SMEFT-Tools 2022

Zürich, September 16, 2022

A Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models

Jorge de Blas

University of Granada & CERN

Funded by: FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Project P18-FRJ-3735

Introduction

• SMEFT interpretation toolbox:

University of Granada

SMEFT-Tools 2022 Zürich, September 16, 2022

https://github.com/silvest/HEPfit

• Webpage:

http://hepfit.roma1.infn.it

https://github.com/silvest/HEPfit

• Reference: JB et al., Eur. Phys. J. C (2020) 80:456, arXiv: 1910.14012 [hep-ph]

The **HEP**fit code: Publications

Publications using (In reverse chronological order)

- 1. A. J. Buras et al., Global Analysis of Leptophilic Z' bosons, arXiv: 2105.03399 [hep-ph]
- 2. G. Arcadi et al., Systematic approach to B-physics anomalies and t-channel dark matter, arXiv: 2103.15635 [hep-ph]
- 3. A. Crivellin et al., The Fermi constant from muon decay versus electroweak fits and CKM unitarity, arXiv: 2102.02825 hep-ph]
- 4. A. Crivellin et al., Searching for Lepton Flavour (Universality) Violation and Collider Signals from a Singly-Charged Scalar Singlet, Phys. Rev. D 103 (2021) 7, 073002
- 5. O. Eberhardt et al., Global fits in the Aligned Two-Higgs-Doublet model, JHEP 05 (2021) 005
- 6. *M. Ciuchini et al.*, Lessons from the $B^{0,+} \rightarrow K^{*0,+}\mu^+\mu^-$ angular analyses, *Phys.Rev.D* 103 (2021) 1, 015030
- 7. A. Crivellin et al., Combined Explanation of the Z \rightarrow bb Forward-Backward Asymmetry, the Cabibbo Angle Anomaly, $\tau \rightarrow \mu \nu \nu$ and b \rightarrow sll Data, arXiv: 2010.14504 [hep-ph]
- 8. T. Husek et al., Lepton-flavour violation in hadronic tau decays and μ - τ conversion in nuclei, JHEP 01 (2021) 059
- 9. A. Crivellin et al., Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly , JHEP 12 (2020) 166
- 10. L. Alasfar et al., B anomalies under the lens of electroweak precision, JHEP 12 (2020) 016
- 11. B. Capdevila et al., Explaining $b \rightarrow sl^+l^-$ and the Cabibbo Angle Anomaly with a Vector Triplet, Phys.Rev.D 103 (2021) 1, 015032
- 12. M. Endo et al. Muon g 2 and CKM Unitarity in Extra Lepton Models, JHEP 08 (2020) 08, 004
- 13. A. Crivellin et al. , Hadronic vacuum polarization: $(g 2)_{\mu}$ versus global electroweak fits, Phys.Rev.Lett. 125 (2020) 9, 091801
- 14. A. M. Coutinho et al., Global Fit to Modified Neutrino Couplings and the Cabibbo-Angle Anomaly, Phys.Rev.Lett. 125 (2020) 7, 071802
- 15. G. Durieux et al., The electro-weak couplings of the top and bottom quarks global fit and future prospects, arXiv:1907.10619 [hep-ph]
- 16. J. de Blas et al., On the future of Higgs, electroweak and diboson measurements at lepton colliders, JHEP 12 (2019) 117
- 17. D. Bečirević, et al., Lepton Flavor Universality tests through angular observables of B decay modes, arXiv:1907.02257 [hep-ph]
- 18. J. de Blas et. al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139

The HEPfit code: Publications

Publications using (In reverse chronological order)

19. P. Arnan et al., Generic loop effects of new scalars and fermions in $b \rightarrow s \ell \ell$ and a vector-like 4th generation, JHEP 1906 (2019) 118

- 20. M. Ciuchiniet al., New Physics in $b \rightarrow s \ell \ell$ confronts new data on Lepton Universality, Eur. Phys. J. C **79** (2019) no.8, 719
- 21. F. Buccella et al., SU(3)F breaking through final state interactions and CP asymmetries in $D \rightarrow PP$ decays, Phys. Rev. D 99>, no. 11, 113001 (2019)
- 22. P. Azzi et al. [HL-LHC Collaboration and HE-LHC Working Group], Standard Model Physics at the HL-LHC and HE-LHC, arXiv:1902.04070 [hep-ph]
- 23. M. Cepeda et al. [HL/HE WG2 group], Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134 [hep-ph]
- 24. A. Abada et al. [FCC Collaboration], FCC Physics Opportunities : Future Circular Collider Conceptual Design Report Vol. 1, Eur. Phys. J. C 79 (2019) no.6, 474
- 25. O. Eberhardt, Current status of Two-Higgs-Doublet models with a softly broken Z2 symmetry, PoS ICHEP 2018 (2019) 457
- 26. M. Ciuchini et al., Hadronic uncertainties in semileptonic $B \rightarrow K \mu \mu$ decays, PoS BEAUTY 2018 (2018) 044
- 27. E. Kou et al. [Belle-II Collaboration], The Belle II Physics Book, arXiv:1808.10567 [hep-ph]
- 28. L. Cheng, O. Eberhardt and C. W. Murphy, Novel theoretical constraints for color-octet scalar models, Chin. Phys. C 43 (2019) no.9, 093101
- 29. C. W. Chiang, G. Cottin and O. Eberhardt, Global fits in the Georgi-Machacek model, Phys. Rev. D 99 (2019) no.1, 015001
- 30. J. de Blas, O. Eberhardt and C. Krause, Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory, JHEP 1807 (2018) 048
- 31. D. Chowdhury and O. Eberhardt, Update of Global Two-Higgs-Doublet Model Fits, JHEP 1805 (2018) 161
- 32. J. de Blas et al., The Global Electroweak and Higgs Fits in the LHC era, PoS EPS HEP2017 (2017) 467
- 33. S. Gori, C. Grojean, A. Juste and A. Paul, Heavy Higgs Searches: Flavour Matters, JHEP 1801 (2018) 108
- 34. O. Eberhardt, Two-Higgs-doublet model fits with HEPfit, arXiv:1709.09414 [hep-ph]
- 35. M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) no.10, 688
- 36. M. Ciuchini et al., Updates on fits to electroweak parameters, PoS LeptonPhoton 2015 (2016) 013

The HEPfit code: Publications

Publications using (In reverse chronological order)

- 37. J. de Blas et al., Electroweak precision constraints at present and future colliders, PoS ICHEP 2016 (2017) 690
- 38. M. Ciuchini et al., $B \rightarrow K \ell \ell$ in the Standard Model: Elaborations and Interpretations, PoS ICHEP **2016** (2016) 584
- 39. M. Ciuchini et al., The $B \rightarrow K \mu \mu$ decay: A study in the Standard Model Nuovo Cim. C 39 (2016) no.1, 234
- 40. V. Cacchio et al.,, Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft Z2 breaking, JHEP 1611 (2016) 026
- 41. A. Paul and D. M. Straub, Constraints on new physics from radiative B decays, JHEP 1704 (2017) 027
- 42. J. de Blas et al., EW precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 1612 (2016) 135
- 43. L. Reina et al., Precision constraints on non-standard Higgs-boson couplings with HEPfit, PoS EPS HEP2015 (2015) 187
- 44. M. Ciuchini, et al., $B \rightarrow K \ell \ell$ decays at large recoil in the Standard Model: a theoretical reappraisal, JHEP **1606** (2016) 116
- 45. D. Ghosh et al., Extending the Analysis of Electroweak Precision Constraints in Composite Higgs Models, Nucl. Phys. B 914 (2017) 346
- 46. M. Ciuchini et al., Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 1308 (2013) 106

Last updated: May 2021 As of today: Cited in ~90 papers

Outline

- Brief description of the code
- Models and observables
- The dimension-6 SMEFT in HEPfit
- Making it work...
 - Installation
 - Running example
 - Adding models and observables
- Summary

Brief description of the code I/O and capabilities

• Flexible open-source code written in C++

- Flexible open-source code written in C++
- Stand-alone mode to compute observables in the SM & BSM

- Flexible open-source code written in C++
- **Stand-alone mode** to compute observables in the SM & BSM
- Optional **Bayesian Stat. Analysis framework** (supports MPI parall.)

