γ_{5} in Dimensional Regularization: The BMHV Scheme at Two-Loop

Paul Kühler, TU Dresden, Institut für Kern- und Teilchenphysik

SMEFT-Tools
14-16 September 2022

In collaboration with
Hermès Bélusca-Maïto, University of Zagreb
Marija Mađor-Božinović, University of Zagreb
Amon Ilakovac, University of Zagreb
Dominik Stöckinger, TU Dresden

Divergent (multi-)loop Feynman integrals require regularization

$$
\int \mathrm{d}^{4} \mathrm{k} \frac{1}{k^{2}(k-p)^{2}} \rightarrow \infty
$$

The go-to method is Dimensional Regularization which preserves BRST symmetry for vector-like gauge theories needed to e.g. ensure unitarity.
DREG: Promote integral measure, momenta and algebra to $D=4-2 \epsilon$ dimensions $\int \mathrm{d}^{4} \mathrm{k} \rightarrow \mu^{4-D} \int \mathrm{~d}^{\mathrm{D}} \mathrm{x}$.
How do we treat intrinsically 4-dimensional objects such as $\epsilon^{\mu \nu \rho \sigma}$ and γ_{5} ?

γ_{5} in DREG

Some 4-dimensional properties of γ_{5}
(i) $\left\{\gamma_{\mu}, \gamma_{5}\right\}=0$
(ii) $\operatorname{Tr}\left(\gamma_{5} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma}\right)=4 i \varepsilon_{\mu \nu \rho \sigma}$
(iii) $\operatorname{Tr}\left(\gamma_{\mu} \gamma_{\nu}\right)=\operatorname{Tr}\left(\gamma_{\nu} \gamma_{\mu}\right)$

From which one can deduce $2(D-4) \operatorname{Tr}\left(\gamma_{5} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma}\right)=0$, leading to an inconsistency for $D \neq 4$.

So we have to give up some of the above properties. The BMHV (G. 't Hooft, M. Veltman, P.Breitenlohner, D. Maison) scheme amounts to giving up the anticommutativity of γ_{5}.

- The BMHV scheme is proven to be consistent to all orders but explicitly breaks gauge invariance.
- There are several other schemes: NDR, Larin scheme, Reading Point prescription... But their range of applicability is not always known.
- However we need a reliable method for higher loop electroweak calculations necessitated by increasing needs for precision.
Goal: Apply the scheme to the SM and provide the necessary (symmetry-restoring) counterterms.
For now: study toy models like 1-loop generic Yang-Mills theory [arXiv:2004.14398], 2-loop chiral QED [arXiv:2109.11042], 2-loop YM/3-loop chiral QED [work in progress]

γ_{5} in DREG

The space of DREG decomposes as $\mathbb{M}_{D}=\mathbb{M}_{4} \oplus \mathbb{M}_{-2 \epsilon}$. We define the symbols

$$
\bar{g}^{\mu \nu} \bar{g}_{\mu \nu}=4, \quad \hat{g}^{\mu \nu} \hat{g}_{\mu \nu}=-2 \epsilon, \quad \bar{g}^{\mu \rho} \hat{g}_{\rho \nu}=0
$$

For the 4-dimensional quantities we have e.g.
$g_{\mu \mu_{1}} \varepsilon_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=\varepsilon_{\mu \mu_{2} \mu_{3} \mu_{4}}$ and
$\varepsilon_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \varepsilon_{\nu_{1} \nu_{2} \nu_{3} \nu_{4}}}=\sum_{\pi \in S_{4}} \operatorname{sgn}(\pi) \prod_{i=1}^{4} \bar{g}_{\mu_{i} \nu_{\pi(i)}}$,
and the γ_{5}-algebra becomes

$$
\left\{\bar{\gamma}^{\mu}, \gamma_{5}\right\}=0, \quad\left[\hat{\gamma}^{\mu}, \gamma_{5}\right]=0, \quad\left\{\hat{\gamma}^{\mu}, \gamma_{5}\right\}=2 \hat{\gamma}^{\mu} \gamma_{5}
$$

The trace is cyclic and we have $\operatorname{Tr}\left(\gamma_{5} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma}\right)=4 i \varepsilon_{\mu \nu \rho \sigma}$.

