Lepton Flavour Violation in the SMEFT

Marco Ardu LUPM, CNRS

SMEFT-Tools Zurich 2022

15th September 2022

Leptons:

$$\ell_{\alpha} = \begin{pmatrix} \nu_{\alpha L} \\ \alpha_L \end{pmatrix}, \alpha_R \qquad \text{with } \alpha = \mathbf{e}, \mu, \tau$$

- The Standard Model with $m_{\nu_{\alpha}} = 0$ has exact $U(1)_{B/3-L_{\alpha}}$
- Neutrino oscillations break all three symmetries. We can observe a µ turn into an e via neutrino oscillations (with two interaction vertices)

$$\mu \rightarrow e \bar{\nu}_e \nu_\mu \longrightarrow (\nu_\mu \rightarrow \nu_e) + (L_e = 0) \rightarrow e + (L_e = 0)$$

but we have never observed a contact interaction between the charged leptons that change lepton flavour ≡ LFV.

Why LFV?

In SM $+
u_{
m R}$ LFV is small: $Br(\mu o e\gamma) \simeq G_F^2 (\Delta m_
u^2)^2 \sim 10^{-50}$

- Smoking gun signal of New Physics
- LFV can give insight on neutrino masses? (also on BAU, if is via leptogenesis?)
- Many models predict potentially observable LFV rates

For some LFV reviews see Kuno+Okada hep-ph/9909265, Calibbi+Signorelli 1709.00294

Experimental searches

Process	Current bound on BR	Future Sensitivity			
$\mu ightarrow e \gamma$	$<4.2 imes10^{-13}$ Meg	10 ⁻¹⁴ MEGII			
$\mu ightarrow ar{e}ee$	$< 1.0 imes 10^{-12}$ sindrum	10 ⁻¹⁶ Mu3e			
$\mu A ightarrow e A$	$< 7 imes 10^{-13}$ sindrumii	$10^{-16} ightarrow 10^{-18}$ comet, Mu2e			
$\tau \to I\gamma$	$ $ $< 3.3 imes 10^{-8}$	$3 imes 10^{-9}(e), 10^{-9}(\mu)$			
$ au ightarrow ear{e} e$	$ $ $< 2.7 imes 10^{-8}$	$5 imes 10^{-9}$			
$\tau \to \mu \bar{\mu} \mu$	< 2.1 $ imes$ 10 ⁻⁸	$4 imes 10^{-9}$			
$ au o \mu ar{ extbf{e}} extbf{e}, extbf{e} ar{\mu} \mu$	$< 1.8, 2.7 imes 10^{-8}$ Belle	$3,5 imes 10^{-9}$ Bellell			
$\tau \to I \pi^0$	< 8.0 × 10 ⁻⁸	$4 imes 10^{-9}$			
$\tau \rightarrow I\eta$	$ < 6.5 imes 10^{-8}$	$7 imes 10^{-9}$			
$\tau \rightarrow I \rho$	$< 1.2 imes 10^{-8}$ Belle	10 ⁻⁹ Bellell			
$K^0 ightarrow \mu^{\pm} e^{\mp}$	$< 4.7 imes 10^{-12}$				
$B^0_d o au^\pm \mu^\mp$	$< 1.2 imes 10^{-5}$ LHCb	$\sim 10^{-6}$?			
$h ightarrow e^\pm\mu^\mp$	$ $ $< 6.1 imes 10^{-5}$ Atlas	$2.1 imes 10^{-5}$			
$h ightarrow e^{\pm} au^{\mp}$	$ $ $<$ $2.2 imes10^{-3}$ cms	$2.4 imes10^{-4}$			
$h \to \tau^{\pm} \mu^{\mp}$	$ $ $< 1.5 imes 10^{-3}$ cms	$2.3 imes10^{-4}$ ILC			
$Z \rightarrow e^{\pm} \mu^{\mp}$	$ $ $< 7.5 imes 10^{-7}$ Atlas				
$Z \rightarrow I^{\pm} \tau^{\mp}$	$ $ $< 10^{-7}$ _{Atlas}				