- Flexible open-source code written in C++
- **Stand-alone mode** to compute observables in the SM & BSM
- Optional **Bayesian Stat. Analysis framework** (supports MPI parall.)
- Library mode to compute observables in the SM & BSM

- Flexible open-source code written in C++
- **Stand-alone mode** to compute observables in the SM & BSM
- Optional Bayesian Stat. Analysis framework (supports MPI parall.)
- Library mode to compute observables in the SM & BSM
- Users can add new models and/or observables as external modules

- Input: Model priors ($p(\theta)$) and observable info to build the likelihood ($\mathcal{L}(\theta)$)
- **Output:** Posterior of the fit. Predictions

$$p\left(\theta|D
ight) = rac{p(D|\theta)p(\theta)}{p(D)} = rac{\mathcal{L}(\theta)p(\theta)}{p(D)}$$

The HEPfit code Inputs: Likelihoods

- **Experimental likelihoods** can be currently implemented as:
 - ✓ Individual measurements with "exact" likelihood (Gaussian, ...)
 - ✓ ID or 2D measurements with "numerical" likelihoods (ID or 2D Histograms)
 - ✓ Binned measurements with "exact" likelihood, including correlations
 - ✓ Multi-dimensional measurements with "exact" likelihood, including correlations $\mathcal{L}(\theta) = p \begin{pmatrix} D | M; \theta \\ V = V \end{pmatrix}$
- Work in Progress: Implementing "full" experimental likelihoods from Machine Learning proxies \Rightarrow DNNLikelihoods $\rightarrow \mathcal{L}_{\text{DNN}}(\theta; \nu)$
 - ✓ Experiments could provide full likelihood information via a DNN trained on the real likelihood \Rightarrow This DNN could be used in HEPfit
 - Efficient distribution (lightweight, standard and framework-independent format) across software platforms through ONNX
 Open Neural Network Exchange The open standard or machine learning interoperability
- Any other numeric likelihood scheme can be implemented

The **HEP**fit code Inputs: SYS/TH uncertainties

Treatment of systematic uncertainties:

- Experimental systematic uncertainties implemented as any other uncertainty, including the possibility of correlations
- ✓ The same applies to "intrinsic" theory uncertainties, e.g. unknown higherorder corrections in the predictions of observables
- ✓ Modeling via "nuisance" parameters:
 - Different types of distributions: Flat, Gaussian,...
 - Correlations
- Other internal theory uncertainties can also be taken into account
 - ✓ In-run, by varying e.g. α_S , matching scale, etc.
 - ✓ Post-run, e.g. comparing EFT results with and without including $O(\Lambda^{-4})$ terms

The HEPfit code Output

- The output of the default MCMC run is a numerical approximation to the joint P.D.F. for the model parameters and observables.
- Information provided:
 - ✓ Averages, errors and correlations for inferred parameters
 - ✓ Averages, errors (and correlations) for all (correlated) observables in the fit
 - ✓ ID and 2D histograms of marginal distributions, correlations plots, ...

✓ Optional: full MCMC chains → Useful for combination with more data

• Work in Progress: providing also a DNNLikelihood as output of the HEPfit run

Performance and Limitations

- <u>No limitation</u> in the number of parameters and/or observables that can be defined in the fits
- Largest fit we have performed contains more than 90 parameters and 200 observables. Other fits have been done with several hundreds observables but smaller number of parameters.
- Performance examples:

Physics Problem	Hardware	Run Configuration	Time	
Unitarity Triangle Fit	3 nodes, 120 CPUs	120 chains, 1.4M iterations	00:02:10]←(DD: HH:MM)
Onitantly mangle rit	1 nodes, 40 CPUs	40 chains, 600K iterations	00:00:21	
$b \to s \text{ decays in SMEFT}^{\dagger}$	6 nodes, 240 CPUs	240 chains, 12.5K iterations	02:05:00	
	6 nodes, 240 CPUs	240 chains, 39K iterations	05:20:00	
combination of Higgs signal	1 node, 16 CPUs	16 chains, 5M iterations	00:14:15	
strengths and EWPO	1 node, 16 CPUs	16 chains, 24M iterations	02:08:00	
$D \to PP$ decays and CP	3 nodes, 240 CPUs	240 chains, 4M iterations	00:18:30	
asymmetry	1 node, 8 CPUs	8 chains, 200K iterations	00:00:10	

Tested at the BIRD or Maxwell clusters at DESY, Hamburg

Models and Observables Some Physics Results

The **HEP**fit code: Models and Observables

Some models/observables already available in the code

Observables*

EWPO LEP 2 obs: e⁺e⁻→ff, W⁺W⁻ LHC Higgs observables LHC diboson LHC Top Flavor: AF=2, UT, B decays LFV

Theory constr.: Unitarity, Perturbativity, ...

*Not all observables available for all models

Jorge de Blas University of Granada

• State-of-the-art SM calculation of EWPO (2-loop + leading HO)

	Measurement	Posterior	Prediction	Pull	-3 -2 -1 0 1 2 3
$lpha_s(M_Z)$	$0.1177 {\pm} 0.0010$	$0.1179 {\pm} 0.0009$	$0.1197{\pm}0.0028$	-0.7	
$\Delta lpha_{ m had}^{(5)}(M_Z)$	$0.027611 {\pm} 0.000111$	$0.027572{\pm}0.000106$	$0.027168 {\pm} 0.000355$	1.2	$\alpha_S(M_Z^2)$ (5) (2)
M_Z [GeV]	$91.1875{\pm}0.0021$	$91.1880{\pm}0.0020$	$91.2038{\pm}0.0087$	-1.8	$\Delta lpha_{ m had}^{ m (6)} \left(M_Z^2 ight)$
$m_t \; [{ m GeV}]$	$172.59{\pm}0.45$	$172.76{\pm}0.44$	$175.97{\pm}1.98$	-1.7	$m_t \; [ext{GeV}]$
$m_H \; [{ m GeV}]$	$125.30{\pm}0.13$	$125.30{\pm}0.13$	$112.68{\pm}12.89$	0.98	$m_H \; [\text{GeV}]$
$M_W \; [{ m GeV}]$	$80.379 {\pm} 0.012$	$80.360 {\pm} 0.005$	$80.355 {\pm} 0.006$	1.8	$M_W [\text{GeV}]$
$\Gamma_W \; [{ m GeV}]$	$2.085{\pm}0.042$	$2.0883{\pm}0.0006$	$2.0883 {\pm} 0.0006$	-0.08	M_{Z} [GeV]
$BR_{W \rightarrow had}$	$0.6741{\pm}0.0027$	$0.67486{\pm}0.00007$	$0.67486{\pm}0.00007$	-0.28	Γ_{Z} [GeV]
$\mathrm{BR}_{W \to \ell \nu}$	$0.1086{\pm}0.0009$	$0.10838 {\pm} 0.00002$	$0.10838 {\pm} 0.00002$	0.24	$\sigma_{ m had}^0 \ [m nb]$
$P^{ m pol}_{ au} = A_\ell$	$0.1465{\pm}0.0033$	$0.1473 {\pm} 0.0004$	$0.1473 {\pm} 0.0005$	-0.23	
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	$0.2324{\pm}0.0012$	$0.23149{\pm}0.00006$	$0.23149{\pm}0.00006$	0.91	$A_{FB}^{0,\ell}$
$\Gamma_Z \; [\text{GeV}]$	$2.4955{\pm}0.0023$	$2.4945{\pm}0.0006$	$2.4943{\pm}0.0007$	0.50	A_{ℓ} (SLD)
$\sigma_h^0 \; [{ m nb}]$	$41.4802{\pm}0.0325$	$41.4910{\pm}0.0076$	$41.4930{\pm}0.0080$	-0.38	
R^0_ℓ	$20.7666 {\pm} 0.0247$	$20.750{\pm}0.0080$	$20.7460{\pm}0.0087$	0.79	
$A_{ m FB}^{0,\ell}$	$0.0171 {\pm} 0.0010$	$0.01627{\pm}0.00010$	$0.01626 {\pm} 0.00010$	0.84	
A_{ℓ} (SLD)	$0.1513{\pm}0.0021$	$0.14727{\pm}0.00045$	$0.14731{\pm}0.00047$	1.9	
R_b^0	$0.21629{\pm}0.00066$	$0.21588 {\pm} 0.00010$	$0.21587 {\pm} 0.00010$	0.63	R_{FB}
R_c^{0}	$0.1721 {\pm} 0.0030$	$0.17221 {\pm} 0.00005$	$0.17221 {\pm} 0.00005$	-0.04	
$A_{ m FB}^{0,b}$	$0.0992{\pm}0.0016$	$0.1032{\pm}0.0003$	$0.10327 {\pm} 0.00033105$	-2.5	
$A^{0,c}_{ m FB}$	$0.0707 {\pm} 0.0035$	$0.0738 {\pm} 0.0002$	$0.0738 {\pm} 0.0002$	-0.88	$\sin^2 heta_{ ext{eff}}^\ell(Q_{FB}^{ ext{had}})$
A_b	$0.923{\pm}0.020$	$0.93475{\pm}0.00004$	$0.93475{\pm}0.00004$	-0.59	$\sin^2 heta_{ m eff}^{ m lept} (m Tev/LHC)$
A_c	$0.670 {\pm} 0.027$	$0.6679 {\pm} 0.0002$	$0.6679 {\pm} 0.0002$	0.08	
$\sin^2 heta_{ m eff}^{ m lept}({ m Tev}/{ m LHC})$	$0.23137 {\pm} 0.00022$	$0.23149 {\pm} 0.00006$	$0.23150{\pm}0.00006$	-0.57	HEP fit $Pull = \frac{O_{exp} - O_{th}}{\sigma_{exp}}$

Status of the EW fit before the new CDF measurement of the W mass

SMEFT-Tools 2022 Zürich, September 16, 2022

• State-of-the-art SM calculation of EWPO (2-loop + leading HO)

University of Granada

Zürich, September 16, 2022

SM Flavour observables

- State-of-the-art SM calculation of Flavor observables:
 - Flavor observables: Rare decays, non-leptonic decays, ... Most of them at the highest available precision
 - Example: $B \to K^* \ell \ell$ M. Ciuchini et al., arXiv: 1512.07157 [hep-ph]

- **BSM:** 2HDM with softly broken Z₂ symmetry
- Fits inType I and Type II 2HDM with:
 - ✓ EWPO
 - ✓ Higgs signal strengths
 - ✓ Flavor ($b \rightarrow s\gamma$, B_s mixing)
 - ✓ LHC searches direct searches of neutral and singly charged scalars
 - ✓ Theory constraints:V
 bounded by below,
 Perturbativity