Slavnov-Taylor Identities

At tree-level the BRST symmetry of the action can be expressed by the Slavnov-Taylor identity

$$
\mathcal{S}\left(S_{0}\right)=\int \mathrm{d}^{4} \mathrm{x} \frac{\delta S_{0}}{\delta \phi_{i}(x)} \frac{\delta S_{0}}{\delta K_{\phi_{i}}(x)}=0
$$

where $K_{\phi_{i}}(x)$ denotes a source coupling to the BRST transformation of the quantum field ϕ.
For the full quantum theory we require that the STI be satisfied for every loop order

$$
\mathcal{S}\left(\Gamma_{\text {ren }}\right)=\int \mathrm{d}^{4} \mathrm{x} \frac{\delta \Gamma_{\text {ren }}}{\delta \phi_{i}(x)} \frac{\delta \Gamma_{\text {ren }}}{K_{\phi_{i}}(x)}=0
$$

Slavnov-Taylor Identities

The linearized ST-operator, defined by
$\mathcal{S}_{D}\left(S_{0}+\hbar \mathcal{F}\right)=S_{D}\left(S_{0}\right)+\hbar b_{D} \mathcal{F}+\mathcal{O}\left(\hbar^{2}\right)$, corresponds to

$$
b_{D}=\int \mathrm{d}^{\mathrm{D}} \mathrm{x} \underbrace{\frac{\delta S_{0}}{\delta K_{\phi_{i}}} \frac{\delta}{\delta \phi}}_{s_{D}}+\frac{\delta S_{0}}{\delta \phi_{i}} \frac{\delta}{\delta K_{\phi_{i}}}
$$

and we have $b^{2}=0\left(S_{0} \equiv S_{0}^{D=4}\right)$ expressing BRST nilpotency (but $b_{D}^{2} \neq 0$).
Central to our formalism is the Quantum Action Principle which connects the breaking of the STI to the insertion of a local operator

$$
\mathcal{S}(\Gamma)=\Delta \cdot \Gamma
$$

which for our purposes is given by $\Delta_{*}=b S_{*}$.

Slavnov-Taylor Identities

Instead of working directly with

$$
\mathcal{S}(\Gamma) \stackrel{!}{=} 0
$$

the QAP allows us to systematically compute a certain list of Green's functions with operator insertion Δ.
This will generate both essential anomalies as well as spurious anomalies.
The latter can be written as total b-variations

$$
b X=\Delta_{\mathrm{fct}} .
$$

This determines the renormalized action

$$
\Gamma_{\mathrm{ren}}=\mathrm{LIM}_{D \rightarrow 4}\left(\Gamma+S_{\mathrm{sct}}+S_{\mathrm{fct}}\right),
$$

satisfying $\mathcal{S}\left(\Gamma_{\text {ren }}\right)=0$.

Chiral QED

The 4-dimensional Lagrangian of $\chi Q E D$
$\mathcal{L}_{\chi Q E D}^{4-\operatorname{dim}}=i \overline{\psi_{R i}} \not D \psi_{R j}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+$ ghost terms + gauge fixing,
with covariant derivative $D_{i j}^{\mu}=\partial^{\mu} \delta_{i j}-i e A^{\mu} T_{R i j}$
and BRST transformations (here $s \equiv b$)

$$
s A_{\mu}=\partial_{\mu} c \quad s \psi_{i} \equiv \psi_{R i}=i e c T_{R i j} \psi_{R j} \quad s \overline{\psi_{i}}=i e \overline{\psi_{R j}} c T_{R j i}
$$

is gauge invariant, hence $s \mathcal{L}_{\chi Q E D}^{4-\operatorname{dim}}=0$.

