Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

Cosmic Axion Background: the QCD axion as a hot relic

Alessio Notari¹

Universitat de Barcelona

Winter Meeting ICCUB 2022

¹In collaboration with R.Z. Ferreira, F. Rompineve, F. D'Eramo, F. Arias-Aragon, J.L. Bernal, L.Merlo.

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • In QCD lagrangian a term is allowed:

$$\mathcal{L}_{ heta} = rac{lpha_{m{s}}}{8\pi} heta m{G}_{\mu
u} ilde{m{G}}^{\mu
u}$$

(日)

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • In QCD lagrangian a term is allowed:

$$\mathcal{L}_{ heta} = rac{lpha_{m{s}}}{8\pi} heta m{G}_{\mu
u} ilde{m{G}}^{\mu
u}$$

(日)

• $G_{\mu\nu}\tilde{G}^{\mu\nu} = \partial_{\mu}K^{\mu}$: total derivative \implies no classical effect

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • In QCD lagrangian a term is allowed:

$$\mathcal{L}_{ heta} = rac{lpha_{m{s}}}{8\pi} heta m{G}_{\mu
u} ilde{m{G}}^{\mu
u}$$

(日)

- $G_{\mu\nu}\tilde{G}^{\mu\nu} = \partial_{\mu}K^{\mu}$: total derivative \implies no classical effect
- In non-abelian theory: Boundary term sensitive to Instantons has physical effects

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • In QCD lagrangian a term is allowed:

$$\mathcal{L}_{ heta} = rac{lpha_{m{s}}}{8\pi} heta m{G}_{\mu
u} ilde{m{G}}^{\mu
u}$$

- $G_{\mu\nu}\tilde{G}^{\mu\nu} = \partial_{\mu}K^{\mu}$: total derivative \implies no classical effect
- In non-abelian theory: Boundary term sensitive to Instantons ⇒ has physical effects
 - Violates P and T (or equivalently, P and CP)
 - Periodicity: $\theta = \theta + 2\pi$.

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • In QCD lagrangian a term is allowed:

$$\mathcal{L}_{ heta} = rac{lpha_{m{s}}}{8\pi} heta m{G}_{\mu
u} ilde{m{G}}^{\mu
u}$$

- $G_{\mu\nu}\tilde{G}^{\mu\nu} = \partial_{\mu}K^{\mu}$: total derivative \implies no classical effect
- In non-abelian theory: Boundary term sensitive to Instantons ⇒ has physical effects
 - Violates P and T (or equivalently, P and CP)
 - Periodicity: $\theta = \theta + 2\pi$.
 - One effect: Neutron Electric Dipole Moment (nEDM) $d_n = 5 \times 10^{-16} \theta$ e cm

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • In QCD lagrangian a term is allowed:

$$\mathcal{L}_{ heta} = rac{lpha_{m{s}}}{8\pi} heta m{G}_{\mu
u} ilde{m{G}}^{\mu
u}$$

- $G_{\mu\nu}\tilde{G}^{\mu\nu} = \partial_{\mu}K^{\mu}$: total derivative \implies no classical effect
- In non-abelian theory: Boundary term sensitive to Instantons ⇒ has physical effects
 - Violates P and T (or equivalently, P and CP)
 - Periodicity: $\theta = \theta + 2\pi$.
 - One effect: Neutron Electric Dipole Moment (nEDM) $d_n = 5 \times 10^{-16} \theta$ e cm
 - Measurement $d_n < \mathcal{O}(10^{-26})$ e cm $\implies |\theta| < 10^{-10}$

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • In QCD lagrangian a term is allowed:

$$\mathcal{L}_{ heta} = rac{lpha_{m{s}}}{8\pi} heta m{G}_{\mu
u} ilde{m{G}}^{\mu
u}$$

- $G_{\mu\nu}\tilde{G}^{\mu\nu} = \partial_{\mu}K^{\mu}$: total derivative \implies no classical effect
- In non-abelian theory: Boundary term sensitive to Instantons ⇒ has physical effects
 - Violates P and T (or equivalently, P and CP)
 - Periodicity: $\theta = \theta + 2\pi$.
 - One effect: Neutron Electric Dipole Moment (nEDM) $d_n = 5 \times 10^{-16} \theta$ e cm
 - Measurement $d_n < \mathcal{O}(10^{-26})$ e cm $\implies |\theta| < 10^{-10}$
- Why so small?

