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vs in DREG

Divergent (multi-)loop Feynman integrals require regularization

1
d*k ——— — .

/ Rk—pp
The go-to method is Dimensional Regularization which
preserves BRST symmetry for vector-like gauge theories
needed to e.g. ensure unitarity.
DREG: Promote integral measure, momenta and algebra to
D = 4 — 2¢ dimensions [ d*k — p*~P [dPx.

How do we treat intrinsically 4-dimensional objects such as
€M"P? and 757



vs in DREG

Some 4-dimensional properties of 75
() {75 =0

(i) Tr(vs7u717970) = 4i€wpo

(i) Tr(vaw) = Tr(vyp)

From which one can deduce 2(D — 4)Tr(v57,7.7,Y) = 0, leading
to an inconsistency for D # 4.

So we have to give up some of the above properties. The BMHV
(G. 't Hooft, M. Veltman, P.Breitenlohner, D. Maison) scheme
amounts to giving up the anticommutativity of ~s.



vs in DREG

» The BMHV scheme is proven to be consistent to all orders but
explicitly breaks gauge invariance.

» There are several other schemes: NDR, Larin scheme, Reading
Point prescription. . .

But their range of applicability is not always known.

» However we need a reliable method for higher loop electroweak
calculations necessitated by increasing needs for precision.

Goal: Apply the scheme to the SM and provide the necessary
(symmetry-restoring) counterterms.

For now: study toy models like 1-loop generic Yang-Mills theory
[arXiv:2004.14398], 2-loop chiral QED [arXiv:2109.11042], 2-loop
YM/3-loop chiral QED [work in progress]



vs in DREG

The space of DREG decomposes as Mp = My & M_5.. We define
the symbols

g'uyg,ul/ =4, glwg;w = —2¢, guﬂgpy = 0.
For the 4-dimensional quantities we have e.g.

B Epapiapizpia = Eppapizpa aNd
i 4 o
Enypauzpa€rivavzvy = Zﬂ—654 Sgn(ﬂ-) Hi:l gMin(i)’

and the ~s-algebra becomes

{’7“775} =0, [6/le75] =0, {’7#’75} = 2’7”’75-

The trace is cyclic and we have Tr(vs7,7,YpYo) = 4i€uvpo-



Slavnov-Taylor Identities

At tree-level the BRST symmetry of the action can be
expressed by the Slavnov-Taylor identity

[ 8% S
S(s) = [ as 501(x) 0K (x)

where Ky, (x) denotes a source coupling to the BRST
transformation of the quantum field ¢.

For the full quantum theory we require that the STI be
satisfied for every loop order

S(Mren) = / d*x




Slavnov-Taylor Identities

The linearized ST-operator, defined by
Sp(So + hF) = Sp(So) + hbpF + O(h?), corresponds to

5S0 & 8Sy 6

bp = [ dPx 2200 0% O

D / X 5Ky, 06 0y 6Ky,
——

SD

and we have b? = 0 (So = SP=*) expressing BRST nilpotency
(but b3 # 0).

Central to our formalism is the Quantum Action Principle
which connects the breaking of the STI to the insertion of a

local operator
SrHy=A-T,

which for our purposes is given by A, = b S,.



Slavnov-Taylor Identities

Instead of working directly with

the QAP allows us to systematically compute a certain list of
Green's functions with operator insertion A.

This will generate both essential anomalies as well as
spurious anomalies.

The latter can be written as total b-variations
bX = Agy.
This determines the renormalized action
Mren = LIMp_4(T + Sect + Stet),

satisfying S(ren) = 0.



Chiral QED

The 4-dimensional Lagrangian of x QED

[,izi_’g = ipriPr; — ZFW . + ghost terms + gauge fixing,

with covariant derivative D;j = 0§ — ieAH Tgyj
and BRST transformations (here s = b)
sA, = 0uc s =g = iecTrijbr;  sUi = ieYricTRi,

- S 4—dim _
is gauge invariant, hence sLqep = 0-



Chiral QED

Now generalize to D dimensions Eiaéig — EQQED =£0),

The kinetic term iW;JV; must be D-dimensional to ensure
regularization.

The interaction term is more ambiguous since in 4 dimensions,
we have

VRVM\URA# = WPL’}/MPR\UAH:WPL’}/MWA#:W’}/MPR\UAH,

but the latter equals are violated by our ~s-treatment!

In principle we could have several parametrizations

\UiR:yMwRA;u VL:YMWLA;U TR’?M\ULA;M VL%#\URA;r



Chiral QED

Choosing the purely 4-dimensional vertex we find

£O = [Ggw; + eV VriA, +L9,,
—_—
EERAsz

where
1

25(8/4)2 —EDC—FK\UI.S\U,'—{—...