Chiral QED

Now generalize to D dimensions $\mathcal{L}_{\chi Q E D}^{4-\operatorname{dim}} \rightarrow \mathcal{L}_{\chi Q E D}^{D} \equiv \mathcal{L}^{(0)}$. The kinetic term $i \overline{\Psi_{i}} \not \partial \Psi_{i}$ must be D-dimensional to ensure regularization.
The interaction term is more ambiguous since in 4 dimensions, we have

$$
\overline{\Psi_{R}} \gamma^{\mu} \Psi_{R} A_{\mu}=\bar{\Psi} P_{L} \gamma^{\mu} P_{R} \Psi A_{\mu}=\bar{\Psi} P_{L} \gamma^{\mu} \Psi A_{\mu}=\bar{\Psi} \gamma^{\mu} P_{R} \Psi A_{\mu}
$$

but the latter equals are violated by our γ_{5}-treatment! In principle we could have several parametrizations

$$
\overline{\Psi_{R}} \bar{\gamma}^{\mu} \Psi_{R} A_{\mu}, \quad \overline{\Psi_{L}} \bar{\gamma}^{\mu} \Psi_{L} A_{\mu}, \quad \overline{\Psi_{R}} \hat{\gamma}^{\mu} \Psi_{L} A_{\mu}, \quad \overline{\Psi_{L}} \hat{\gamma}^{\mu} \Psi_{R} A_{\mu}
$$

Chiral QED

Choosing the purely 4-dimensional vertex we find

$$
\mathcal{L}^{(0)}=i \overline{\Psi_{i}} \not \partial \Psi_{i}+\underbrace{e \bar{\Psi}_{i} \bar{\gamma}^{\mu} \Psi_{j} \mathcal{Y}_{R i j} A_{\mu}}_{\mathcal{L}_{\bar{\psi}_{R} A \psi_{R}}}+\mathcal{L}_{\text {rest }}^{(0)},
$$

where

$$
\mathcal{L}_{\text {rest }}^{(0)}=\underbrace{-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{\mathcal{L}_{A A}}-\frac{1}{2 \xi}(\partial A)^{2}-\bar{c} \square c+K_{\Psi_{i}} s \Psi_{i}+\ldots
$$

For our Abelian model we have $\mathcal{Y}_{R i j}=\left(\operatorname{diag}\left(T_{R}^{1}, \ldots, \mathcal{Y}_{R}^{N_{f}}\right)\right)_{i j}$ and we have to require $\operatorname{Tr}\left(\mathcal{Y}_{R}^{3}\right)=0$ to ensure cancellation of the chiral anomaly

χ QED: BRST Symmetry Breaking

In D dimensions the BRST symmetry is broken

$$
s_{D} S_{0} \equiv \hat{\Delta}=\int \mathrm{d}^{\mathrm{D}} \mathrm{x} \hat{\Delta}(x)=\int \mathrm{d}^{\mathrm{D}} \mathrm{x} e \mathcal{Y}_{R i j} c\left(\bar{\psi}\left(\bar{\psi}_{i}\left(\overleftarrow{\hat{\partial}} P_{R}+\overrightarrow{\hat{\phi}} P_{L}\right) \psi_{j}\right)\right.
$$

by a local, dimension 4 field operator corresponding to the Feynman rule

$$
\overbrace{\psi_{\beta}^{j} p_{2}{ }_{p_{1}}^{c}=\frac{e}{2} y_{R i j}\left(\left(\widehat{p_{1}}+\widehat{p_{2}}\right)+\left(\widehat{p_{1}}-\widehat{p_{2}}\right) \gamma_{5}\right)_{\alpha \beta}}^{y_{R i j}\left(\widehat{p_{1}} P_{R}+\widehat{p_{2}} P_{L}\right)_{\alpha \beta} .}
$$

χ QED One-Loop Renormalization

At one-loop the breaking of the STI is given by

$$
\mathcal{S}(\Gamma)^{(1)}=(\Delta \cdot \Gamma)^{(1)}=\underbrace{\Delta^{(0)} \cdot \Gamma^{(1)}}_{(2)}+\underbrace{\Delta_{\mathrm{sct}}^{(1)} \cdot \Gamma^{(0)}}_{(3)}+\underbrace{\Delta_{\mathrm{fct}}^{(1)} \cdot \Gamma^{(0)}}_{(4)},
$$

where $b_{D} \mathcal{L}_{\mathrm{ct}}^{(1)}=\Delta_{\mathrm{ct}}^{(1)}$ and $\Delta_{\mathrm{ct}}^{(1)} \cdot \Gamma^{(0)}=\Delta_{\mathrm{ct}}^{(1)}$.