O. Eberhardt, PoS ICHEP2018 (2019) 457

Jorge de Blas University of Granada SMEFT-Tools 2022 Zürich, September 16, 2022

BSM: Direct+Indirect constraints on color-octet scalars: S~(8,2)1/2

	$V_{\rm MW} = m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{1}{2} \lambda \left(\Phi^{\dagger} \Phi \right)^2 + 2m_S^2 \text{Tr} \left(S^{\dagger i} S_i \right) + \mu_1 \text{Tr} \left(S^{\dagger i} S_i S^{\dagger j} S_j \right) + \mu_2 \text{Tr} \left(S^{\dagger i} S_j S^{\dagger j} S_i \right)$
Scalar	$+ \mu_3 \mathrm{Tr}\left(S^{\dagger i}S_i\right) \mathrm{Tr}\left(S^{\dagger j}S_j\right) + \mu_4 \mathrm{Tr}\left(S^{\dagger i}S_j\right) \mathrm{Tr}\left(S^{\dagger j}S_i\right) + \mu_5 \mathrm{Tr}\left(S_i S_j\right) \mathrm{Tr}\left(S^{\dagger i}S^{\dagger j}\right)$
Potential	$+ \mu_{6} \mathrm{Tr} \left(S_{i} S_{j} S^{\dagger j} S^{\dagger i} \right) + \nu_{1} \Phi^{\dagger i} \Phi_{i} \mathrm{Tr} \left(S^{\dagger j} S_{j} \right) + \nu_{2} \Phi^{\dagger i} \Phi_{j} \mathrm{Tr} \left(S^{\dagger j} S_{i} \right)$
	$+ \left[\nu_3 \Phi^{\dagger i} \Phi^{\dagger j} \operatorname{Tr}\left(S_i S_j\right) + \nu_4 \Phi^{\dagger i} \operatorname{Tr}\left(S^{\dagger j} S_j S_i\right) + \nu_5 \Phi^{\dagger i} \operatorname{Tr}\left(S^{\dagger j} S_i S_j\right) + \text{h.c.}\right], (2.1)$
Yukawa	$\mathcal{L}_Y \supset -\sum_{i,j=1}^3 \left[\eta_D Y_{ij}^d \bar{Q}_{L_i} S d_{R_j} + \eta_U Y_{ij}^u \bar{Q}_{L_i} \tilde{S} u_{R_j} + \text{h.c.} \right]$

- Fits in a CP conserving and MFV scenario (14 parameters) including:
 ✓ EWPO
 - ✓ Higgs signal strengths
 - ✓ Flavor (impact on the CKM fit)
 - ✓ ATLAS and CMS direct searches of heavy particles decaying into gluons and quarks
 - ✓ Theory constraints: Unitarity, Perturbativity

O. Eberhardt, V. Miralles, A. Pich, JHEP 10 (2021) 123

• **BSM:** Direct+Indirect constraints on color-octet scalars: S~(8,2)_{1/2}

Quartic couplings of the scalar potential

O. Eberhardt, V. Miralles, A. Pich, JHEP 10 (2021) 123

Jorge de Blas University of Granada

The dimension-6 SMEFT

The dimension-6 SMEFT in HEPfit

 Implementation in HEPfit via model class NPSMEFTd6 (separate results for LHC Top physics in NPSMEFT6dtopquark)

The dimension-6 SMEFT in HEPfit

The dimension-6 SMEFT

Implementation of model for the Warsaw basis with flavor universality almost completed Operator Notation Operator Notation

	NT 4 4		NT / / ·	$\left(\phi^{\dagger}\phi ight)\Box\left(\phi^{\dagger}\phi ight)$	$\mathcal{O}_{\phi\square}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	\mathcal{O}_{ϕ}
Operator	Notation	Operator	Notation	$\left(\phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{} \phi\right) \left(\overline{l_{I}} \gamma^{\mu} l_{I}\right)$	$\mathcal{O}_{\mu}^{(1)}$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}{}^{a}\phi\right)\left(\overline{l_{I}}\gamma^{\mu}\sigma_{a}l_{I}\right)$	$\mathcal{O}_{\mu}^{(3)}$
$ \begin{array}{l} \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{l_L}\gamma^{\mu}l_L\right) \\ \left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right) \\ \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right) \end{array} $	$egin{aligned} \mathcal{O}_{ll}^{(1)} \ \mathcal{O}_{qq}^{(1)} \ \mathcal{O}_{lq}^{(1)} \end{aligned}$	$ \begin{array}{l} \left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{q_L}\gamma^{\mu}T_Aq_L\right) \\ \left(\overline{l_L}\gamma_{\mu}\sigma_al_L\right)\left(\overline{q_L}\gamma^{\mu}\sigma_aq_L\right) \end{array} $	$\mathcal{O}_{qq}^{(8)} \ \mathcal{O}_{lq}^{(3)}$	$ \begin{pmatrix} \varphi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \phi \end{pmatrix} (\overline{e_{R}} \gamma^{\mu} e_{R}) \\ \begin{pmatrix} \phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \phi \end{pmatrix} (\overline{q_{L}} \gamma^{\mu} q_{L}) $	$egin{aligned} &\mathcal{O}_{\phi e}^{(1)} \ &\mathcal{O}_{\phi q}^{(1)} \end{aligned}$	$ \left(\phi^{\dagger} i \overset{\leftrightarrow}{D}{}_{\mu}^{a} \phi \right) \left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L} \right) $	${\cal O}_{\phi q}^{(3)}$
$\frac{(\overline{e_R}\gamma_{\mu}e_R)(\overline{e_R}\gamma^{\mu}e_R)}{(\overline{u_R}\gamma_{\mu}u_R)(\overline{u_R}\gamma^{\mu}u_R)}$	$\mathcal{O}_{ee} \ \mathcal{O}_{uu}^{(1)}$	$\left(\overline{d_R}\gamma_\mu d_R\right)\left(\overline{d_R}\gamma^\mu d_R\right)$	$\mathcal{O}_{dd}^{(1)}$	$\frac{\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{u_{R}}\gamma^{\mu}u_{R}\right)}{\left(\phi^{T}i\sigma_{2}iD_{\mu}\phi\right)\left(\overline{u_{R}}\gamma^{\mu}d_{R}\right)}$	$\mathcal{O}_{\phi u}^{(1)} \ \mathcal{O}_{\phi u d}$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi ight)\left(\overline{d_{R}}\gamma^{\mu}d_{R} ight)$	$\mathcal{O}_{\phi d}^{(1)}$
$ \begin{array}{c} \left(\overline{u_R}\gamma_{\mu}u_R\right)\left(\overline{d_R}\gamma^{\mu}d_R\right) \\ \left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{u_R}\gamma^{\mu}u_R\right) \end{array} $	$\mathcal{O}_{ud}^{(1)} \ \mathcal{O}_{eu}$	$ \begin{array}{c} (\overline{u_R}\gamma_{\mu}T_Au_R) \left(\overline{d_R}\gamma^{\mu}T_Ad_R\right) \\ (\overline{e_R}\gamma_{\mu}e_R) \left(\overline{d_R}\gamma^{\mu}d_R\right) \end{array} $	$\mathcal{O}_{ud}^{(8)} \ \mathcal{O}_{ed}$	$ \begin{array}{c} \left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\phi B_{\mu\nu} \\ \left(\overline{q_L}\sigma^{\mu\nu}u_R\right)\tilde{\phi} B_{\mu\nu} \\ \left(\overline{q_L}\sigma^{\mu\nu}d_R\right)\phi B \end{array} $	$\mathcal{O}_{eB} \ \mathcal{O}_{uB} \ \mathcal{O}_{uB}$	$ \begin{array}{l} \left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\sigma^a\phi W^a_{\mu\nu} \\ \left(\overline{q_L}\sigma^{\mu\nu}u_R\right)\sigma^a\tilde{\phi}W^a_{\mu\nu} \\ \left(\overline{a_L}\sigma^{\mu\nu}d_R\right)\sigma^a\phi W^a \end{array} $	$egin{array}{llllllllllllllllllllllllllllllllllll$
$\left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{le}	$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{qe}	$ (\overline{q_L} \sigma^{\mu\nu} \lambda^A u_R) \tilde{\phi} G^A_{\mu\nu} $	${\cal O}_{uG}$	$ \left(\overline{q_L} \sigma^{\mu\nu} \lambda^A d_R \right) \phi G^A_{\mu\nu} $	${\cal O}_{dG}$
$ \begin{array}{l} \left(l_L \gamma_\mu l_L \right) \left(u_R \gamma^\mu u_R \right) \\ \left(\overline{q_L} \gamma_\mu q_L \right) \left(\overline{u_R} \gamma^\mu u_R \right) \\ \left(\overline{q_L} \gamma_\mu q_L \right) \left(\overline{d_R} \gamma^\mu d_R \right) \end{array} $	$\mathcal{O}_{lu} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qd}^{(1)}$	$ \begin{array}{l} (l_L \gamma_\mu l_L) \left(d_R \gamma^\mu d_R \right) \\ (\overline{q_L} \gamma_\mu T_A q_L) \left(\overline{u_R} \gamma^\mu T_A u_R \right) \\ (\overline{q_L} \gamma_\mu T_A q_L) \left(\overline{d_R} \gamma^\mu T_A d_R \right) \end{array} $	$\mathcal{O}_{ld} \ \mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qd}^{(8)}$	$egin{aligned} \left(\phi^{\dagger}\phi ight)\left(\overline{l_{L}}\phie_{R} ight) \ \left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}} ilde{\phi}u_{R} ight) \end{aligned}$	${\cal O}_{e\phi} \ {\cal O}_{u\phi}$	$\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}}\phid_{R} ight)$	$\mathcal{O}_{d\phi}$
$\frac{\left(\overline{l_L}e_R\right)\left(\overline{d_R}q_L\right)}{\left(\overline{q_L}u_R\right)i\sigma_2\left(\overline{q_L}d_R\right)^{\mathrm{T}}}$	\mathcal{O}_{ledq} $\mathcal{O}_{aud}^{(1)}$	$\left(\overline{q_L}T_A u_R\right) i\sigma_2 \left(\overline{q_L}T_A d_R\right)^{\mathrm{T}}$	$\mathcal{O}^{(8)}_{aud}$	$ \begin{pmatrix} \phi^{\dagger} D_{\mu} \phi \end{pmatrix} \left(\left(D^{\mu} \phi \right)^{\dagger} \phi \right) \\ \phi^{\dagger} \phi \ B_{\mu\nu} B^{\mu\nu} \\ \phi^{\dagger} \phi \ W^{a} \ W^{a} \ W^{a} \mu\nu $	$\mathcal{O}_{\phi D} \ \mathcal{O}_{\phi B} \ \mathcal{O}_{\phi m}$	$\phi^{\dagger}\phi \; \widetilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi \widetilde{B}}$
$\left(\overline{l_L}e_R\right)i\sigma_2\left(\overline{q_L}u_R\right)^{\mathrm{T}}$	$\mathcal{O}_{lequ}^{^{1-1}}$	$\left(\overline{l_L}u_R\right)i\sigma_2\left(\overline{q_L}e_R\right)^{\mathrm{T}}$	$\mathcal{O}_{qelu}^{r=r}$	$ \begin{array}{c} \phi \ \phi \ w \ _{\mu \nu} w \\ \phi^{\dagger} \sigma_{a} \phi \ W^{a}_{\mu \nu} B^{\mu \nu} \\ \phi^{\dagger} \phi \ G^{A}_{\mu \nu} G^{A \ \mu \nu} \end{array} $	$\mathcal{O}_{\phi W} \ \mathcal{O}_{WB} \ \mathcal{O}_{\phi G}$	$\phi^{\dagger}\phi^{}\widetilde{w}_{\mu u}^{\mu u}\widetilde{w}^{\dagger}$ $\phi^{\dagger}\sigma_{a}\phi^{}\widetilde{W}^{a}_{\mu u}B^{\mu u}$ $\phi^{\dagger}\phi^{}\widetilde{G}^{A}_{\mu u}G^{A}_{\mu u}$	$\mathcal{O}_{\phi W} \ \mathcal{O}_{\widetilde{W}B} \ \mathcal{O}_{\phi \widetilde{G}}$
				$ \begin{aligned} \varepsilon_{abc} W^{a \ \nu}_{\mu} W^{b \ \rho}_{\nu} W^{c \ \mu}_{\rho} \\ f_{ABC} G^{A \ \nu}_{\mu} G^{B \ \rho}_{\nu} G^{C \ \mu}_{\rho} \end{aligned} $	$\mathcal{O}_W \ \mathcal{O}_G$	$ \overline{\varepsilon_{abc}} \widetilde{W}^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho} f_{ABC} \widetilde{G}^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho} $	$\mathcal{O}_{\widetilde{W}} \ \mathcal{O}_{\widetilde{G}}$