Axions as Hot Relics	Promote θ to a new scalar field, QCD Axion $(\theta \rightarrow \frac{a}{f})$:
The QCD Axion	
Solution: The QCD Axion	
Axion via Quarks	

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions Promote θ to a new scalar field, QCD Axion ($\theta \rightarrow \frac{a}{f}$):

• Solves the "Strong CP problem"

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

(日)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions Promote θ to a new scalar field, QCD Axion $(\theta \rightarrow \frac{a}{7})$:

Solves the "Strong CP problem"

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

(日) (日) (日) (日) (日) (日) (日)

• Integrating by parts: $\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{\partial_{\mu} a}{f} K^{\mu}$, \implies continuous shift symmetry $a \rightarrow a + c$ (No potential)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions Promote θ to a new scalar field, QCD Axion $(\theta \rightarrow \frac{a}{f})$:

Solves the "Strong CP problem"

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

• Integrating by parts: $\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{\partial_{\mu} a}{f} K^{\mu}$, \implies continuous shift symmetry $a \rightarrow a + c$ (No potential)

• Boundary term sensitive to QCD Instantons,

1 Induces a potential $V(a) \propto -\cos(a/f)$;

- 2 $a \rightarrow 0 \implies$ Drives \mathcal{GP} to zero
- S \implies Axion mass $m_a \approx \sqrt{V''}|_{a=0} = 0.57 \left(\frac{10^7 GeV}{f}\right) eV$

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions Promote θ to a new scalar field, QCD Axion $(\theta \rightarrow \frac{a}{7})$:

Solves the "Strong CP problem"

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

• Integrating by parts: $\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{\partial_{\mu} a}{f} K^{\mu}$, \implies continuous shift symmetry $a \rightarrow a + c$ (No potential)

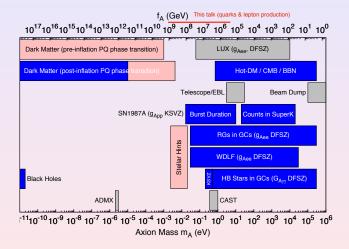
• Boundary term sensitive to QCD Instantons,

1 Induces a potential $V(a) \propto -\cos(a/f)$;

- 2 $a \rightarrow 0 \implies$ Drives \mathcal{SP} to zero
- S \implies Axion mass $m_a \approx \sqrt{V''}|_{a=0} = 0.57 \left(\frac{10^7 GeV}{f}\right) eV$

● f (Axion "decay constant") ⇔ m_a

The QCD Axion


Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

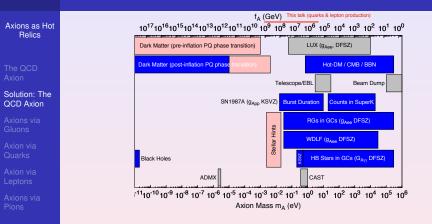
Axions via Pions

 Byproduct: Axion can be Dark Matter (classical oscillating field) NOT our goal here, see tomorrow

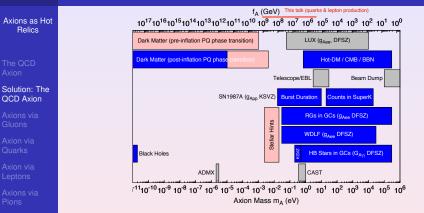
Axion

Solution: The QCD Axion

Axions via Gluons

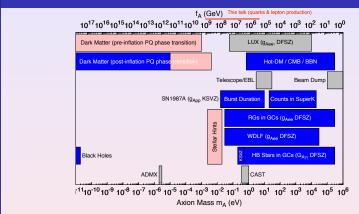

Axion via Quarks

Axion via Leptons


Axions via Pions

 Byproduct: Axion can be Dark Matter (classical oscillating field) NOT our goal here, see tomorrow

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ・ つへぐ


 Axion quanta produced by scatterings → Dark Radiation, visible in CMB (*Cosmic Axion Background*, similar to Cosmic Microwave Background, and Cosmic Neutrino Background)

Axions as Hot

Relics

Solution: The

QCD Axion

- Axion quanta produced by scatterings → Dark Radiation, visible in CMB (*Cosmic Axion Background*, similar to Cosmic Microwave Background, and Cosmic Neutrino Background)
- Caveat: Constraints based on individual couplings with *e*, *γ*, nucleons... Expected *O*(1/*f*), but model dependent.