Renormalization Procedure

1. Renormalize the divergent Green's functions to obtain the divergent counter terms $\mathcal{L}_{\text {sct }}^{(1)}$
2. Compute the insertion of tree-level $\Delta^{(0)}$ into one-loop diagrams to obtain $\Delta^{(0)} \cdot \Gamma_{\text {div }}^{(1)}+\Delta^{(0)} \cdot \Gamma_{\text {fin }}^{(1)}$
3. Check that $\Delta_{\text {sct }}^{(1)}$ cancels $\Delta^{(0)} \cdot \Gamma_{\text {div }}^{(1)}$
4. Determine $\mathcal{L}_{\text {fct }}^{(1)}$ such that $\Delta_{\text {fct }}^{(1)}=-\operatorname{LIM}_{D \rightarrow 4} \Delta^{(0)} \cdot \Gamma_{\text {fin }}^{(1)}$

χ QED One-Loop Renormalization

Only power-counting divergent diagrams are needed for the finite symmetry breaking since $\epsilon_{\text {evanescent }} \times\left(\frac{1}{\epsilon_{\mathrm{UV}}}+\right.$ finite $)=$ finite $+\mathcal{O}(\epsilon)$.

$$
\begin{aligned}
\widehat{\Delta} \cdot \Gamma^{(1)} & =\frac{\hbar}{16 \pi^{2}} \int \mathrm{~d}^{\mathrm{D}} \mathrm{x} \frac{e^{2} \operatorname{Tr}\left(\mathcal{Y}_{R}^{2}\right)}{3}\left(\frac{1}{\epsilon}\left(\bar{\partial}_{\mu} c\right)\left(\widehat{\partial}^{2} \bar{A}^{\mu}\right)+\left(\bar{\partial}_{\mu} c\right)\left(\bar{\partial}^{2} \bar{A}^{\mu}\right)\right) \\
& +\frac{e^{4} \operatorname{Tr}\left(\mathcal{Y}_{R}^{4}\right)}{3} c \bar{\partial}_{\mu}\left(\bar{A}^{\mu} \bar{A}^{2}\right)-\frac{(\xi+5) e^{3}\left(\mathcal{Y}_{R}^{3}\right)_{j k}}{6} c \bar{\partial}^{\mu}\left(\bar{\psi}_{j} \bar{\gamma}_{\mu} P_{R} \psi_{k}\right)
\end{aligned}
$$

χ QED One-Loop Renormalization

$$
\begin{aligned}
S_{\text {sct }}^{(1)}= & \frac{-\hbar e^{2}}{16 \pi^{2} \epsilon}\left(\frac{2 \operatorname{Tr}\left(\mathcal{Y}_{R}^{2}\right)}{3} \overline{S_{A A}}+\xi \sum_{j}\left(\mathcal{Y}_{R}^{j}\right)^{2}\left(\overline{S_{\bar{\psi} \psi_{R}}^{j}}+\overline{S_{\psi_{R} A \psi_{R}}^{j}}\right)\right. \\
& \left.+\frac{\operatorname{Tr}\left(\mathcal{Y}_{R}^{2}\right)}{3} \int \mathrm{~d}^{\mathrm{D}} \times \frac{1}{2} \bar{A}_{\mu} \hat{\partial}^{2} \bar{A}^{\mu}\right)
\end{aligned}
$$