Jorge de Blas **University of Granada**

The dimension-6 SMEFT in **HEP**fit

The dimension-6 SMEFT

Implementation of model for the Warsaw basis with flavor universality almost completed

	Label	LaTeX symbol	Description	СНи	$(C_{Hu})_{ii}$	The coefficient of the operator $(\mathcal{O}_{Hu})_{ii}=iig(H^\dagger \overset{\leftrightarrow}{D}_\mu Hig)ig(\overline{U^i}\gamma^\mu U^iig)$ (flavor universal).	
Ļ	CG	CG	The coefficient of the operator $\mathcal{O}_G = f_{ABC} G^{A u}_\mu G^{B ho}_ u W^{C\mu}_ ho$.	СНФ	(C _{Hd})ü	The coefficient of the operator $(\mathcal{O}_{Hd})_{ii}=i(H^{\dagger}\overleftrightarrow{D}_{\mu}H)(\overline{D^{i}}\gamma^{\mu}D^{i})$ (flavor universal).	
L	cw	Cw	The coefficient of the operator $\mathcal{O}_W = arepsilon_{abc} W^{a u}_\mu W^{b ho}_ u W^{b\mu}_ ho$.			The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{H_{ud}})_{ii} = i(\widetilde{H}^{\dagger}D_{u}H)(\overline{U^{i}}\gamma^{\mu}D^{i})$	
	C2B	C _{2B}	The coefficient of the operator $\mathcal{O}_{2B}=rac{1}{2}(\partial_{ ho}B_{\mu m m u})^2$. (Implemented via EOM.)	CHud_r, CHud_i	$\operatorname{Re}[(C_{Hud})_{ii}], \operatorname{Im}[(C_{Hud})_{ii}]$	(flavor universal).	
	C2W	C2W	The coefficient of the operator $\mathcal{O}_{2W}=rac{1}{2}(D_ ho W^a_{\mu u})^2$. (Implemented via EOM.)		$\mathbf{Pe}[(C, \mathbf{r})_{\mathbf{r}}] \mathbf{Im}[(C, \mathbf{r})_{\mathbf{r}}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{eH})_{jj}=ig(H^\dagger Hig)ig(\overline{L^j}HE^jig)$ (flavor	
	C2BS	C_{2B}^{SILH}	The coefficient of the SILH operator $\mathcal{O}_{2B}^{SILH} = rac{1}{2} (\partial^{\mu} B_{\mu\nu}) (\partial_{\rho} B^{\rho\nu})$. (Implemented via EOM.)	Сен_јјг, Сен_јјг		universal).	
	C2WS	C_{2W}^{SILH}	The coefficient of the operator $\mathcal{O}^{SILH}_{2W}=rac{1}{2}(D_{\mu}W^{a\mu u})(D^{ ho}W^a_{ ho\mu}).$ (Implemented via EOM.)	CuH jjr, CuH jji	$\operatorname{Re}[(C_{uH})_{jj}], \operatorname{Im}[(C_{uH})_{jj}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uH})_{jj}=ig(H^\dagger Hig)ig(\overline{Q^j}\widetilde{H}U^jig)$ (flavor	
	СНС	C_{HG}	The coefficient of the operator $\mathcal{O}_{HG}=ig(H^{\dagger}Hig)G^{A\mu u}_{\mu u}G^{A\mu u}.$			universal).	
	СНЖ	C _{HW}	The coefficient of the operator $\mathcal{O}_{HW}=ig(H^\dagger Hig)W^a_{\mu u}W^{a\mu u}.$	CdH_jjr, CdH_jji	$\operatorname{Re}[(C_{dH})_{jj}],\operatorname{Im}[(C_{dH})_{jj}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{dH})_{jj}=ig(H^\dagger Hig)ig(\overline{Q^j}HD^jig)$ (flavor	
L	СНВ	C_{HB}	The coefficient of the operator $\mathcal{O}_{HB}=ig(H^\dagger Hig)B_{\mu u}B^{\mu u}.$				
	CDHB	C _{DHB}	The coefficient of the operator $\mathcal{O}_{DHB}=iig(D^\mu H^\dagger D^ u Hig)B_{\mu u}.$	CuG_klr, CuG_kli	$\operatorname{Re}[(C_{uG})_{kl}],\operatorname{Im}[(C_{uG})_{kl}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uG})_{ij} = (Q^i \sigma^{\mu\nu} T_A U^j) H G^A_{\mu\nu}$, for $i, j = 1, 2, 3$.	
	CDHW	CDHW	The coefficient of the operator ${\cal O}_{DHW}=iig(D^\mu H^\dagger\sigma^a D^ u Hig)W^a_{\mu u}.$	CuW kir		The real and imaginant parts of the coefficient of the operator $(\mathcal{O}, w)_{ij} = (\overline{\mathcal{O}}_{ij} = \mathcal{W}_{\mathcal{F}}, U^{j}) \widetilde{\mathcal{H}} W^{4}$ for	
	CDB	C_{DB}	The coefficient of the operator $\mathcal{O}_{DB}=rac{i}{2}ig(H^{\dagger}\overset{\leftrightarrow\mu}{D}Hig)\partial^{m{ u}}B_{\mum{ u}}.$ (Implemented via EOM.)	CuW_kli	$\operatorname{Re}[(C_{uW})_{kl}], \operatorname{Im}[(C_{uW})_{kl}]$	i, j = 1, 2, 3.	
	CDW	C _{DW}	The coefficient of the operator $\mathcal{O}_{DW} = \frac{i}{2} (H^{\dagger} D^{\bullet \mu} H) D^{\nu} W^a_{\mu\nu}$. (Implemented via EOM.)	CuB_klr, CuB_kli	$\operatorname{Re}[(C_{uB})_{kl}],\operatorname{Im}[(C_{uB})_{kl}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uB})_{ij}=(\overline{Q^i}\sigma^{\mu u}U^j)\widetilde{H}B_{\mu u}$, for $i,j=1,2,3$.	
Ļ	CWB	Cwb	The coefficient of the operator $\mathcal{O}_{HWB} = (H^\dagger \sigma^a H) W^a_{\mu u} B^{\mu u}.$	CII	(C11)1991 9119	The coefficient of the operator $(2\pi)_{ij} = (\overline{L^i} \otimes^{\mu} L^j) (\overline{L^k} \otimes L^l)$ for $iihl = 1991, 9119$	
	CHD	C_{HD}	The coefficient of the operator $\mathcal{O}_{HD} = \left H^\dagger D_\mu H ight ^2.$		(° LL)1221,2112	$(\pi^{(1)}) = (\pi^{(1)}) + (\pi^{$	
	ст	C_T	The coefficient of the operator $\mathcal{O}_T = rac{1}{2} ig(H^\dagger \stackrel{\leftrightarrow}{D}_\mu H ig)^2$.	CLQ1	$C_{LQ}^{(2)}$	The coefficient of the operator $(\mathcal{O}_{LQ}^{*})_{ijkl} = (L^{i} \gamma^{\mu} L^{j}) (Q^{\kappa} \gamma_{\mu} Q^{*}).$	
F	CHbox	$C_{H\square}$	The coefficient of the operator $\mathcal{O}_{H\square}=(H^{\dagger}H)\square(H^{\dagger}H).$	CLQ3		The coefficient of the operator $(\mathcal{O}_{LQ}^{(3)})_{ijkl} = (L^i \gamma^\mu \sigma_a L^j) (Q^k \gamma_\mu \sigma_a Q^l).$	
F	СН		The coefficient of the operator $\mathcal{O}_{H} = \left(H^{\dagger}H ight)^{3}.$	Cee	C_{EE}	The coefficient of the operator $(\mathcal{O}_{EE})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{E^k}\gamma_\mu E^lig).$	
F	CHL1	$(C_{HI}^{(1)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{ij}^{(i)})_{ii} = i(H^{\dagger} \overleftrightarrow{D}_{ii} H)(\overline{L^{i}} \gamma^{\mu} L^{i})$ (flavor universal).	Ceu		The coefficient of the operator $(\mathcal{O}_{EU})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{U^k}\gamma_\mu U^lig).$	
F	СНІЗ	(C ⁽³⁾)	The set of the second $(\mathcal{O}_{HL}^{(3)}) = i(\mathcal{H}_{L}^{(3)}) \cap (\mathcal{O}_{HL}^{(3)}) \cap (\mathcal$	Ced	C_{ED}	The coefficient of the operator $(\mathcal{O}_{ED})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{D^k}\gamma_\mu D^lig).$	
F	01120	(C _{HL}) _n	The coefficient of the operator $(O_{HL})_{HL} = i(\Pi^* D_{\mu} \Pi) (L^* \gamma^* \sigma^* L)$ (navor universal).	CLe	C_{LE}	The coefficient of the operator $(\mathcal{O}_{LE})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{E^k}\gamma_\mu E^lig).$	
F	СНе		The coefficient of the operator $(\mathcal{O}_{He})_{ij} = i(H^{+}\mathcal{D}_{\mu}H)(E^{*}\gamma^{\mu}E^{*})$ (flavor universal).	CLu	C _{LU}	The coefficient of the operator $(\mathcal{O}_{LU})_{ijkl} = (\overline{L^i}\gamma^\mu L^j)(\overline{U^k}\gamma_\mu U^l).$	
	CHQ1	$(C_{HQ}^{(1)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HQ}^{(1)})_{ii} = i \left(H^{\dagger} D_{\mu} H\right) \left(Q^{i} \gamma^{\mu} Q^{i}\right)$ (flavor universal).	CLd	C _{LD}	The coefficient of the operator $(\mathcal{O}_{LD})_{ijkl} = (\overline{L^i} \gamma^\mu L^j) (\overline{D^k} \gamma_\mu D^l).$	
	СНQЗ	$(C_{HQ}^{(3)})_{ii}$	The coefficient of the operator $({\cal O}_{HQ}^{(3)})_{ii}=iig(H^\dagger \overleftrightarrow{D^a_\mu} Hig)ig(\overline{Q^i}\gamma^\mu\sigma^aQ^iig)$ (flavor universal).	CQe	C _{QE}	The coefficient of the operator $(\mathcal{O}_{QE})_{ijkl} = ig(\overline{Q^i} \ \gamma^\mu Q^jig)ig(\overline{E^k} \ \gamma_\mu E^lig).$	