Muon searches lead in sensitivity

► Tau searches have a large number of possible decay channels

Outline

$\mathsf{LFV} \text{ in } \mathsf{EFT}$

Bottom-up EFT for LFV

SMEFT RGEs for LFV

< □ > < ⑦ > < 差 > < 差 > 差 = シーン (2) 5/27

Outline

$\mathsf{LFV} \text{ in } \mathsf{EFT}$

Bottom-up EFT for LFV

SMEFT RGEs for LFV

<ロト < 部ト < 臣ト < 臣ト 王言 のへで 6/27

Effective Field Theory for LFV

Assuming that New Physics responsible for LFV is heavy $\Lambda\gtrsim 4~TeV,$ we can parametrise it with SMEFT operators

Dipoles

At tree-level, the rate of $\mu \to e \gamma$ is ($\langle H \rangle = v$ and broken $SU(2) \otimes U(1)_Y$)

$$Br(\mu \to e\gamma) = 384\pi^{2} \left(\left| C_{e\gamma}^{\mu e} \right|^{2} + \left| C_{e\gamma}^{e\mu} \right|^{2} \right) < 4.3 \times 10^{-13}$$
$$\to \left| C_{e\gamma}^{e\mu} \right| \lesssim 10^{-8}$$

Assuming

$$m_{\mu} 2\sqrt{2}G_F C_{e\gamma} \sim rac{em_{\mu}}{16\pi^2\Lambda^2}$$

MEG can probe up to

 $\Lambda \sim 100 \text{ TeV}$

Effective Field Theory for LFV

The rate is at tree-level here. Low energy observables are calculated in broken SU(2) and integrating out heavy fields: SMEFT \leftrightarrow WET.

WET convention :
$$\delta \mathcal{L}^{d>4} = \sum_{d} \frac{C_{Lorentz, Chirality}^{Chavour} O_{Lorentz, Chirality}^{D avour}}{v^{d-4}} \quad \text{with } 2\sqrt{2}G_F = \frac{1}{v^2}$$

Four lepton operators

$$Br(\mu \to eee) = 2 \left| C_{V,LL}^{e\mu ee} + 4eC_{D,R}^{e\mu} \right|^2 + \left| C_{V,LR}^{e\mu ee} + 4eC_{D,R}^{\mu e} \right|^2 + \frac{\left| C_{S,LL}^{e\mu ee} \right|^2}{8} + \left(64 \log \frac{m_{\mu}}{m_e} - 136 \right) \left| eC_{D,R}^{e\mu} \right|^2 + \{L \leftrightarrow R\}$$

Okada+Okumura+Shimizu, hep-ph/9906446

Current (future) upper limit $Br(\mu
ightarrow 3e) < 10^{-12}
ightarrow 10^{-16}$ implies

$$\begin{split} \left| C_{V,XX}^{e\mu ee} \right| &\leq 7 \times 10^{-7(\to -9)}, \qquad \left| C_{V,XY}^{e\mu ee} \right| &\leq 10^{-6(\to -8)} \\ \left| C_{S,XX}^{e\mu ee} \right| &\leq 2.8 \times 10^{-6(\to -8)} \end{split}$$

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Effective Field Theory for LFV

Two-lepton two-quarks operators

Kitano+Koike+Okada hep-ph/0203110; Cirigliano et al. 0904.0957

Yukawas and Penguins

• $C_{eH}^{\alpha\beta}(\bar{\ell}_{\alpha}He_{\beta})(H^{\dagger}H)$ contributes to the lepton mass matrix \longrightarrow SM Higgs *h* acquire LFV couplings in the mass basis

Giudice+Lebedev 0804.1753

► $iC_{H_{e}}^{\alpha\beta}(\overline{e}_{\alpha}\gamma e_{\beta})(H^{\dagger}\overset{\leftrightarrow}{D}H) + \mathcal{O}_{H_{\ell}}^{(1),(3)}$ give LFV Z interactions

$$Z \sim \mathcal{A} = \begin{bmatrix} I_{\alpha} \\ I_{\beta} \end{bmatrix} \propto (C_{He}^{\alpha\beta} \gamma P_{R} + C_{H\ell(1)+(3)}^{\alpha\beta} \gamma P_{L}) \frac{v^{2}}{\Lambda^{2}}$$

10 / 27

<ロト 4日 ト 4日 ト 4日 ト 4日 9000</p>

SM Loops in the EFT

SM loops decorate the contact interactions, causing the Wilson coefficients to run