QCD Axion

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- Axion effective lagrangian:
 - May couple with continuous shift symmetry with all SM

(日)

Only breaking: Instanton-induced (tiny) mass

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

(日)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe
- Can be produced at high *T* and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(日) (日) (日) (日) (日) (日) (日)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe
- Can be produced at high *T* and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Scattering rate (via gluons) vs. Hubble

(日) (日) (日) (日) (日) (日) (日)

Figure: (Massò et al. Phys.Rev. D66 (2002).).

 $\Gamma_{s} \equiv \langle \sigma v \rangle \cdot n_{g}^{EQ} = \left(\frac{\alpha_{s}}{2\pi f}
ight)^{2} g_{s}^{2} \cdot T^{3}$

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe
- Can be produced at high *T* and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Scattering rate (via gluons) vs. Hubble

(日) (日) (日) (日) (日) (日) (日)

Figure: (Massò et al. Phys.Rev. D66 (2002).).

 $\Gamma_s \equiv \langle \sigma v \rangle \cdot n_a^{EQ} = \left(\frac{\alpha_s}{2\pi t}\right)^2 g_s^2 \cdot T^3 \text{ vs. } H \approx \frac{T^2}{M_{PC}}.$

QCD Axion produced via gluons

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • Scattering rate (via gluons) vs. Hubble



Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_{s}=\left(rac{lpha_{s}}{2\pi f}
ight)^{2}g_{s}^{2}T^{3}$$
 vs. $Hpproxrac{T^{2}}{M_{Pl}}$

QCD Axion produced via gluons

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

• Scattering rate (via gluons) vs. Hubble

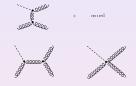


Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_s = \left(\frac{\alpha_s}{2\pi f}\right)^2 g_s^2 T^3 \text{ vs. } H \approx \frac{T^2}{M_{Pl}}.$$

• At
$$T > T_{DEC} \equiv$$
 thermal equilibrium

QCD Axion produced via gluons

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

• Scattering rate (via gluons) vs. Hubble

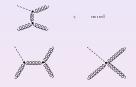


Figure: (Massò et al. Phys.Rev. D66 (2002).).

- $\Gamma_s = \left(rac{lpha_s}{2\pi f}
 ight)^2 g_s^2 T^3$ vs. $H pprox rac{T^2}{M_{Pl}}$.
- At $T > T_{DEC} \equiv$ thermal equilibrium
- Example: • $f = 10^8 GeV \implies T_{DEC} \approx TeV$ • $f = 10^9 GeV \implies T_{DEC} \approx 100 TeV$

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$

(日)

- 2 Decouples at some $T \lesssim T_{DEC}$
- Has negligible mass

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

- Axion via Leptons
- Axions via Pions

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - 2 Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass
- After decoupling is dark radiation, (if *m* ≪ O(0.1 ~ 1*eV*)) (like neutrinos)
- \implies Observable by CMB (and BBN)

(mostly affects expansion rate, Matter-Radiation equality...)

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

- Axion via Leptons
- Axions via Pions

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - 2 Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass
- After decoupling is dark radiation, (if *m* ≪ O(0.1 ~ 1*eV*)) (like neutrinos)
- → Observable by CMB (and BBN) (mostly affects expansion rate, Matter-Radiation equality...)
- Traditionally parameterized by effective neutrino number

• $N_{\rm eff} = 3.046 + \Delta N_{eff}$

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

- Axion via Leptons
- Axions via Pions

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - 2 Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass
- After decoupling is dark radiation, (if *m* ≪ O(0.1 ~ 1*eV*)) (like neutrinos)
- → Observable by CMB (and BBN) (mostly affects expansion rate, Matter-Radiation equality...)