The dimension-6 SMEFT in HEPfit

• The dimension-6 SMEFT

$$egin{aligned} \mathcal{L}_{\mathrm{UV}}(?) & \longrightarrow & \mathcal{L}_{\mathrm{Eff}} = \sum_{d=4}^\infty rac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda} \mathcal{L}_5 + rac{1}{\Lambda^2} \mathcal{L}_6 + \cdots \ & E \ll \Lambda & \mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i & \left[\mathcal{O}_i
ight] = d & \longrightarrow & \left(rac{q}{\Lambda}
ight)^{d-4} \end{aligned}$$

 Implementation of model for the Warsaw basis with flavor universality almost completed (+ other redundant, in case you prefer other operator basis)

[Label	LaTeX symbol	Description
	CG	C_G	The coefficient of the operator $\mathcal{O}_G=f_{ABC}G^{A u}_\mu G^{B ho}_ u W^{C\mu}_ ho$.
	CW	Cw	The coefficient of the operator $\mathcal{O}_W = arepsilon_{abc} W^{a u}_\mu W^{b ho}_ u W^{b \mu}_ ho W^{b \mu}_ ho$.
	C2B	C_{2B}	The coefficient of the operator $\mathcal{O}_{2B}=rac{1}{2}(\partial_ ho B_{\mu u})^2$. (Implemented via EOML ,
	C2W	C_{2W}	The coefficient of the operator $\mathcal{O}_{2W}=rac{1}{2}(D_ ho W^a_{\mu u})^2$. (Implemented via EOM.)
	C2BS	C_{2B}^{SILH}	The coefficient of the SILH operator $\mathcal{O}_{2B}^{SILH}=rac{1}{2}(\partial^{\mu}B_{\mu u})(\partial_{ ho}B^{ ho u}).$ (Implemented via EOM.)
	UZ NIC	C_{2W}^{SILH}	The coefficient of the operator $\mathcal{O}_{2W}^{SILH}=rac{1}{2}(D_{\mu}W^{a\mu u})(D^{ ho}W^a_{ ho u}).$ (Implemented via Form,
	СНС	C_{HG}	The coefficient of the operator ${\cal O}_{HG}=(H^{+}H)G^{A}_{\mu u}G^{A\mu u}.$
	снw	C _{HW}	The coefficient of the operator $\mathcal{O}_{HW}=ig(H^\dagger Hig)W^a_{\mu u}W^{a\mu u}.$
	СНВ	C_{HB}	The coefficient of the operator $\mathcal{O}_{HB}=ig(H^\dagger Hig)B_{\mu u}B^{\mu u}.$
	CDHB	C_{DHB}	The coefficient of the operator $\mathcal{O}_{DHB}=iig(D^\mu H^\dagger D^ u Hig)B_{\mu u}.$
	CDHW	C_{DHW}	The coefficient of the operator $\mathcal{O}_{DHW}=iig(D^\mu H^\dagger\sigma^a D^ u Hig)W^a_{\mu u}.$
	CDB	C_{DB}	The coefficient of the operator $\mathcal{O}_{DB}=rac{i}{2}ig(H^\dagger \stackrel{\leftrightarrow\mu}{D} Hig)\partial^{ u}B_{\mu u}.$ (Implemented via EOM.)
	CDW	C_{DW}	The coefficient of the operator $\mathcal{O}_{DW}=rac{i}{2}ig(H^\dagger D^{a\mu}Hig)D^{ u}W^a_{\mu u}$. (Implemented via EOM.)
	CWB	Curp	The coefficient of the operator $\mathcal{O}_{HWB} = (H^\dagger \sigma^a H) W^a_a$. But
	CHD	C_{HD}	The coefficient of the operator $\mathcal{O}_{HD} = \left H^\dagger D_\mu H ight ^2.$
	СТ	C_T	The coefficient of the operator $\mathcal{O}_T = rac{1}{2} ig(H^\dagger \overleftrightarrow{D}_\mu H ig)^2.$
	СНЬох	$C_{H\square}$	The coefficient of the operator $\mathcal{O}_{H\square} = (H^\dagger H) \square (H^\dagger H).$
	СН	C_H	The coefficient of the operator $\mathcal{O}_{H}=ig(H^{\dagger}Hig)^{3}.$
	CHL1	$(C_{HL}^{(1)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HL}^{(1)})_{ii} = i \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) (\overline{L^{i}} \gamma^{\mu} L^{i})$ (flavor universal).
	CHL3	$(C_{HL}^{(3)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HL}^{(3)})_{ii} = i \left(H^{\dagger} D^{\leftrightarrow}_{\mu} H\right) (\overline{L^{i}} \gamma^{\mu} \sigma^{a} L^{i})$ (flavor universal).
	СНе	$(C_{He})_{ii}$	The coefficient of the operator $(\mathcal{O}_{He})_{ij}=iig(H^\dagger \overleftrightarrow{D}_\mu Hig)ig(\overline{E^i}\gamma^\mu E^iig)$ (flavor universal).
	CHQ1	$(C_{HQ}^{(1)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HQ}^{(1)})_{ii} = i \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) (\overline{Q^{i}} \gamma^{\mu} Q^{i})$ (flavor universal).
	СНQЗ	$(C_{HQ}^{(3)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HQ}^{(3)})_{ii} = i \left(H^{\dagger} \overset{\leftrightarrow}{D^{a}_{\mu}} H \right) \left(\overline{Q^{i}} \gamma^{\mu} \sigma^{a} Q^{i} \right)$ (flavor universal).