 $\vec{C}(\mu_f) = \vec{C}(\mu_i)U(\mu_i,\mu_f)$

- Solving the RGEs at n-loop resum $\alpha^{m+n-1}\log^{m+n}(\mu_f/\mu_i)$ contributions
- One-loop QCD running of scalar and tensor quark operators can be numerically relevant (~ few × 10%)

Electroweak loops can mix operators with different Lorentz structure and external legs

Probe a difficult-to-detect operator via its mixing into a tightly constrained one

Loops are interesting for LFV

- Top-down: model-build, match onto EFT, solve the RGEs down to the experimental scale and check with experiments.
- Bottom-up: calculate observables in the appropriate EFT at the experimental scale, run to the high scale and identify the region in coefficient space accessible to experiment

Bottom-up:

- repeat only when new data are available (not so frequently for LFV...);
- ▶ no model-building needed: works for any model at $\sim \Lambda$;
- maybe one can learn something about BSM?

Outline

LFV in EFT

Bottom-up EFT for LFV

SMEFT RGEs for LFV

< □ > < 큔 > < 클 > < 클 > 로) = ∽ < ♡ 13/27

- ▶ Focus on $\mu \rightarrow e\gamma, \mu \rightarrow 3e, \mu A \rightarrow eA$ because they are the most sensitive and expect the best improvement
- Complete in bottom-up = every contribution that could be detected in the experiments

WET Running $m_{\mu} \rightarrow m_W$ Davidson, 2010.00317

 $\mu \to e\gamma$ probe dipoles at m_{μ} : $C_{D,X}^{e\mu}(m_{\mu})$

$$\begin{split} C_{D,X}(m_{\mu}) &= C_{D,X}(m_{W}) \left(1 - 16 \frac{\alpha_{e}}{4\pi} \ln \frac{m_{W}}{m_{\mu}} \right) \\ &- \frac{\alpha_{e}}{4\pi e} \ln \frac{m_{W}}{m_{\mu}} \left(-8 \frac{m_{\tau}}{m_{\mu}} C_{T,XX}^{\tau\tau} + C_{S,XX}^{\mu\mu} + C_{2loop} \right) \\ &+ 16 \frac{\alpha_{e}^{2}}{2e(4\pi)^{2}} \ln^{2} \frac{m_{W}}{m_{\mu}} \left(\frac{m_{\tau}}{m_{\mu}} C_{S,XX}^{\tau\tau} \right) \\ &- 8\lambda^{aT} \frac{\alpha_{e}}{4\pi e} \ln \frac{m_{W}}{2 \text{ GeV}} \left(-\frac{m_{s}}{m_{\mu}} C_{T,XX}^{ss} + 2 \frac{m_{c}}{m_{\mu}} C_{T,XX}^{cc} - \frac{m_{b}}{m_{\mu}} C_{T,XX}^{bb} \right) f_{TD} \\ &+ 16 \frac{\alpha_{e}^{2}}{3e(4\pi)^{2}} \ln^{2} \frac{m_{W}}{2 \text{ GeV}} \left(\sum_{u,c} 4 \frac{m_{q}}{m_{\mu}} C_{S,XX}^{qq} + \sum_{d,s,b} \frac{m_{q}}{m_{\mu}} C_{S,XX}^{qq} \right) \end{split}$$

- Solve the RGEs to express in terms of coefficient at m_W
- ▶ Resummed one-loop QCD running: $\lambda = \alpha_S(2 \text{ GeV})/\alpha_S(m_W)$, $f_{TD} \simeq .862$, $a_S = 12/23$, $a_T = -4/23$
- ► Include QED one-loop at leading log, some α²_elog² effect and two-loop vector to dipole mixing

MEG is sensitive to \sim every operator in the basis (at m_W)