- Traditionally parameterized by effective neutrino number
- $N_{\rm eff} = 3.046 + \Delta N_{eff}$

•
$$\Delta N_{eff} pprox rac{13.6}{g_{*,DEC}^{4/3}}$$

$\Delta N_{\rm eff}$ diluted by $g_{*,DEC}$

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions Abundance ΔN_{eff} diluted if total number of relativistic species in the plasma g_{*,DEC} is large

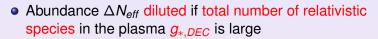
(日)

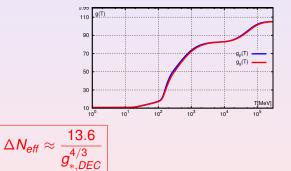
$\Delta N_{\rm eff}$ diluted by $g_{*,DEC}$

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

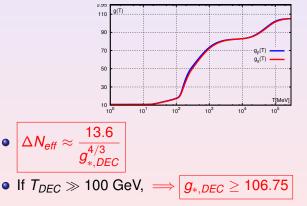

Axions via Gluons


Axion via Quarks

Axion via Leptons

Axions via Pions

۲


$\Delta N_{\rm eff}$ diluted by $g_{*,DEC}$

Axions as Hot Relics

Axions via Gluons

٥

• Abundance ΔN_{eff} diluted if total number of relativistic species in the plasma $g_{*,DEC}$ is large

• $\Rightarrow \Delta N_{eff} \leq 0.027$ (only upper bound!) (marginally detectable, 1σ , by CMB-Stage 4 experiments)

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion

Axions via Gluons

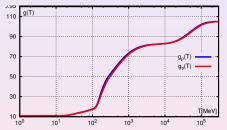
Axion via Quarks

Axion via Leptons

Axions via Pions If f ≤ 10⁹-10¹⁰ GeV dominant channels can be via quarks & leptons ² with T_{DEC} ≤ Electroweak scale

²A.N. & R.Z.Ferreira, PRL 2018; D'Eramo, Ferreira, A.N., Bernal JCAP 2018, F. Arias-Aragón et al. JCAP 2021.

Axions as Hot Relics


- The QCD Axion
- Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

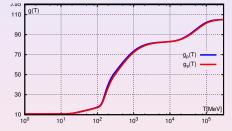
Axions via Pions If f ≤ 10⁹-10¹⁰ GeV dominant channels can be via quarks & leptons ² with T_{DEC} ≤ Electroweak scale

²A.N. & R.Z.Ferreira, PRL 2018; D'Eramo, Ferreira, A.N., Bernal JCAP 2018, F. Arias-Aragón et al. JCAP 2021.

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion


Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

ADVANTAGES:

 $\bigcirc g_*^{SM} \text{ is smaller } \implies \text{ larger } N_{eff}$

2 Here we are confident on $g_*^{SM} \implies \text{Precise predictions}$

3 Lower $f \implies$ more accessible by direct searches (CAST, IAXO)

²A.N. & R.Z.Ferreira, PRL 2018; D'Eramo, Ferreira, A.N., Bernal JCAP 2018, F. Arias-Aragón et al. JCAP 2021.

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu}a \sum_{i} rac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

(日)

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • If *a* is directly coupled to SM heavy quarks (*c*, *b*, *t*):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • If *a* is directly coupled to SM heavy quarks (*c*, *b*, *t*):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• If $m_q = 0 \implies$ the vertex vanishes

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

Scattering rate (via quarks, e.g. qg ↔ qa) vs. Hubble

• If $m_q = 0 \implies$ the vertex vanishes

Indeed:

- This coupling can be rotated away $q
 ightarrow e^{irac{c_{l}a}{2t}\gamma^{5}}q$
- But it reappears in the mass term $m_q \bar{q} e^{i \frac{c_l^a}{f} \gamma^5} q$

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

Scattering rate (via quarks, e.g. qg ↔ qa) vs. Hubble

• If $m_q = 0 \implies$ the vertex vanishes

Indeed:

