $n + n \rightarrow [nn] + v + \bar{v}$ $p + p \rightarrow [pp] + v + \bar{v}$	~ 5×10 ²¹ RT ₉ ⁷ ~ 5×10 ¹⁹ RT ₉ ⁷
Direct Urca (nucleons)	$n \to p + e^- + v_e$ $p + e^- \to n + v_e$	$\sim 10^{27} R T_9^6$

Gaps and critical temperatures

 $\frac{\text{BCS prediction}}{\Delta(T=0)} = 1.76$ T_c

Temperature, T

Density / Fermi momentum, k_F

Ċ

Superfluid

 $\bar{\Delta} \neq 0$

Superfluid gap, $\Delta/1.70$

Gaps and critical temperatures

Density / Fermi momentum, k_F

BCS+HF predictions

Beyond-BCS predictions

Beyond-BCS predictions

Numerically demanding ×
 Can't systematize long-range correlations ×

How to go beyond BCS?

Nambu-covariant Green's Functions

- Symmetry breaking 🖌
- Finite temperature 🗸
- Systematic expansion w diagrams
- 3 nucleon forces 🖌

M. Drissi Drissi, Rios & Barbieri, arxiv:2107.09759 + arXiv:2107.09763

Nambu-Covariant Perturbation Theory

Nambu fields

[Anderson, 1958] [Nambu, 1960] • \mathscr{B} and $\overline{\mathscr{B}} \equiv$ orthonormal bases $|b\rangle \rightarrow |\bar{b}\rangle$ • Let $\overline{.}$ be the involution $(\bar{1} = 2, \bar{2} = 1)$ • Define $\mu \equiv (b, g)$ and $\bar{\mu} \equiv (\bar{b}, \bar{g})$ where $g \in \{1, 2\}$

•Then Nambu fields are defined as

$$\mathbf{A}^{\mu} \equiv \mathbf{A}^{(b,g)} \equiv \begin{pmatrix} a_b \\ a_{\bar{b}}^{\dagger} \end{pmatrix}_g$$
$$\mathbf{A}^{\dagger}_{\mu} \equiv \mathbf{A}^{\dagger}_{(b,g)} \equiv \begin{pmatrix} a_b^{\dagger} & a_{\bar{b}} \end{pmatrix}$$

•Canonical anticommutation relation $\{A^{\mu}, A^{\nu}\} = \delta_{\mu\bar{\nu}} , \ \{A^{\dagger}_{\mu}, A^{\dagger}_{\nu}\} = \delta_{\mu\bar{\nu}} , \ \{A^{\mu}, A^{\dagger}_{\nu}\} = \delta_{\mu\nu}$

Tensor definitions

Itet \mathscr{W} a unitary Bogoliubov transformation

$$B^{\mu} = \sum_{\nu} \left(\mathscr{W}^{\dagger} \right)^{\mu}_{\nu} A^{\nu}$$
$$B^{\dagger}_{\mu} = \sum_{\nu} \mathscr{W}^{\nu}_{\mu} A^{\dagger}_{\nu}$$

• Definition: (p,q)-tensor is multi-dim array s.t. $t'^{\mu_1...\mu_p}{}_{\nu_1...\nu_q} \equiv \sum_{\kappa_1...\kappa_p} \sum_{\lambda_1...\lambda_q} \left(\mathscr{W}^{\dagger} \right)^{\mu_1}{}_{\kappa_1} ... \left(\mathscr{W}^{\dagger} \right)^{\mu_p}{}_{\kappa_p}$ $t^{\kappa_1...\kappa_p}{}_{\lambda_1...\lambda_q} \left(\mathscr{W} \right)^{\lambda_1}{}_{\nu_1} ... \left(\mathscr{W} \right)^{\lambda_q}{}_{\nu_q}$ • *p* contravariant & *q* covariant indices

Operators

Operators as polynomial of Nambu fields

$$O \equiv \sum_{\mu_{1}...\mu_{2k}} o^{\mu_{1}...\mu_{k}} A^{\dagger}_{\mu_{1}}...A^{\dagger}_{\mu_{k}} A^{\mu_{k+1}}...A^{\mu_{2k}}$$
$$O \equiv \sum_{\mu_{1}...\mu_{2k}} o_{\mu_{1}...\mu_{2k}} A^{\mu_{1}}...A^{\mu_{2k}}$$
$$O \equiv \sum_{\mu_{1}...\mu_{2k}} o^{\mu_{1}...\mu_{2k}} A^{\dagger}_{\mu_{1}}...A^{\dagger}_{\mu_{2k}}$$

Metric tensor

•Definition: (0,2)-, (1,1)-, (2,0)-tensors

$$\begin{array}{l} g_{\mu\nu} \equiv \delta_{\mu\bar{\nu}} \\ g^{\mu}{}_{\nu} \equiv \delta_{\mu\nu} \\ g^{\mu\nu} \equiv \delta_{\mu\bar{\nu}} \end{array} \right\} + \text{transform like a tensor}$$

$$g^{\mu\nu} \equiv \delta_{\mu\bar{\nu}} \end{array}$$

Raising/lowering indices of a tensor:

$$o_{\mu_1\ldots\mu_{2k}} = \sum_{\alpha_1\ldots\alpha_k} g_{\mu_1\alpha_1}\ldots g_{\mu_k\alpha_k} o^{\alpha_1\ldots\alpha_k}_{\mu_{k+1}\ldots\mu_{2k}}$$