$\operatorname{coefficient}$	$\mu \to e \gamma$
$ C_{D,X} $	1.12×10^{-8}
$ C_{GG,X} $	
$ C_{V,XX}^{ee} $	1.10×10^{-4}
$ C_{V,XY}^{ee} $	2.55×10^{-4}
$ C^{ee}_{S,XX} $	1.73×10^{-4}
$ C^{\mu\mu}_{\nu\nu\nu\nu} $	1.10×10^{-4}
$ C_{V,VV}^{\mu\mu} $	2.56×10^{-4}
$ C_{S,XX}^{\mu\mu} $	8.24×10^{-7}
$ C_{V,XX}^{\tau\tau} $	3.84×10^{-4}
$ C_{V,XY}^{\tau\tau} $	4.45×10^{-4}
$ C_{S,XX}^{\tau\tau} $	$5.33 imes 10^{-6}$
$ C_{S,XY}^{\tau\tau} $	3.62×10^{-5}
$ C_{T,XX}^{\tau\tau} $	1.07×10^{-8}

 $+\ldots$

These are sensitivities \neq constraints Apply the same procedure for $\mu \rightarrow 3e$, $\mu A \rightarrow eA$

- If we combine μ → eγ, μ → 3e, μA → eA(×2 for AI, Ti) we can constrain 12 (with chiral leptons) directions in coefficient space at low-energy
- But the RGEs mix the low energy operator with all the ~ 90 operators in the basis at higher energies ⇒ many "flat" (unconstrainable) directions

What to do?

- 1. Sensitivities are useful = smaller values are okay, larger values require cancellations
- 2. Define a (scale-dependent) basis that coincides with the directions probed by experiments Davidson+Echenard 2204.00564 - Davidson 2010.00317

$$\Gamma(X) \propto \left| \vec{C}(\Lambda) \cdot \vec{v}_X(\Lambda) \right|$$

In this basis one can identify a 12-dimensional ellipse where models at Λ should sit

Outline

$\mathsf{LFV} \text{ in } \mathsf{EFT}$

Bottom-up EFT for LFV

SMEFT RGEs for LFV

<ロト < 部ト < 臣ト < 臣ト 三日二 少へ(~ 18/27 We want to continue running up towards Λ in SMEFT

Match WET onto SMEFT at m_W : what basis for leptons? Dimension six Yukawas contribute to the mass matrix

$$[m_e]_{\alpha\beta} = v \left([Y_e]_{\alpha\beta} + C_{eH}^{\alpha\beta} \frac{v^2}{\Lambda^2} \right)$$

We stay in the mass-basis for the leptons \Rightarrow Y_e is not diagonal

Upper limits on $h \rightarrow \bar{I}_{\alpha} l_{\beta}$ suggest that the off-diagonal Yukawas can be neglected in the RGEs (within upcoming sensitivities) A+Davidson 2103.07212

- State-of-the-art: one-loop running of dimension six operators Alonso+Jenkins+Manohar+Trott 1308.2627 -1310.4838 - 1312.2014
- some one-loop anomalous dimension of dimension eight Davidson+Gorbahn 1909.07406, Chala+Guedes+... 2205.03301 2106.05291
- +many tools represented at this workshop

Is it enough for LFV?

Vectors-to-dipoles mixing is two-loop at leading order in WET.

Ex: In QCD the leading corrections to the $b\to s\gamma$ dipole due to four-fermion operators are from the 2-loop RGEs

Ciuchini+Franco+Reina+Silvestrini hep-ph/9311357

SMEFT running: two-loops for LFV?

A+Davidson 2103.07212

In SMEFT vector-to-dipole mixing (ex: $\mathcal{O}_{\ell q} = (\bar{\ell}\gamma\ell)(\bar{q}\gamma q)$) can be a second-order one-loop RGE effect

or at two-loop anomalous dimension directly Some calculated Miro+Fernandez... 2112.12131

If $u_i = c$, $\frac{(1)}{(2)} \sim 10^{-3}$. Only for $u_i = t$ the one-loop RGEs dominate

22 / 27

Scalar operators $\mathcal{O}_{\ell edq}^{\alpha\beta ii} = (\bar{\ell}_{\alpha}e_{\beta})(\bar{d}_{i}q_{i})$ can mix with the dipole at two-loop? (leading order because there are no tensors with down quarks at dimension six)

MEGII $(\mu \rightarrow e\gamma)$ could probe scalar coefficients with i = b up to $\Lambda \sim 100$ TeV

4 ロ ト 4 日 ト 4 日 ト 4 日 ト 5 日 9 Q (* 23/27)
23/27

LFV observables can be sensitive to dimension eight amplitudes. With $Br(\mu o e\gamma) \sim 10^{-14}$, experiments could probe

$$C_T^{e\mu au au} \sim 10^{-9}$$

Tensors with leptons are at dimension eight in SMEFT

$$(2\sqrt{2}G_F)^2 C_T^{e\mu\tau\tau} \sim \frac{1}{\Lambda^4} \quad \Rightarrow \quad \Lambda \sim 30 \text{ TeV}$$

A subset of dimension eight operator are interesting (especially those that match onto WET interactions only at dimension eight)

- ▶ Include in the SMEFT↔WET matching these dimension eight operators
- but still misses the SMEFT running...