- This coupling can be rotated away $q
 ightarrow e^{irac{c_{l}a}{2t}\gamma^{5}}q$
- But it reappears in the mass term $m_q \bar{q} e^{i \frac{c_l^a}{T} \gamma^5} q$

 $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T$

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

Scattering rate (via quarks, e.g. qg ↔ qa) vs. Hubble

• If $m_q = 0 \implies$ the vertex vanishes

Indeed:

- This coupling can be rotated away $q
 ightarrow e^{irac{c_{l}a}{2t}\gamma^{5}}q$
- But it reappears in the mass term $m_q \bar{q} e^{i \frac{c_l^a}{T} \gamma^5} q$

$$\Gamma_{s}=\left(rac{c_{i}}{f}
ight)^{2}g_{s}^{2}m_{q}^{2}T\cdot e^{-rac{m_{q}}{T}}$$

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions If a is directly coupled to SM heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

Scattering rate (via quarks, e.g. qg ↔ qa) vs. Hubble

• If $m_q = 0 \implies$ the vertex vanishes

Indeed:

- This coupling can be rotated away $q
 ightarrow e^{i rac{c_i^a}{2t} \gamma^5} q$
- But it reappears in the mass term $m_q \bar{q} e^{i \frac{c_l^a}{T} \gamma^5} q$

$$\Gamma_{s} = \left(\frac{c_{i}}{f}\right)^{2} g_{s}^{2} m_{q}^{2} T \cdot e^{-\frac{m_{q}}{T}} \text{vs. } H \approx \frac{T^{2}}{M_{Pl}}$$

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble $\Gamma_s = \left(\frac{c_i}{T}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}} \text{ vs. } H \approx \frac{T^2}{M_{el}}.$

³ R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble $\Gamma_s = \left(\frac{c_i}{T}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

• Ratio peaks at $T \approx m_q$

³ R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

• Ratio peaks at $T \approx m_q$

• Axions produced dominantly via quarks

 $1~{\rm GeV} \lesssim T \lesssim 100 {\rm GeV}$

• Range $10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}^{-3}$ (partly in tension with SN bounds, if all $c_i = 1$)

³R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

• Ratio peaks at $T \approx m_q$

• Axions produced dominantly via quarks

 $1 \text{ GeV} \lesssim T \lesssim 100 \text{GeV}$

- Range $10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}^{-3}$ (partly in tension with SN bounds, if all $c_i = 1$)
- Interesting for direct detection (e.g. IAXO), $m_a \approx 10^{-1} \sim 10^{-3} eV$,

³R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

• Ratio peaks at $T \approx m_q$

• Axions produced dominantly via quarks

 $1 \text{ GeV} \lesssim T \lesssim 100 \text{GeV}$

- Range $10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}^{-3}$ (partly in tension with SN bounds, if all $c_i = 1$)
- Interesting for direct detection (e.g. IAXO), $m_a \approx 10^{-1} \sim 10^{-3} eV$, (+ Hints from stellar cooling)

³ R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

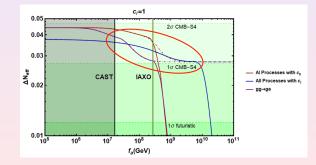
- $g_{*,DEC}$ is smaller at 1 GeV $\lesssim T \lesssim 100$ GeV
- Prediction: larger $N_{\rm eff} \lesssim 0.045$ (*Not just upper bound!*)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons


Axion via Quarks

Axion via Leptons

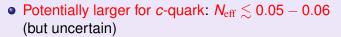
Axions via Pions

- $g_{*,DEC}$ is smaller at $1 \text{ GeV} \lesssim T \lesssim 100 \text{GeV}$
- Prediction: larger N_{eff} \$\le 0.045\$ (*Not just upper bound!*)
- Solving Boltzmann equations for n_a:

(R.Ferreira & A.N., PRL 2018; F.Arias-Aragon et al. JCAP, 2021)

 $10^9 \text{GeV} \gtrsim f/c_i \gtrsim 10^7 \text{GeV}$, $5 \times 10^{-3} \text{eV} \lesssim m_a \lesssim 0.5 \text{eV}$ ($c_i = 1$, for QCD Axion) as the set of the

Axions as Hot Relics


- The QCD Axion
- Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

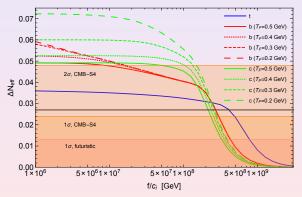


Figure: R.Ferreira & A.N., PRL 2018.