CHu	$(C_{Hu})_{ii}$	The coefficient of the operator $(\mathcal{O}_{Hu})_{ii}=iig(H^\dagger \overset{\leftrightarrow}{D}_\mu Hig)ig(\overline{U^i}\gamma^\mu U^iig)$ (flavor universal).
CHd	$(C_{Hd})_{ii}$	The coefficient of the operator $(\mathcal{O}_{Hd})_{ii}=iig(H^\dagger \overset{\leftrightarrow}{D}_\mu Hig)ig(\overline{D^i}\gamma^\mu D^iig)$ (flavor universal).
CHud_r, CHud_i	$\mathrm{Re}ig[(C_{Hud})_{ii}ig],\mathrm{Im}ig[(C_{Hud})_{ii}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{Hud})_{ii} = i (\widetilde{H}^{\dagger} D_{\mu} H) (\overline{U^i} \gamma^{\mu} D^i)$ (flavor universal).
CeH_jjr, CeH_jji	$\mathrm{Re}ig[(C_{eH})_{jj}ig],\mathrm{Im}ig[(C_{eH})_{jj}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{eH})_{jj}=ig(H^\dagger Hig)ig(\overline{L^j}HE^jig)$ (flavor universal).
CuH_jjr, CuH_jji	$\operatorname{Re}ig[(C_{uH})_{jj}ig],\operatorname{Im}ig[(C_{uH})_{jj}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uH})_{jj}=ig(H^\dagger Hig)ig(\overline{Q^j}\widetilde{H}U^jig)$ (flavor universal).
CdH_jjr, CdH_jji	$\mathrm{Re}ig[(C_{dH})_{jj}ig],\mathrm{Im}ig[(C_{dH})_{jj}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{dH})_{jj}=ig(H^\dagger Hig)ig(\overline{Q^j}HD^jig)$ (flavor universal).
CuG_klr, CuG_kli	$\operatorname{Re}[(C_{uG})_{kl}],\operatorname{Im}[(C_{uG})_{kl}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uG})_{ij} = (\overline{Q^i}\sigma^{\mu\nu}T_A U^j)\widetilde{H}G^A_{\mu\nu}$, for $i,j=1,2,3$.
CuW_klr, CuW_kli	$\operatorname{Re}[(C_{uW})_{kl}],\operatorname{Im}[(C_{uW})_{kl}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uW})_{ij} = (\overline{Q^i}\sigma^{\mu\nu}\sigma_a U^j)\widetilde{H}W^a_{\mu\nu}$, for $i,j=1,2,3$.
CuB_klr, CuB_kli	$\operatorname{Re}[(C_{uB})_{kl}],\operatorname{Im}[(C_{uB})_{kl}]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uB})_{ij}=(\overline{Q^i}\sigma^{\mu u}U^j)\widetilde{H}B_{\mu u}$, for $i,j=1,2,3$.
CLL	$(C_{LL})_{1221,2112}$	The coefficient of the operator $(\mathcal{O}_{LL})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{L^k}\gamma_\mu L^lig)$, for $ijkl=1221,2112.$
CLQ1	$C_{LQ}^{(1)}$	The coefficient of the operator $(\mathcal{O}_{LQ}^{(1)})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{Q^k}\gamma_\mu Q^lig).$
CLQ3	$C_{LQ}^{(3)}$	The coefficient of the operator $({\cal O}^{(3)}_{LQ})_{ijkl}=ig(\overline{L^i}\gamma^\mu\sigma_a L^jig)ig(\overline{Q^k}\gamma_\mu\sigma_a Q^lig).$
Cee	C_{EE}	The coefficient of the operator $(\mathcal{O}_{EE})_{ijkl} = ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{E^k}\gamma_\mu E^lig).$
Ceu	C_{EU}	The coefficient of the operator $(\mathcal{O}_{E\!U})_{ijkl} = ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{U^k}\gamma_\mu U^lig).$
Ced	C_{ED}	The coefficient of the operator $(\mathcal{O}_{ED})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{D^k}\gamma_\mu D^lig).$
CLe	C_{LE}	The coefficient of the operator $(\mathcal{O}_{LE})_{ijkl} = ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{E^k}\gamma_\mu E^lig).$
CLu	C_{LU}	The coefficient of the operator $(\mathcal{O}_{LU})_{ijkl} = ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{U^k}\gamma_\mu U^lig).$
CLd	C_{LD}	The coefficient of the operator $(\mathcal{O}_{LD})_{ijkl} = ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{D^k}\gamma_\mu D^lig).$
CQe	C_{QE}	The coefficient of the operator $(\mathcal{O}_{QE})_{ijkl} = ig(\overline{Q^i}\gamma^\mu Q^jig)ig(\overline{E^k}\gamma_\mu E^lig).$

Jorge de Blas University of Granada

Observables implemented in the dim-6 SMEFT

• Electroweak precision observables (LEP/SLD and LHC):

Z-pole obs.
(SLD/LEP)
$$M_Z, \ \Gamma_Z, \ \sigma_{had}^0, \ \sin^2 \theta_{Eff}^{lept}, \ P_{\tau}^{pol}, \ A_f, \ A_{FB}^{0,f}, \ R_f^0$$
W obs.
(LEP2, Tevatron,
LHC)Hadron colliders $M_W, \ \Gamma_W$ m_t

- ✓ Computed to the highest accuracy in the SM. Compared against ZFITTER and updated with latest developments.
- ✓ Computed analytically at LO in the dimension-6 SMEFT

NLO: S. Dawson, P.P. Giardino, PRD 101 (2020) 1, 013001, PRD 105 (2022) 7, 073006
 PRD 97 (2018) 9, 093003 & PRD 98 (2018) 9, 09005

• Diboson production at LEP2 $e^+e^- \rightarrow W^-W^+$:

✓ Implemented following L. Berthier, M. Bjorn, M. Trott ., JHEP 09 (2016) 157

Jorge de Blas University of Granada

Observables implemented in the dim-6 SMEFT

• LHC observables

- Included from available studies in the literature
 - Diboson production at the LHC: $pp \rightarrow WW$, WZ (and WH, ZH)

J. Baglio, S. Dawson, I. Lewis, PRD 99 (2019) 3, 035029

J. Baglio, S. Dawson, S. Homiller, PRD 100 (2019) 11, 113010

0.1

0.0

 $C_{\rm HWB}$

0.2

J. Baglio et al. , PRD 101 (2020) 11, 115004

	1				- LO NLO -	
Channel	Distribution	# bins	Data set	Int. Lum.	0.5 EWPO	0.2 - EWPO
$W^{\pm}H \to b\bar{b}\ell^{\pm} + E_T$	p_T^W , Fig. 3	2	ATLAS 8 TeV	$79.8 { m ~fb^{-1}}$		0.1
$ZH \to b\bar{b}\ell^+\ell^- \text{ or } b\bar{b} + \not\!\!\!E_T$	p_T^Z , Fig. 3	3	ATLAS 8 TeV	$79.8 \ {\rm fb}^{-1}$	••• E	
$W^+W^- \to \ell^+\ell'^- + \not\!\!\!E_T \ (0j)$	$p_T^{\text{leading,lepton}}$, Fig. 11	1	ATLAS 8 TeV	$20.3 {\rm ~fb^{-1}}$	-0.5	-0.1
$W^+W^- \to e^\pm \mu^\mp + \not\!\!\!E_T (0j)$	$p_T^{\text{leading,lepton}}$, Fig. 7	5	ATLAS 13 TeV	36.1 fb^{-1}		-0.2
$W^{\pm}Z \rightarrow \ell^+\ell^-\ell^{(\prime)\pm}$	m_T^{WZ} , Fig. 5	2	ATLAS 8 TeV	$20.3~{\rm fb}^{-1}$	-1.0 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 C _{HWB}	-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 C _{HWB}
		0		$10 c f_{\rm b} - 1$		
$W^{\pm}Z \to \ell^{\pm}\ell^{-}\ell^{(\prime)\pm} + \not\!$	Z candidate $p_T^{\ell\ell}$, Fig. 5	9	CMS 8 TeV	19.0 ID	······································	0.3
$W^{\pm}Z \to \ell^{+}\ell^{-}\ell^{(\prime)\pm} + \not\!$	Z candidate $p_T^{\ell\ell}$, Fig. 5 m_T^{WZ} Fig. 4c	9 6	ATLAS 13 TeV	19.0 fb^{-1} 36.1 fb^{-1}		0.3 — LO — NLO 0.2 — EWPO
$W^{\pm}Z \to \ell^{+}\ell^{-}\ell^{(\prime)\pm} + \not\!$	Z candidate $p_T^{\ell\ell}$, Fig. 5 m_T^{WZ} Fig. 4c m^{WZ} , Fig. 15a	9 6 3	CMS 8 TeV ATLAS 13 TeV CMS 13 TeV,	19.6 fb^{-1} 36.1 fb^{-1} 35.9 fb^{-1}	0.3 0.2 0.1	0.3 0.2 0.1
$W^{\pm}Z \to \ell^{+}\ell^{-}\ell^{(\prime)\pm} + \not\!$	Z candidate $p_T^{\ell\ell}$, Fig. 5 m_T^{WZ} Fig. 4c m^{WZ} , Fig. 15a	9 6 3	CMS 8 TeV ATLAS 13 TeV CMS 13 TeV,	19.0 fb^{-1} 36.1 fb^{-1} 35.9 fb^{-1}	0.3 0.2 0.1 € 0.0	0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
$W^{\pm}Z \to \ell^{+}\ell^{-}\ell^{(\prime)\pm} + \not\!$	Z candidate $p_T^{\ell\ell}$, Fig. 5 m_T^{WZ} Fig. 4c m^{WZ} , Fig. 15a	9 6 3	CMS 8 TeV ATLAS 13 TeV CMS 13 TeV,	19.0 fb^{-1} 36.1 fb^{-1} 35.9 fb^{-1}	0.3 0.2 0.1 でデ 0.0 -0.1	