- $\mu
 ightarrow e$ observables can be sensitive to dimension eight operators
- \blacktriangleright make a $\mu
 ightarrow e$ dimension eight with two insertion of dimension six $au \leftrightarrow \mu$ and $au \leftrightarrow e$

$$\frac{\Delta C_{e\mu}^{[8]}}{\Lambda^4} \sim \frac{C_{\tau\mu}^{[6]}}{\Lambda^2} \frac{C_{e\tau}^{[6]}}{\Lambda^2} \times \frac{\log}{16\pi^2}$$

▶ with the exceptional upcoming sensitivity of $\mu \rightarrow e$, can probe parameter space beyond the reach of direct $\tau \rightarrow l$ ($l = e, \mu$) searches

$$\begin{array}{l} \blacktriangleright \quad \mu \to e : \left| C^{[6]\tau\mu} C^{[6]e\tau} \right| \lesssim B_{\mu \leftrightarrow e} \\ \\ \blacktriangleright \quad \tau \to I : \frac{\left| c^{[6]\tau\mu} \right|^2}{B_{\tau \leftrightarrow \mu}^2} + \frac{\left| c^{[6]e\tau} \right|^2}{B_{\tau \leftrightarrow e}^2} \lesssim 1 \end{array}$$

Hyperbola enters the ellipse if

$$B_{\mu\leftrightarrow e} < 1/2B_{\tau\leftrightarrow e}B_{\tau\leftrightarrow \mu}$$

$\mu A \rightarrow eA \text{ vs } B \rightarrow \tau I$

► The pair $\mathcal{O}_{eq}^{\tau \mu 13} = (\overline{\tau}\gamma\mu)(\overline{q}_1\gamma q_3)$, $\mathcal{O}_{\ell equ(3)} = (\overline{\ell}_e \sigma \tau)(\overline{q}_3 \sigma u)$ mix with a dimension eight scalar with up quarks that contributes to the rate of $\mu A \rightarrow eA$

$$\frac{\Delta C_{S}^{e\mu uu}}{\Lambda^{4}} \sim y_{t}^{2} \frac{C_{eq}^{\tau \mu 13} C_{\ell eq u(3)}^{e\tau 3u}}{16 \pi^{2} \Lambda^{4}} \log$$

26 / 27

The contact interactions C^{τµ13}_{eq}, C^{eτ3u}_{ℓequ(3)} contribute to B⁰_d → μ[±]τ[∓], B⁺ → τ̄ν

Comparison:

current µA → eA
future µA → eA
B decays

Summary

- LFV is New Physics that is expected to occur and the next generation of muon experiments are expected to deliver impressive sensitivities
- If LFV is heavy, EFT parametrisation is a natural choice
- ▶ Including loops in the EFT calculations is interesting because of operator mixing (if ~ any $\mu \rightarrow e$ interactions is mediated by heavy states with masses $\Lambda \lesssim 100$ TeV, we should see it)
- Running from data to a high scale Λ we can identify a region in coefficient space (12-dimensional for $\mu \rightarrow e$) where BSM models must sit
- In SMEFT, the known RGEs for LFV are missing contributions within future sensitivity (selected two-loop anomalous dimension and some dimension eight running)
- The sensitivity of µ → e to the product of µ → τ × τ → e interactions can compete with direct τ → e(µ) searches, probing parameter space beyond their reach.