Hot Axions via Quark Decays

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

• *a* – *q* interaction can be flavor non-diagonal

$$\mathcal{L}_{a-q} = \partial_{\mu}a \sum_{q \neq q'} \bar{q'} \gamma^{\mu} \left(\mathcal{V}_{q'q} + \mathcal{A}_{q'q} \gamma^5 \right) q + \mathrm{h.c.} \; ,$$

(日)

Hot Axions via Quark Decays

Axions as Hot Relics

The QCD Axion

Solution: Th QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions • a - q interaction can be flavor non-diagonal

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{q \neq q'} \bar{q'} \gamma^{\mu} \left(\mathcal{V}_{q'q} + \mathcal{A}_{q'q} \gamma^5 \right) q + \mathrm{h.c.} \; ,$$

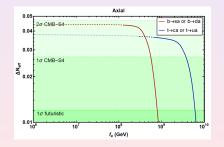


Figure: F.Arias-Aragon, F.D'Eramo, R.Z.Ferreira, A. N , L.Merlo, JCAP 2021.

• More efficient than scatterings (larger $f/c \lesssim 10^{10} \text{ GeV}$)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- The same can be done with leptons (μ and τ) ⁴
- a-electron uninteresting (strongly constrained)

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- The same can be done with leptons (μ and au) ⁴
- a-electron uninteresting (strongly constrained)
- Direct coupling to heavy leptons (μ, τ) :

$$\mathcal{L}_{a-\ell} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{\ell}_{i} \gamma^{\mu} \gamma^{5} \ell_{i},$$

⁴F.D'Eramo, A.N.,R.Z.Ferreira, J.L.Bernal, JCAP 2018 + A = O QC

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

- The same can be done with leptons (μ and au) ⁴
- a-electron uninteresting (strongly constrained)
- Direct coupling to heavy leptons (μ, τ) :

$$\mathcal{L}_{a-\ell} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{\ell}_{i} \gamma^{\mu} \gamma^{5} \ell_{i} ,$$

- Slightly smaller f/c_{ℓ}
- Ratio peaks at $T \approx m_{\ell} \implies$ Larger N_{eff}

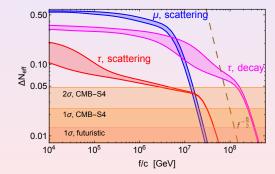
⁴F.D'Eramo, A.N.,R.Z.Ferreira, J.L.Bernal, JCAP 2018 → () → ()

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons


Axion via Quarks

Axion via Leptons

Axions via Pions

• Ratio peaks at $T \approx m_{\ell} \implies \text{Larger } N_{eff}$

• Caveat: μ scattering constrained by SN cooling at $f/c_{\mu}\gtrsim 10^8 GeV$ (Bolling et al. PRL 2020, Croon et al. JHEP 2021)

Axion-Pion coupling

Axions as Hot Relics

DFSZ model: a couples to u-type and d-type quarks,
KSVZ model: no coupling to SM fermions

(日)

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

Axion-Pion coupling

Axions as Hot Relics

C

- Axions via Pions

• DFSZ model: a couples to u-type and d-type quarks, KSVZ model: no coupling to SM fermions

• Coupling to pions:

$$\mathcal{L}_{a\pi} = \frac{c_{a\pi}}{f_{\pi}} \frac{\partial_{\mu} a}{f} \left[2 \partial^{\mu} \pi^{0} \pi^{+} \pi^{-} - \pi_{0} \left(\partial^{\mu} \pi^{+} \pi^{-} - \pi^{+} \partial^{\mu} \pi^{-} \right) \right],$$

where

$$c_{a\pi} = -rac{1}{3}c_u^0 - c_d^0 - rac{1-z}{1+z}$$
. $z \equiv rac{m_u}{m_d} \simeq 0.47^{+0.06}_{-0.07},$