 $C_{\mathrm{Ha}}^{(3)}$

Observables implemented in the dim-6 SMEFT

• LHC observables

- Included from available studies in the literature
- or computed in-house via Madgraph5_aMC@NLO simulations using our own (partial) implementation of the dimension-6 SMEFT
 - Validated against SMEFTsim (← To be adopted in Future calculations) I. Brivio, Y. Jiang, M. Trott, JHEP 12 (2017) 070
 I. Brivio, JHEP 04 (2021) 073
 - SMEFT@NLO used for some observables

C. Degrande et al., PRD 103 (2021) 9, 096024

• SMEFT dependence parametrized fitting the coefficients of a semi-analytical approximation:

Jorge de Blas University of Granada
- Higgs observables at the LHC:
 - ✓ Full SMEFT dependence in Higgs decays:
 - $H \rightarrow ff; H \rightarrow gg, \gamma\gamma, Z\gamma; H \rightarrow VV^* \rightarrow 4f$ Validated against

I. Brivio, T. Corbett, M. Trott ., JHEP 10 (2019) 056

- ✓ Inclusive signal strengths at Tevatron and LHC (7, 8 13, 14 TeV)
- ✓ Simplified Template Cross Section (STXS) Bins:

STXS vs. Signal strengths

Less model-dependence But still relies on SM for extrapolations

Not fully differential but more kinematical info

Measurements in exclusive regions of phase space (STXS bins)

• The dimension-6 SMEFT: EW/Higgs Run I+Run2 fit

New Physics assumptions: CP-even, U(3)⁵. Fit in the Warsaw basis.

• The dimension-6 SMEFT: EW/Higgs Run I+Run2 fit

SMEFT EW/Higgs fit U(3)

<u>New Physics assumptions: CP-even, U(3)⁵. Fit in the Warsaw basis.</u>

• The dimension-6 SMEFT: EW/Higgs Run I+Run2 fit

You can present correlations between parameters, observables, observables and parameters

<u>New Physics assumptions:</u> <u>CP-even, NO U(3)⁵</u>

Fit in the Warsaw basis ↓ Projected into deformations of effective SM-like couplings (defined from pseudo-observables)

E.g.
$$g_{HX}^{\text{eff 2}} \equiv \frac{\Gamma_{H \to X}}{\Gamma_{H \to X}^{\text{SM}}}$$

all the relevant information You decide how to present it

Jorge de Blas University of Granada

• Higgs observables at future e^+e^- and $\mu^+\mu^-$ colliders:

with and without polarized beams

• Higgs observables at future e^+e^- and $\mu^+\mu^-$ colliders:

95% CL reach from the full EFT fit (modified SILH') 10³ -I HC S2 + I EP/SI F light shade: individual fit (one operator at a time 380GeV/1.5TeV solid shade: global fit C 250GeV/350GeV/500GeV CLIC 380GeV/1.5TeV/3TeV lepton colliders are combined with HL–LHC & LEP/SLC flavor universality imposed in gauge couplings ee Z/WW/240GeV/365GeV $P(e^{-},e^{+})=(\mp 0.8,\pm 0.3)$ $P(e^{-},e^{+})=(\mp 0.8, 0)$ [TeV] 10 N√ | ci | 0.1 O_{GG} $O_{v_{\star}}$ OHR O_{WB}

SMEFT projections at future colliders

JB, G. Durieux, C. Grojean, J. Gu, A. Paul, JHEP 12 (2019) 117

SMEFT-Tools 2022 Zürich, September 16, 2022

• Top observables at the LHC and future colliders

Process	Observable	\sqrt{s}	$\int \mathcal{L}$	Experiment
$pp \to t\bar{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	CMS
$pp \to t\bar{t}$	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t\bar{t}H + tHq$	σ	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t\bar{t}Z$	$d\sigma/dp_T^Z$ (7 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t\bar{t}\gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \rightarrow tZq$	σ	$13 { m TeV}$	$77.4 \ {\rm fb}^{-1}$	CMS
$pp \rightarrow t\gamma q$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	CMS
$pp \to t\bar{t}W$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	CMS
$pp \to t\overline{b} \text{ (s-ch)}$	σ	$8 { m TeV}$	$20 { m ~fb^{-1}}$	LHC
$pp \to tW$	σ	$8 { m TeV}$	$20 { m ~fb^{-1}}$	LHC
$pp \rightarrow tq \text{ (t-ch)}$	σ	$8 { m TeV}$	$20 { m ~fb^{-1}}$	LHC
$t \to Wb$	F_0, F_L	$8 { m TeV}$	$20 { m ~fb^{-1}}$	LHC
$p\overline{p} \to t\overline{b} \text{ (s-ch)}$	σ	$1.96 { m ~TeV}$	$9.7 { m ~fb^{-1}}$	Tevatron

SMEFT Top calculations at NLO via SMEFT@NLO

Implementated by V. Miralles in NPSMEFT6dtopquark class

Top observables at the LHC and future colliders

G. Durieux et al., arXiv: 2205.02140 [hep-ph] JB et al., arXiv: 2206.08326 [hep-ph]

• Flavor observables: B-anomaly fit

M. Ciuchini et al., arXiv: 2110.10126 [hep-ph]

$$\begin{aligned} O_{2223}^{LQ^{(1)}} &= (\bar{L}_2 \gamma_\mu L_2) (\bar{Q}_2 \gamma^\mu Q_3) \,, \\ O_{2223}^{LQ^{(3)}} &= (\bar{L}_2 \gamma_\mu \tau^A L_2) (\bar{Q}_2 \gamma^\mu \tau^A Q_3) \,, \\ O_{2322}^{Qe} &= (\bar{Q}_2 \gamma_\mu Q_3) (\bar{e}_2 \gamma^\mu e_2) \,, \\ O_{2223}^{Ld} &= (\bar{L}_2 \gamma_\mu L_2) (\bar{d}_2 \gamma^\mu d_3) \,, \\ O_{2223}^{ed} &= (\bar{e}_2 \gamma_\mu e_2) (\bar{d}_2 \gamma^\mu d_3) \,, \end{aligned}$$

See also L. Silvestrini, M. Valli, PLB 799 (2019) 135062 For combined analyses of Flavor+EWPO

Jorge de Blas University of Granada 4

• The dimension-6 SMEFT

- Work in progress:
 - Implementation of (most) general flavor structure

 \checkmark So far: some non-universality for EW, Higgs & B anomalies

- Implementation of full SMEFT RG running (Weak Effective Theory (WET) already state-of-the-art)
 ✓ So far: some effects relevant for B anomalies
- Implementation of full matching on WET
 - \checkmark So far: some matching relevant for B anomalies
- Matching with UV?

• The question now is: What can we learn from new physics from these EFT fits?

• The question now is: What can we learn from new physics from these EFT fits?

• The question now is: What can we learn from new physics from these EFT fits?

 Projecting (SM)EFT results to specific scenarios requires matching between the NP model and the EFT

Matching: Wilson coefficients as function of BSM model couplings and masses

Limits on EFT Wilson coefficients

Limits on BSM

• The question now is: What can we learn from new physics from these EFT fits?

• The question now is: What can we learn from new physics from these EFT fits?