Summary

- LFV is New Physics that is expected to occur and the next generation of muon experiments are expected to deliver impressive sensitivities
- If LFV is heavy, EFT parametrisation is a natural choice
- ▶ Including loops in the EFT calculations is interesting because of operator mixing (if ~ any $\mu \rightarrow e$ interactions is mediated by heavy states with masses $\Lambda \lesssim 100$ TeV, we should see it)
- Running from data to a high scale Λ we can identify a region in coefficient space (12-dimensional for $\mu \rightarrow e$) where BSM models must sit
- In SMEFT, the known RGEs for LFV are missing contributions within future sensitivity (selected two-loop anomalous dimension and some dimension eight running)
- The sensitivity of µ → e to the product of µ → τ × τ → e interactions can compete with direct τ → e(µ) searches, probing parameter space beyond their reach.

THANK YOU!

WET Basis

$$\begin{split} \mathcal{O}^{ll}_{V,YY} &= (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{l}\gamma_{\alpha}P_{Y}l), \quad \mathcal{O}^{ll}_{V,YX} &= (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{l}\gamma_{\alpha}P_{X}l) \\ \mathcal{O}^{l\tau}_{S,YY} &= (\overline{e}P_{Y}\mu)(\overline{l}P_{Y}l) \qquad \mathcal{O}^{\tau\tau}_{S,YX} &= (\overline{e}P_{Y}\mu)(\overline{\tau}P_{X}\tau) \\ \mathcal{O}^{\tau\tau}_{T,YY} &= (\overline{e}\sigma^{\alpha\beta}P_{Y}\mu)(\overline{\tau}\sigma_{\alpha\beta}P_{Y}\tau) \\ \mathcal{O}^{qq}_{V,YY} &= (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{q}\gamma_{\alpha}P_{Y}q) \qquad, \quad \mathcal{O}^{qq}_{V,YX} &= (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{q}\gamma_{\alpha}P_{X}q) \\ \mathcal{O}^{qq}_{S,YY} &= (\overline{e}P_{Y}\mu)(\overline{q}P_{Y}q) \qquad, \quad \mathcal{O}^{qq}_{S,YX} &= (\overline{e}P_{Y}\mu)(\overline{q}P_{X}q) \\ \mathcal{O}^{qq}_{T,YY} &= (\overline{e}\sigma^{\alpha\beta}P_{Y}\mu)(\overline{q}\sigma_{\alpha\beta}P_{Y}q) \\ \mathcal{O}_{D,L} &= m_{\mu}\overline{e_{R}}\sigma^{\alpha\beta}\mu_{L}F_{\alpha\beta} \qquad m_{\mu}\overline{e_{L}}\sigma^{\alpha\beta}\mu_{R}F_{\alpha\beta} \\ \mathcal{O}_{GG,Y} &= \frac{1}{v}(\overline{e}P_{Y}\mu)G_{\alpha\beta}\partial_{\beta}G^{\alpha\sigma} , \quad \mathcal{O}_{G\bar{G},Y} &= \frac{1}{v}(\overline{e}P_{Y}\mu)G_{\alpha\beta}\partial_{\beta}\widetilde{G}^{\alpha\sigma} \\ \mathcal{O}_{FF,Y} &= \frac{1}{v}(\overline{e}P_{Y}\mu)F_{\alpha\beta}F^{\alpha\beta} , \qquad \mathcal{O}_{F\bar{F},Y} &= \frac{1}{v}(\overline{e}P_{Y}\mu)F_{\alpha\beta}\partial_{\beta}\widetilde{F}_{\alpha\sigma} \\ \mathcal{O}_{FFV,Y} &= \frac{1}{v}(\overline{e}\gamma^{\sigma}P_{Y}\mu)F^{\alpha\beta}\partial_{\beta}F_{\alpha\sigma} , \qquad \mathcal{O}_{F\bar{F}V,Y} &= \frac{1}{v}(\overline{e}\gamma^{\sigma}P_{Y}\mu)F^{\alpha\beta}\partial_{\beta}\widetilde{F}_{\alpha\sigma} \end{split}$$

where $l \in \{e, \mu\}, q \in \{u, d, s, c, b\}$. The operators are added to the Lagrangian as $2\sqrt{2}G_FC_{\Box}\mathcal{O}_{\Box}$