(日)

Axion-Pion coupling

Axions as Hot Relics

C

- Axions via Pions

 DFSZ model: a couples to u-type and d-type quarks, KSVZ model: no coupling to SM fermions

DFSZ:
$$c_u^0 = \frac{1}{3}\cos^2(\beta)$$
, $c_d^0 = \frac{1}{3}\sin^2(\beta)$,
KSVZ: $c_u^0 = c_d^0 = 0$,

• Coupling to pions:

$$\mathcal{L}_{a\pi} = \frac{\mathcal{C}_{a\pi}}{f_{\pi}} \frac{\partial_{\mu} a}{f} \left[2 \partial^{\mu} \pi^{0} \pi^{+} \pi^{-} - \pi_{0} \left(\partial^{\mu} \pi^{+} \pi^{-} - \pi^{+} \partial^{\mu} \pi^{-} \right) \right],$$

where

$$c_{a\pi} = -rac{1}{3}c_u^0 - c_d^0 - rac{1-z}{1+z}$$
. $z \equiv rac{m_u}{m_d} \simeq 0.47^{+0.06}_{-0.07},$

 KSVZ :
 $c_{a\pi} \simeq 0.12^{+0.023}_{-0.018}$,

 DFSZ :
 $c_{a\pi} \simeq 0.12^{+0.023}_{-0.018} - \frac{1}{9}\cos(2\beta)$.

CMB Bounds on DFSZ

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

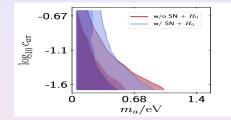


Figure: Constraints due to pion production Planck 18 + BAO (+ Pantheon + SH0ES H₀)

CMB Bounds on DFSZ

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

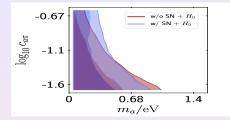


Figure: Constraints due to pion production Planck 18 + BAO (+ Pantheon + SH0ES H_0) For DFSZ-II: muon production is also relevant for $c_{a\pi} \leq O(0.1)$:

DFSZ-I	Planck 18+BAO (+SN+H ₀)
$C_{a\pi} = 0.225$	$m_a \le 0.20 \; (0.29) \; { m eV}$
$c_{a\pi} = 0.0225$	$m_a \leq$ 0.84 (0.82) eV
DFSZ-II	Planck 18+BAO (+SN+H ₀)
$c_{a\pi} = 0.225$	$m_a \leq 0.20 \; (0.29) \; { m eV}$
$c_{a\pi} = 0.0225$	$m_a \leq$ 0.60 (0.61) eV

CMB Bounds on DFSZ

Axions as Hot Relics

The QCD Axion

Solution: The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

Axions via Pions

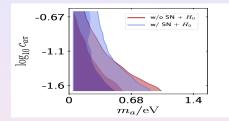


Figure: Constraints due to pion production Planck 18 + BAO (+ Pantheon + SH0ES H_0) For DFSZ-II: muon production is also relevant for $c_{a\pi} \leq O(0.1)$:

DFSZ-I	Planck 18+BAO (+SN+H ₀)
$C_{a\pi} = 0.225$	$m_a \leq 0.20 \; (0.29) \; { m eV}$
$c_{a\pi} = 0.0225$	$m_a \leq$ 0.84 (0.82) eV
DFSZ-II	Planck 18+BAO $(+SN+H_0)$
$c_{a\pi} = 0.225$	$m_a \le 0.20 \; (0.29) \; { m eV}$
$c_{a\pi} = 0.0225$	$m_a \leq$ 0.60 (0.61) eV

Caveat! Perturbative pion cross-section calculation in Chiral PT breaks down at $T \gtrsim 60 \text{ MeV} (\text{Di Luzio et al. 2021, arXiv 2101.10330.})$

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- Axions via Pions

• If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{a}{f} \tilde{GG}$

(日)

2 Efficiency peaks at $T \approx m_f$

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- Axions via Pions

- If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{d}{f} \tilde{GG}$
- 2 Efficiency peaks at $T \approx m_f$
- Sor quarks (t, b): N_{eff} ≤ 0.05 (measurable at 2σ by CMB S4) (*maybe higher for c-quark?)