4-dimensional gauge invariant terms and evanescent $\times \frac{1}{\epsilon}$

$$
\begin{aligned}
S_{\mathrm{fct}}^{(1)}=\frac{\hbar}{16 \pi^{2}} \int \mathrm{~d}^{\mathrm{D}} \mathrm{x} & \left\{\frac{-e^{2} \operatorname{Tr}\left(\mathcal{Y}_{R}^{2}\right)}{6} \bar{A} \cdot\left(\bar{\partial}^{2} \bar{A}\right)+\frac{e^{4} \operatorname{Tr}\left(\mathcal{Y}_{R}^{4}\right)}{12}\left(\bar{A}^{2}\right)^{2}\right. \\
& \left.+\left(\frac{5+\xi}{6}\right) e^{2} \sum_{j}\left(\mathcal{Y}_{R}^{j}\right)^{2} i \bar{\psi}_{j} \bar{\gamma}^{\mu} \bar{\partial}_{\mu} P_{R} \psi_{j}\right\}
\end{aligned}
$$

purely 4-dimensional non-gauge-invariant terms

χ QED One-Loop Renormalization

New finite counter term vertices and breaking corrections

Here for two-loop and the Abelian model we only require the structures present at tree-level

χ QED Two-Loop Renormalization

STI breaking at two-loop

$$
\begin{aligned}
\mathcal{S}(\Gamma)^{(2)}=(\Delta \cdot \Gamma)^{(2)} & =\Delta^{(0)} \cdot \Gamma^{(2)}+\Delta_{\mathrm{sct}}^{(1)} \cdot \Gamma^{(1)}+\Delta_{\mathrm{fct}}^{(1)} \cdot \Gamma^{(1)} \\
& +\Delta_{\mathrm{sct}}^{(2)} \cdot \Gamma^{(0)}+\Delta_{\mathrm{fct}}^{(2)} \cdot \Gamma^{(0)}
\end{aligned}
$$

Renormalization at two-loop

$$
\begin{aligned}
S_{\mathrm{sct}}^{(2)}+\Gamma_{\mathrm{div}}^{(2)} & =0 \\
\left(\widehat{\Delta} \cdot \Gamma^{(2)}+\Delta_{\mathrm{sct}}^{(1)} \cdot \Gamma^{(1)}+\Delta_{\mathrm{fct}}^{(1)} \cdot \Gamma^{(1)}+\Delta_{\mathrm{sct}}^{(2)}\right)_{\mathrm{div}} & =0 \\
\operatorname{LIM}_{d \rightarrow 4}\left(\widehat{\Delta} \cdot \Gamma^{(2)}+\Delta_{\mathrm{sct}}^{(1)} \cdot \Gamma^{(1)}+\Delta_{\mathrm{fct}}^{(1)} \cdot \Gamma^{(1)}+\Delta_{\mathrm{fct}}^{(2)}\right)_{\mathrm{fin}} & =0
\end{aligned}
$$

χ QED Two-Loop Renormalization

χ QED Two-Loop Renormalization

Structure of two-loop counter term Lagrangians
Same structure for $S_{\mathrm{sct}}^{(2)}$ as at one-loop except for

$$
-\left(\frac{\hbar e^{2}}{16 \pi^{2}}\right)^{2} \sum_{j} \frac{\left(\mathcal{Y}_{R}^{j}\right)^{2}}{3 \epsilon}\left(\frac{5}{2}\left(\mathcal{Y}_{R}^{j}\right)^{2}-\frac{2}{3} \operatorname{Tr}\left(\mathcal{Y}_{R}^{2}\right)\right) \overline{S_{\bar{\psi} \psi_{R}}^{j}}
$$

violating the Ward identity for electron self energy and vertex correction in $\frac{1}{\epsilon}$.
The finite counter terms are also of the same kind

$$
\begin{aligned}
S_{\mathrm{fct}}^{(2)}= & \left(\frac{\hbar}{16 \pi^{2}}\right)^{2} \int \mathrm{~d}^{\mathrm{D}} \mathrm{x} e^{4}\left\{\operatorname{Tr}\left(\mathcal{Y}_{R}^{4}\right) \frac{11}{48} \bar{A}_{\mu} \bar{\partial}^{2} \bar{A}^{\mu}+e^{2} \frac{\operatorname{Tr}\left(\mathcal{Y}_{R}^{6}\right)}{8} \bar{A}_{\mu} \bar{A}^{\mu} \bar{A}_{\nu} \bar{A}^{\nu}\right. \\
& \left.-\left(\mathcal{Y}_{R}^{j}\right)^{2}\left(\frac{127}{36}\left(\mathcal{Y}_{R}^{j}\right)^{2}-\frac{1}{27} \operatorname{Tr}\left(\mathcal{Y}_{R}^{2}\right)\right)\left(\bar{\psi}_{j} i \bar{\partial} P_{R} \psi_{j}\right)\right\}
\end{aligned}
$$