SMEFT dimension six

	$1: X^{3}$		$2:H^6$		$3:H^4D^2$			$5:\psi^2H^3+{\rm h.c.}$		
Q_G	f ^{AB}	${}^{C}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H (E	$(I^{\dagger}H)^3$	2на –	$(H^{\dagger}H)\square(.$	$H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD} ($\left(D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$		Q_{uH}	$(H^\dagger H)(\bar{q}_p u_r \widetilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$								$(H^\dagger H)(\bar{q}_p d_r H)$	
$Q_{\widetilde{W}}$	$Q_{\widetilde{W}} = \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$									
_	$4: X^2 H^2$		6	$6: \psi^2 XH + h.c.$			$7:\psi^2H^2D$			
	Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r)$	$\tau^{I}HW^{I}_{\mu\nu}$	Q	(1) Hl	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}$	$H)(\bar{l}_p\gamma^{\mu}l_r)$	
	$Q_{H\tilde{G}} = H^{\dagger}H \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$		Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$		Q	$Q_{Hl}^{(3)}$ ($(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
	$Q_{HW} = H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu}$		Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$		Q	Q_{He}		$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{e}_p\gamma^\mu e_r)$	
	$Q_{H\widetilde{W}} = H^{\dagger}H \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$		Q_{uW}	$W = (\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$		Q	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
	$Q_{HB} = H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$		Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$		Q	(3) Hq ($H^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
	$Q_{H\widetilde{B}}$	$H^{\dagger}H \tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$d_r)H G^A_{\mu\nu}$ (Hu	$(H^{\dagger}i\overleftrightarrow{D}_{\mu})$	$H)(\bar{u}_p\gamma^{\mu}u_r)$	
	Q_{HWE}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$V = Q_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r)$	$(\tau^{I} H W^{I}_{\mu\nu})$	Q	Hd	$(H^{\dagger}i\overleftarrow{D}_{\mu}$	$H)(\bar{d}_p\gamma^{\mu}d_r)$	
	$Q_{H\widetilde{W}E}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	$V = Q_{dB}$	$(\bar{q}_p \sigma^{\mu\nu} d$	$l_r)H B_{\mu\nu}$	Q_{Hud}	+ h.c.	$i(\tilde{H}^{\dagger}D_{\mu})$	$H)(\bar{u}_p\gamma^{\mu}d_r)$	
	8 ; $(\overline{L}L)(\overline{L}L)$			$8:(\bar{R}R)(\bar{R}R)$			$8:(\bar{L}L)(\bar{R}R)$			
-	Q_{ll}	$(\bar{l}_p \gamma^{\mu} l_r)(\bar{l}_s \gamma_{\mu} l_t)$	Q_{ee}	$(\bar{e}_p \gamma$	$^{\mu}e_{r})(\bar{e}_{s}\gamma_{\mu}e_{t})$) Q	le (l	$(\bar{e}_s \gamma^{\mu} l_r)(\bar{e}_s)$	$\gamma_{\mu}e_t$)	
	$Q_{qq}^{(1)} = (\bar{q}_p \gamma^{\mu} q_r)(\bar{q}_s \gamma_{\mu} q_t)$		Q_m	$Q_{uu} = (\bar{u}_p \gamma^{\mu} u_r)(\bar{u}_s \gamma_{\mu} u$) Q	$Q_{lu} = (\bar{l}_p \gamma^{\mu} l_r)$		$\gamma_{\mu}u_t$)	
	$Q_{qq}^{(3)}$ $(\bar{q}_p \gamma^{\mu} \tau^I q_r)(\bar{q}_s \gamma_{\mu} \tau^I q$		q_t) Q_{da}	$Q_{dd} = (\bar{d}_p \gamma^{\mu} d)$		$d_s \gamma_\mu d_t$) Q_{ld}		$(l_p \gamma^\mu l_r)(d_s \gamma_\mu d_t)$		
	$Q_{lq}^{(1)} = (\bar{l}_p \gamma^{\mu} l_r)(\bar{q}_s \gamma_{\mu} q_t)$		Q_{ei}	$Q_{eu} = (\bar{e}_p \gamma^{\mu} e_r)(\bar{u}_s \gamma_{\mu}$) Q	qe $(\bar{q}$	$_{p}\gamma^{\mu}q_{r})(\bar{e}_{s}\gamma_{\mu}e_{t})$		
	$Q_{lq}^{(3)}$	$(l_p \gamma^\mu \tau^I l_r)(\bar{q}_s \gamma_\mu \tau^I q_s)$	q_t) Q_{ee}	$(\bar{e}_p\gamma)$	$^{\mu}e_{r})(d_{s}\gamma_{\mu}d_{t}$) Q	$q_{u}^{(1)} = (\bar{q}_{u})^{(1)}$	$_{p}\gamma^{\mu}q_{r})(\bar{u}_{t}$	$\gamma_{\mu}u_t$)	
			$Q_{ud}^{(1)}$	$(\bar{u}_p\gamma)$	$^{\mu}u_{r})(\bar{d}_{s}\gamma_{\mu}d_{t}$) Q	$(q_{qu})^{(8)} (\bar{q}_{p}\gamma^{\mu})$	$T^A q_r)(\bar{u}_i$	$\gamma_{\mu}T^{A}u_{t}$	
			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma^{\mu} T)$	$^{4}u_{r})(\tilde{d}_{s}\gamma_{\mu}T)$	$^{A}d_{t}) = Q$	(1) qd (q	$p\gamma^{\mu}q_{r})(\tilde{d}_{s})$	$\gamma_{\mu}d_{t})$	
						Q	$(a)_{qd} (\bar{q}_p \gamma^{\mu})$	$T^A q_r)(\bar{d}_i$	$\gamma_{\mu}T^{A}d_{t})$	
	$8: (\bar{L}R)(\bar{R}L) + h.c.$		8:($8: (\bar{L}R)(\bar{L}R) + h.c.$			8 : (B) + h.c.			
-	Q_{ledq}	$(\bar{l}_{p}^{j}e_{r})(\bar{d}_{s}q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_j$	$k(\bar{q}_s^k d_t)$	Q_{duql}	$\epsilon_{\alpha\beta\gamma}\epsilon_{j}$	$_{k}(d_{p}^{\alpha}Cu_{r}^{\beta})$	$)(q_s^{j\gamma}Cl_t^k)$	
			$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_j$	$k(\bar{q}_s^k T^A d_t)$	Q_{qque}	$\epsilon_{\alpha\beta\gamma}\epsilon_j$	$_{k}(q_{p}^{j\alpha}Cq_{r}^{k})$	$^{\beta})(u_{s}^{\gamma}Ce_{t})$	
			$Q_{lequ}^{(1)}$	$(l_p^j e_r) \epsilon_j$	$k(\bar{q}_{s}^{k}u_{t})$	Q_{qqqt}	$\epsilon_{\alpha\beta\gamma}\epsilon_{mn}\epsilon$	$_{jk}(q_p^{m\alpha}C$	$q_r^{j\beta})(q_s^{k\gamma}Cl_t^n)$	
			$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{ji}$	$_{k}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	Q_{duuc}	$\epsilon_{\alpha\beta\gamma}$	$(d_p^{\alpha}Cu_r^{\beta})$	$(u_s^{\gamma}Ce_t)$	