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- Axions via Pions

- If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{d}{f} \tilde{GG}$
- 2 Efficiency peaks at $T \approx m_f$
- Sor quarks (t, b): N_{eff} ≤ 0.05 (measurable at 2σ by CMB S4) (*maybe higher for c-quark?)

• For leptons (τ): $N_{eff} \leq 0.3$ (measurable by CMB S4)

Axions as Hot Relics

- The QCD Axion
- Solution: Th QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- Axions via Pions

- If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{d}{f} \tilde{GG}$
- 2 Efficiency peaks at $T \approx m_f$
- Sor quarks (t, b): N_{eff} ≤ 0.05 (measurable at 2σ by CMB S4) (*maybe higher for c-quark?)
- For leptons (au): $N_{eff} \lesssim 0.3$ (measurable by CMB S4)
- Solution Non-diagonal couplings \implies production via Decays more efficient ($f \leq \mathcal{O}(10^{10})$ GeV)

Axions as Hot Relics

- The QCD Axion
- Solution: The QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- Axions via Pions

- If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{d}{f} \tilde{GG}$
- 2 Efficiency peaks at $T \approx m_f$
- Sor quarks (t, b): N_{eff} ≤ 0.05 (measurable at 2σ by CMB S4) (*maybe higher for c-quark?)
- For leptons (au): $N_{eff} \lesssim 0.3$ (measurable by CMB S4)
- Solution Non-diagonal couplings \implies production via Decays more efficient ($f \leq \mathcal{O}(10^{10})$ GeV)

• Large $N_{\rm eff}$ (~ 0.3) could alleviate H_0 tension

Axions as Hot Relics

- The QCD Axion
- Solution: Th QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- Axions via Pions

- If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{d}{f} \tilde{GG}$
- 2 Efficiency peaks at $T \approx m_f$
- Sor quarks (t, b): N_{eff} ≤ 0.05 (measurable at 2σ by CMB S4) (*maybe higher for c-quark?)
- For leptons (au): $N_{eff} \lesssim 0.3$ (measurable by CMB S4)
- Solution Non-diagonal couplings \implies production via Decays more efficient ($f \leq \mathcal{O}(10^{10})$ GeV)
- Large $N_{\rm eff}$ (~ 0.3) could alleviate H_0 tension
- **?** Pion production bound on DFSZ axion: $m_a \lesssim 0.2 \text{ eV}$ (at large $c_{a\pi}$), but relaxed $m_a \lesssim 0.6 0.8 \text{ eV}$ for small $c_{a\pi}$

(*Caveat: Pion cross-section calculation should break down at $T\gtrsim$ 60 MeV (Di Luzio et al. 2021))

Axions as Hot Relics

- The QCD Axion
- Solution: Th QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- Axions via Pions

- If $f \leq \mathcal{O}(10^9)$ GeV, coupling with quarks and leptons (with $c_i = \mathcal{O}(1)$) dominates over $\frac{\alpha_s}{8\pi} \frac{a}{f} \tilde{GG}$
- 2 Efficiency peaks at $T \approx m_f$
- Sor quarks (t, b): N_{eff} ≤ 0.05 (measurable at 2σ by CMB S4) (*maybe higher for c-quark?)
- For leptons (au): $N_{eff} \lesssim 0.3$ (measurable by CMB S4)
- Solution Non-diagonal couplings \implies production via Decays more efficient ($f \leq \mathcal{O}(10^{10})$ GeV)
- Solution Large $N_{\rm eff}$ (~ 0.3) could alleviate H_0 tension
- **?** Pion production bound on DFSZ axion: $m_a \lesssim 0.2 \text{ eV}$ (at large $c_{a\pi}$), but relaxed $m_a \lesssim 0.6 0.8 \text{ eV}$ for small $c_{a\pi}$

(*Caveat: Pion cross-section calculation should break down at $au\gtrsim$ 60 MeV (Di Luzio et al. 2021))

Future CMB experiments will tell in a few years, plus direct detection (e.g. IAXO)