χ QED Ward Identities

Since in $U(1) \chi$ QED ghosts do not propagate, we always have

$$
\frac{\delta \Gamma_{\text {ren }}}{\delta c}=\text { linear expression, and we can require } \frac{\delta \Gamma_{\text {ren }}}{\delta c}=\frac{\delta S^{(0)}}{\delta c} .
$$

Thus from the STI $\mathcal{S}\left(\Gamma_{\text {ren }}\right)=0$ we can derive the Ward Identities

$$
\left(\partial^{\mu} \frac{\delta}{\delta A^{\mu}(x)}-i e \mathcal{Y}_{R}^{j} \sum_{\phi}(\pm) \phi(x) \frac{\delta}{\delta \phi(x)}\right) \Gamma_{\text {ren }}=-\partial^{2} B(x)
$$

implying well-known QED Ward identities

$$
\begin{gathered}
i p_{\nu} \frac{\delta^{2} \widetilde{\Gamma}_{\text {ren }}}{\delta A_{\mu}(p) \delta A_{\nu}(-p)}=0 \\
-i e \mathcal{Y}_{R} \frac{\partial}{\partial p_{\mu}} \frac{\delta^{2} \widetilde{\Gamma}_{\text {ren }}}{\delta \bar{\psi}(-p) \delta \psi(p)}+i \frac{\delta^{3} \widetilde{\Gamma}_{\text {ren }}}{\delta A_{\mu}(0) \delta \bar{\psi}(-p) \delta \psi(p)}=0 .
\end{gathered}
$$

χ QED Ward Identities

The finite part of photon self energy at the two-loop level is given by

$$
\begin{aligned}
\left.i p_{\nu} \widetilde{\Gamma}_{A A}^{\mu \nu}(p)\right|_{\mathrm{fin}} ^{2} & =\frac{i e^{4}}{256 \pi^{4}} \frac{\operatorname{Tr}\left(\mathcal{Y}_{R}^{4}\right)}{3}\left[\left(\frac{673}{23}-6 \log \left(-\bar{p}^{2}\right)-24 \zeta(3)\right)\right. \\
& \times \underbrace{p_{\nu}\left(\bar{p}^{\mu} \bar{p}^{\nu}-\bar{p}^{2} \bar{g}^{\mu \nu}\right)}_{=0}+\frac{11}{8} p_{\nu} \bar{p}^{\mu} \bar{p}^{\nu}] \\
& =-\left(\left[\widehat{\Delta}+\Delta_{\mathrm{ct}}^{1}\right] \cdot \widetilde{\Gamma}\right)_{\mathrm{fin}, A_{\mu}(-p) c(p)}^{2}
\end{aligned}
$$

and for the electron self energy and vertex correction

$$
\begin{aligned}
& -\left.i e \mathcal{Y}_{R} \frac{\partial}{\partial p_{\mu}} \widetilde{\Gamma}_{\psi(p) \bar{\psi}(-p)}\right|_{\mathrm{fin}} ^{2}+\left.i \widetilde{\Gamma}_{\psi(p) \bar{\psi}(-p) A(0)}^{\mu}\right|_{\mathrm{fin}} ^{2} \\
& =i \mathcal{Y}_{R} \frac{e^{5}}{256 \pi^{4}} \bar{\gamma}^{\mu} P_{R}\left(\frac{\mathcal{Y}_{R}^{2} \operatorname{Tr}\left(\mathcal{Y}_{R}^{2}\right)}{27}-\frac{127 \mathcal{Y}_{R}^{4}}{36}\right) \\
& =-\frac{\partial}{\partial q_{\mu}}\left(\left[\widehat{\Delta}+\Delta_{\mathrm{ct}}^{1}\right] \cdot \widetilde{\Gamma}\right)_{\mathrm{fin}, \psi(p-q) \bar{\psi}(-p) c(q)}^{2}(q=0) .
\end{aligned}
$$