< 클 ► < 클 ► 클 = ∽ Q (~ 2/3

Dimension eight but not dimension six?

The tensors with down-type quarks and charged leptons match at dimension eight at leading order in the SMEFT:

$$\begin{split} C_{T,RR}^{e\mu\tau\tau} &= \frac{v^2}{\Lambda_{\rm NP}^2} C_{L^2E^2H^2(4)}^{e\mu\tau\tau} \\ C_{T,LL}^{e\mu\tau\tau} &= \frac{v^2}{\Lambda_{\rm NP}^2} C_{L^2E^2H^2(4)}^{\mue\tau\tau*} \\ C_{T,RR}^{e\mu d_n d_n} &= \frac{v^2}{\Lambda_{\rm NP}^2} \sum_j V_{jn} C_{LEQDH^2(5)}^{e\mu jn} \\ C_{T,LL}^{e\mu d_n d_n} &= \frac{v^2}{\Lambda_{\rm NP}^2} \sum_j V_{jn}^* C_{LEQDH^2(5)}^{\muejn*} \end{split}$$

where n = d, s, b and

$$\mathcal{O}_{L^2 E^2 H^2(4)} = (\bar{\ell} H \sigma e) (\bar{\ell} H \sigma e)$$
$$\mathcal{O}_{LEQDH^2(5)} = (\bar{\ell} H \sigma e) (\bar{q} H \sigma d)$$

Otherwise, the dimension eight operators are $\sim dim6 \times (H^{\dagger}H)$