0 1 v
El(regt = _ZF/WFM
—_—————

Lan

For our Abelian model we have Vg = (diag(Th, ..., VA"))ij
and we have to require Tr()3) = 0 to ensure cancellation of
the chiral anomaly

puV*P =p- (%:—F%) o e”Pqig2 4+ O(€)



XQED: BRST Symmetry Breaking

In D dimensions the BRST symmetry is broken

— —

spSo=A= / dPx A(x) = / dDXeyRijC(ai(é Pr+ J PL)vj)

by a local, dimension 4 field operator corresponding to the
Feynman rule

= gyRij ((1?1 + f%) + (‘[?1 N ﬁé)%)aﬁ
7 p2 N 1 = e JRi (I?&PR—H%PL)@B
o



XQED One-Loop Renormalization

At one-loop the breaking of the STI is given by

1 1
SN =(a.-nN® = A(O)(z.)r(l) +A0 .o +A§C2 T
3) 4)

where bp Egt) = ((:1) and A( O Agt).
Renormalization Procedure
1. Renormalize the divergent Green's functions to obtain the

(1)

divergent counter terms L
2. Compute the insertion of tree-level A(®) into one-loop

diagrams to obtain A(©) . (1) )+ A0 F&)
3. Check that A cancels A( ). (1)

sct

4. Determine Lgt) such that Algct) = —LIMD_>4A(0) . F&)



XQED One-Loop Renormalization

Only power-counting divergent diagrams are needed for the finite
symmetry breaking since €ovanescent X ( -+ finite) = finite + O(e).




XQED One-Loop Renormalization

167<¢

2
+Tr(y’*’)/ dPx 1A LOPA )

1 —he? 2Tr(y ) — j j §
Ssct - 2 ( Saa+¢ Z y (SwwR + 55, YRAYR )

3 2

4-dimensional gauge invariant terms and evanescentx%

1 h —e2Tr(D3) = 2~  e*Tr(V}), -
St = 15 de{6 CA(OA) + (R

+ (526) e Z(%)%@bﬂ“@uPR%’}

J

purely 4-dimensional non-gauge-invariant terms



XQED One-Loop Renormalization

New finite counter term vertices and breaking corrections

Here for two-loop and the Abelian model we only require the
structures present at tree-level



XQED Two-Loop Renormalization

STI breaking at two-loop

SN® =(a-1)@ =a0.rC) 4 Agit) T 4 Agt) T
+ a2 .10 L AP o

sct
Renormalization at two-loop
2 2
S 1) =0
@1+ a8 10 AR 10+ AG), o0

LMy (A - T NGO Agt) T Ai(’c2t))ﬁn =0



XQED Two-Loop Renormalization




XQED Two-Loop Renormalization

Structure of two-loop counter term Lagrangians

Same structure for 5£Ct) as at one-loop except for

e2 2 i \2 )
- (f;r) > (Soir - 2mon)

violating the Ward identity for electron self energy and vertex

correction in %

The finite counter terms are also of the same kind

2
Sta) = (16h2> [ e {Tr(yR) A5A+ e TOR) 7 g &

R (S OR7 - 3 TOR)) (50 Pawy) |




XQED Ward Identities

Since in U(1) xQED ghosts do not propagate, we always have

Ol ren . . . Ol ten 55(0)
= linear expression, and we can require = .
oc oc oc

Thus from the STI S(Ien) = 0 we can derive the Ward ldentities

o o
(50 ~ 08 005 ) o = 27000

implying well-known QED Ward identities

. 02T ren
Py =0,
6Au(P)OAL(—p)
_ yR 8 52Fren + l' 53Fren -0

Ipu 59 (—p)dy(p) Au(0)39(—p)ay(p)



XQED Ward Identities

The finite part of photon self energy at the two-loop level is given

by

2 et Tr(VR )[<673

v -2
P, = s o (G - loa(-77) - 24¢(3))

I 11
x pu(P'P” — P°8") + 4 puP"P']
=0

([A +Aal r>fm Au(=p)e(p)’

and for the electron self energy and vertex correction

- 2 - 2
_ - _ _ - u
re) R op, "u(e)i (=P)| T eiwpA©)
e® yR Tr(yR) 1274
27 36

fin

T =0).
! )f.n,w(p Q)P(-p)e(a )(q )



YQED at Two-Loop Summary

> We were able to obtain the divergent and finite counter term
structure up to two-loop needed to render the theory finite and
restore the symmetry

» The counter terms are rather compact and did not change
appreciably

» Ward identities are checked to be satisfied after
renormalization

» The necessary diagrams could be systematically identified
Outlook:
Continue at three-loop [work in progress|;
Alternative couplings for FFV to come closer to the SM;
Non-Abelian theory at two-loop [work in progress]

Explore relation to other schemes



From xYQED to SU(N)

Now external fields appear in loop calculations and certain
simplifications are no longer possible due to ccG-interaction

L= Egauge + ﬁfermion + »CFP + Eg—ﬁx + Eext
J— - —a
Liermion = i0id0jjhj + griG Tivr;
Lyp = 0" (Oubac + gabc G )

Lext = phsGy + (as¢” + Risyri + R'sig;

s(G) = 0uc® + gfabc Glﬁ’cC
1
s(c?) = —ngabccbcc
Also, STI now more involved [C.P.Martin]

55 -rDR]MDR
5K¢ ¢(X)

S(Mpr) =A-Tpr + Ac - Mdr +/ dPx]



From xYQED to SU(N)

The model has been studied at one-loop [C.P. Martin,
Sanchez-Ruiz '99], [Bélusca-Maito, llakovac, Mador-Bozinovi¢,
Stockinger, 2020] (with scalars)

The tree-level breaking is essentially the same

_ % T3 ((;31 + )+ (- 5@)’@&

=& Tk (’%PR + é\éPL)aﬁ

B

St = 16,208 ¢ (55GG+5GGG—/d4x G*9?G?)
2
2/d4XgGaGb/J,GCGdV
g oG

-1
+g%(1+ L)Cz(R)SWJ) + anomalies + external fields
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