χ QED at Two-Loop Summary

- We were able to obtain the divergent and finite counter term structure up to two-loop needed to render the theory finite and restore the symmetry
- The counter terms are rather compact and did not change appreciably
- Ward identities are checked to be satisfied after renormalization
- The necessary diagrams could be systematically identified Outlook:
Continue at three-loop [work in progress];
Alternative couplings for FFV to come closer to the SM; Non-Abelian theory at two-loop [work in progress]
Explore relation to other schemes

From χ QED to $S U(N)$

Now external fields appear in loop calculations and certain simplifications are no longer possible due to ccG-interaction

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {fermion }}+\mathcal{L}_{\mathrm{FP}}+\mathcal{L}_{\mathrm{g}-\mathrm{fix}}+\mathcal{L}_{\mathrm{ext}} \\
& \mathcal{L}_{\text {fermion }}=i \overline{\psi_{i}} \not \partial \delta_{i j} \psi_{j}+g \overline{\psi_{R i}} \bar{\phi}^{a} T_{i j}^{a} \psi_{R j} \\
& \mathcal{L}_{\mathrm{FP}}=\partial^{\mu} \bar{c}^{a}\left(\partial_{\mu} \delta_{a c}+g f_{a b c} G_{\mu}^{b}\right) c^{c} \\
& \mathcal{L}_{\mathrm{ext}}=\rho_{a}^{\mu} s G_{\mu}^{a}+\zeta_{a} s c^{a}+\bar{R}^{i} s \psi_{R i}+R^{i} s \overline{\psi_{R i}} \\
& s\left(G_{\mu}^{a}\right)=\partial_{\mu} c^{a}+g f_{a b c} G_{\mu}^{b} c^{c} \\
& s\left(c^{a}\right)=-\frac{1}{2} g f_{a b c} c^{b} c^{c}
\end{aligned}
$$

Also, STI now more involved [C.P.Martin]

$$
\mathcal{S}\left(\Gamma_{\mathrm{DR}}\right)=\Delta \cdot \Gamma_{\mathrm{DR}}+\Delta_{\mathrm{ct}} \cdot \Gamma_{\mathrm{DR}}+\int \mathrm{d}^{\mathrm{D}} \mathrm{x}\left[\frac{\delta S_{\mathrm{ct}}^{(n)}}{\delta K_{\phi}} \cdot \Gamma_{\mathrm{DR}}\right] \frac{\delta \Gamma_{\mathrm{DR}}}{\phi(x)}
$$

From χ QED to $S U(N)$

The model has been studied at one-loop [C.P. Martin, Sanchez-Ruiz '99], [Bélusca-Maïto, llakovac, Mađor-Božinović, Stöckinger, 2020] (with scalars)

The tree-level breaking is essentially the same

$$
\begin{aligned}
& =g T_{R i j}^{a}\left(\widehat{p_{1}} P_{R}+\widehat{p_{2}} P_{L}\right)_{\alpha \beta} \text {. } \\
& \psi_{\beta}^{j} \quad \bar{\psi}_{\alpha}^{i} \\
& S_{\mathrm{fct}}^{(1)}=\frac{\hbar}{16 \pi^{2}}\left(g^{2} \frac{S_{2}(R)}{6}\left(5 S_{G G}+S_{G G G}-\int \mathrm{d}^{4} \mathrm{x} G^{a \mu} \partial^{2} G_{\mu}^{a}\right)\right. \\
& +g^{2} \frac{\left(T_{R}\right)^{a b c d}}{3} \int \mathrm{~d}^{4} \mathrm{x} \frac{g^{2}}{4} G_{\mu}^{a} G^{b \mu} G_{\nu}^{c} G^{d \nu} \\
& \left.+g^{2}\left(1+\frac{\xi-1}{6}\right) C_{2}(R) S_{\bar{\psi} \psi}\right)+ \text { anomalies }+ \text { external fields }
\end{aligned}
$$