Perturbative expansion

Hamiltonian partitioning

Expansion

$$\Omega = \Omega_0 + \Omega_1$$

$$\Omega_0 = \frac{1}{2} \sum_{\mu\nu} U_{\mu\nu} A^{\mu} A^{\nu}$$

$$\Omega_1 = \sum_{k=1}^n \frac{1}{(2k)!} \sum_{\mu_1 \dots \mu_{2k}} v_{\mu_1 \dots \mu_{2k}}^{(k)} A^{\mu_1} \dots A^{\mu_{2k}}$$

Covariant k-body vertices

Green's functions

Contravariant k-body Green's function

$$(-1)^{k} \mathscr{G}^{\mu_{1}...\mu_{2k}}(\tau_{1},...,\tau_{2k}) \equiv \left\langle T\left[A^{\mu_{1}}(\tau_{1}) \dots A^{\mu_{2k}}(\tau_{2k})\right] \right.$$

with $\left\langle .. \right\rangle = Tr\left(..\rho\right)$ and $\rho \equiv \frac{e^{-\beta\Omega}}{Tr\left(e^{-\beta\Omega}\right)}$
• Unperturbed case: $\Omega \leftrightarrow \Omega_{0}$

Interaction picture expression

$$(-1)^{k} \mathscr{G}^{\mu_{1}...\mu_{2k}}(\tau_{1},...,\tau_{2k}) = \frac{\left\langle T\left[e^{-\int_{0}^{\beta}ds \ \Omega_{1}(s)} A^{\mu_{1}}(\tau_{1}) \ ... \ A^{\mu_{2k}}(\tau_{2k})\right]\right\rangle_{0}}{\left\langle Te^{-\int_{0}^{\tau}ds \ \Omega_{1}(s)}\right\rangle_{0}}$$

• Perturbative expansions

$$\left\langle T \left[e^{-\int_0^\beta ds \ \Omega_1(s)} A^{\mu_1}(\tau_1) \ \dots \ A^{\mu_{2k}}(\tau_{2k}) \right] \right\rangle_0 = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \int_0^\beta d\tau_1' \dots \int_0^\beta d\tau_n' \left\langle T \left[\Omega_1(\tau_1') \dots \Omega_1(\tau_n') \ A^{\mu_1}(\tau_1) \ \dots \ A^{\mu_{2k}}(\tau_{2k}) \right] \right\rangle_0$$

Statistical Wick theorem + Linked-cluster theorem

 \Rightarrow Feynman diagrammatics *almost* as usual

•We provide a set of Feynman rules

•Also rules to evaluate Matsubara sums

• **Simpler** expressions than in other approaches (Gorkov Green's functions or BMPT

Drissi, Rios & Barbieri, Paper I, arxiv:2107xx

Perturbative expansion

Expansion

Interaction picture expression

$$(-1)^{k} \mathscr{G}^{\mu_{1}...\mu_{2k}}(\tau_{1},...,\tau_{2k}) = \frac{\left\langle T\left[e^{-\int_{0}^{\beta}ds \ \Omega_{1}(s)} \ A^{\mu_{1}}(\tau_{1}) \ ... \ A^{\mu_{2k}}(\tau_{2k})\right] \right\rangle_{0}}{\left\langle Te^{-\int_{0}^{\tau}ds \ \Omega_{1}(s)} \right\rangle_{0}}$$

Perturbative expansions

$$\left\langle \mathrm{T} \left[e^{-\int_{0}^{\beta} \mathrm{d}s \ \Omega_{1}(s)} \ \mathrm{A}^{\mu_{1}}(\tau_{1}) \ \dots \ \mathrm{A}^{\mu_{2k}}(\tau_{2k}) \right] \right\rangle_{0} =$$

$$\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n!} \int_{0}^{\beta} \mathrm{d}\tau_{1}' \dots \int_{0}^{\beta} \mathrm{d}\tau_{n}' \left\langle \mathrm{T} \left[\Omega_{1}(\tau_{1}') \dots \Omega_{1}(\tau_{n}') \ \mathrm{A}^{\mu_{1}}(\tau_{1}) \ \dots \ \mathrm{A}^{\mu_{2k}}(\tau_{2k}) \right] \right\rangle_{0}$$

Statistical Wick theorem + Linked-cluster theorem

 \Rightarrow Feynman diagrammatics *almost* as usual

•We provide a set of Feynman rules

• Also rules to evaluate Matsubara sums

• **Simpler** expressions than in other approaches (Gorkov Green's functions or BMPT

1) Normal core physics predictions

• EoS & thermodynamics

2) Superfluidity extensions

Error quantification work in progress

3) New physics in dense matter

Bounds from NS structure

Next:

Numerical implementations Uncertainties in predictions

(@TRIUMF from 10/2021)

Thank you!

<u>a.rios@surrey.ac.uk</u> <u>twitter: @riosarnau</u> <u>https://sites.google.com/view/arnaurios/</u>

Funding from

Departament de Física Ouàntica i Astrofísica

@HadNucAtUB

Institute of Cosmos Sciences