Making it work... Installation

Dependencies - Mandatory

- ROOT (<u>https://root.cern.ch</u>)
 - ✓ Plotting. Stores all histograms generated at run time (*.pdf & *.root)
 - ✓ Compatible with ROOT v5 and v6
- BOOST C++ Libraries (<u>http://www.boost.org</u>)

✓ Used for efficient and safe memory handling

- GSL (<u>https://www.gnu.org/software/gsl/</u>):
 - ✓ GNU Scientific Libraries are used for efficient matrix operations and integrals
- NetBeans IDE (<u>https://netbeans.org</u>)

✓ Only required to work with developer's version (available through GitHub)

Dependencies - Optional

- BAT (<u>https://www.mppmu.mpg.de/bat/</u>)
 - ✓ Bayesian Analysis Tool based Markov Chain Monte Carlo routines
 - ✓ Required if using our MCMC engine
- OpenMPI (<u>https://www.open-mpi.org</u>)
 - ✓ Required only for parallel runs (e.g. Cluster computing)
 - ✓ Tested for large scale @ $O(10^3)$ cores in batch submission systems

Quick Installation

Download tarball from <u>https://hepfit.romal.infn.it</u>

\$ tar xvzf HEPfit-x.y.tar.gz
\$ mkdir HEPfit-x.y/build
\$ cd HEPfit-x.y/build
\$ cmake .. -DLOCAL_INSTALL_ALL=ON -DMPIBAT=ON
\$ make
\$ make
\$ make install

V1 to be updated soon with all the newest developments

Making it work... Running example

Running example: Input

\$ cd examples/MonteCarloMode/

\$ make
\$ mpiexec -n 5 ./analysis ../config/StandardModel.conf MonteCarlo.conf

Running example: Input

\$ cd examples/MonteCarloMode/

\$ make
\$ mpiexec -n 5 /analysis ../config/StandardModel.conf MonteCarlo.conf

of CPU cores to use (5)

\$

Running example: Input

cd examples/MonteCarloMode/

\$ mpiexec -n 5 ./analysis ../config/StandardModel.conf MonteCarlo.conf

Model parameter priors & Observables in input/output

Running example: Input

\$ cd examples/MonteCarloMode/

\$ mpiexec -n 5 ./analysis ../config/StandardModel.conf MonteCarlo.conf

StandardModel Model name 2 # Madal-para **O**. Uncorrelated parameters: 3 ModelParameter mtop 173.2 0.9 125.6 4 ModelParameter mHl 0.3 Ο. **Initial values, priors** 5 6 CorrelatedGaussianParameters V1 lattice 2 Model pars. 0.067 ModelParameter a OV 0.496 Ο. **Correlated parameters** ModelParameter 8 a 1V -2.03 0.92 Ο. 1.00 0.86 9 10 0.86 1.00 11 12 <All the model parameters have to be listed here> 13 # Observables: 14 15 Observable Mw M {W} 80.3290 80.4064 MCMC weight 80.385 0.015 0. Mw 16 Observable GammaW GammaW #Gamma {W} 2.08569 2.09249 MCMC weight 2.085 0.042 0. 17 18 # Correlated observables: 19 CorrelatedGaussianObservables Zpole2 7 20 Observable Alepton Alepton A_{1} 0.143568 0.151850 MCMC weight 0.1513 0.0021 0. Observable Rbottom Rbottom R_{b} 0.215602 0.215958 MCMC weight 0.21629 0.00066 0. 21 22 Observable Rcharm Rcharm R_{c} 0.172143 0.172334 MCMC weight 0.1721 0.0030 0. 23 Observable AFBbottom AFBbottom A {FB}^{b} 0.100604 0.106484 MCMC weight 0.0992 0.0016 0. 24 Observable AFBcharm AFBcharm A {FB}^{c} 0.071750 0.076305 MCMC weight 0.0707 0.0035 0. 25 Observable Abottom Abottom A {b} 0.934320 0.935007 MCMC weight 0.923 0.020 0. 26 Observable Acharm A_{c} 0.666374 0.670015 MCMC weight 0.670 Acharm 0.027 0. 27 1.00 0.00 0.00 0.00 0.00 0.09 0.05 28 0.00 1.00 -0.18 -0.10 0.07 -0.08 0.04 29 0.00 -0.18 1.00 0.04 -0.06 0.04 -0.06 30 0.00 -0.100.04 1.00 0.15 0.06 0.01 31 0.00 0.07 -0.06 1.00 -0.02 0.04 0.15 32 0.09 -0.08 0.04 0.06 -0.02 0.11 1.00 **Observables** 33 0.05 0.04 -0.06 0.01 0.11 1.00 0.04 34 35 # Output correlations: Observable2D MwvsGammaW Mw M {W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma {W} 2.08569 2.09249 36 37 Observable2D Bd Bsbar mumu noMCMC noweight 38 39 Observable BR Bdmumu BR(B {d}#rightarrow#mu#mu) 1. -1. 1.05e-10 0. 0. 40 Observable BRbar Bsmumu BR(B_{s}#rightarrow#mu#mu) 1. -1. 3.65e-9 Ο. 0. 41 42 Observable2D S5 P5 noMCMC noweight BinnedObservable S 5 43 S 5 1. -1. 0. Ο. Ο. 6. 4. P 5 44 BinnedObservable P 5 1. -1. 0. Ο. ο. 4. 6. 45 46 # Including other configuration files 47 IncludeFile Flavour.conf

Model parameter priors & Observables in input/output

Running example: Input

\$ cd examples/MonteCarloMode/

\$ mpiexec -n 5 ./analysis ../config/StandardModel.conf MonteCarlo.conf

Model parameter priors & Observables in input/output

Running example: Input

\$ cd examples/MonteCarloMode/

\$ mpiexec -n 5 ./analysis ../config/StandardModel.conf MonteCarlo.conf

Model parameter priors & Observables in input/output

Running example: Input

\$ cd examples/MonteCarloMode/

\$ mpiexec -n 5 ./analysis ../config/StandardModel.conf MonteCarlo.conf

MCMC settings for Bayesian studies

1	NChains	10	(Default:	5)
2	PrerunMaxIter	50000	(Default:	1000000)
3	Iterations	10000	(Default:	100000)
4	#Seed	1	•	,
5	PrintAllMarginalized	true	(Default:	false)
6	PrintCorrelationMatrix	true	(Default:	false)
7	PrintKnowledgeUpdatePlots	false	(Default:	false)
8	PrintParameterPlot	false	(Default:	false)
9	OrderParameters	true	(Default:	true)

1	FindModeWithMinuit	(Default: false)
2	MinimumEfficiency	(Default: 0.15, set to 0 1.)
3	WriteChain	(Default: false)
4	CalculateNormalization	(Default: false)
5	WritePreRunData	(Mandatory: name of file)
6	ReadPreRunData	(Read existing prerun data file)

See code documentation for more options

Running example: Input

cd examples/MonteCarloMode/ \$

\$ mpiexec -n 5 ./analysis ../config/StandardModel.conf MonteCarlo.conf

MCMC settings for Bayesian studies

1 2 3	NChains PrerunMaxIter Iterations	10 50000 10000	(Default: (Default: (Default:	5) 1000000) 100000)	Basic MCMC settings
4 5 6 7 8	#Seed PrintAllMarginalized PrintCorrelationMatrix PrintKnowledgeUpdatePlots PrintParameterPlot	1 true false false	(Default: (Default: (Default: (Default:	false) false) false) false)	Output plots,
9	OrderParameters	true	(Default:	true)	

Other options:

1	FindModeWithMinuit	(Default: false)
2	MinimumEfficiency	(Default: 0.15, set to 0 1.)
3	WriteChain	(Default: false)
4	CalculateNormalization	(Default: false)
5	WritePreRunData	(Mandatory: name of file)
6	ReadPreRunData	(Read existing prerun data file)

See code documentation for more options: **Convergence criteria, etc.**

• **log.txt**: Info about convergence, check for problems, etc

Detail : eHbbpar : 1.002
Summary :> Set of 8 Markov chains converged within 233000 iterations, and all scales are adjusted.
Summary :> 232 updates to multivariate proposal function's covariances were made.
Detail :> Scale factors and efficiencies (measured in last 1000 iterations):
Detail : – Chain : Scale factor Efficiency
Detail : 0 : 0.0614 30.9 %
Detail : 1 : 0.0614 36.7 %
Detail : 2 : 0.0614 36.6 %
Detail : 3 : 0.0614 37.3 %
Detail : 4 : 0.0614 35.6 %
Detail : 5 : 0.0921 30.2 %
Detail : 6 : 0.0614 40.1 %
Detail : 7 : 0.0614 39.3 %
Summary : Run Metropolis MCMC for model "NPSMEFTd6"
Summary :> Perform MCMC run with 8 chains, each with 1000000 iterations.
Detail :> iteration number 100000 (10 %)
Detail :> iteration number 200000 (20 %)
Detail :> iteration number 300000 (30 %)

• MonteCarlo_results.txt: Info about the fitted parameters

Mean +- sgrt(Variance):	+8.452e-06 +- 0.001056
Median +- central 68% interval:	+0.0001747 + 0.02708 - 0.02732
(Marginalized) mode:	+0.02
5% quantile:	-0.03598
10% quantile:	-0.03196
16% quantile:	-0.02714
84% quantile:	+0.02726
90% quantile:	+0.03203
95% quantile:	+0.03602
Smallest interval containing 100	0.0% and local mode:
(-0.04, 0.04) (local mode at 0.0	02 with rel. height 1; rel. area 1)

- log.txt: Info about convergence, check for problems, etc
- MonteCarlo_results.txt: Info about the fitted parameters
- MCout.root: the whole output (histograms with info about posterior) in a .root file

• **Observables/Statistics.txt:** compilation of the statistics about the model parameters and observables included in the fit, correlations, etc

(3)	Observable "AFBbottom C": Mean +- sqrt(V): 0.10328 +- 0.00012432 (Marginalized) mode: 0.1033 Smallest interval(s) containing at least 68.8642% and local mode(s): (0.10316, 0.10341) (local mode at 0.1033 with rel. height 1; rel. area 1) Smallest interval(s) containing at least 05.40000 and least mode(s):
	(0.10304, 0.10353) (local mode at 0.1033 with rel. height 1; rel. area 1)
	Smallest interval(s) containing at least 99.7398% and local mode(s): (0.10289, 0.1029) (local mode at 0.1029 with rel. height 0.010387; rel. area 0.0001054)
	(0.10291, 0.10366) (local mode at 0.1033 with rel. height 1; rel. area 0.99979)
	(0.10366, 0.10366) (local mode at 0.10366 with rel. height 0.010214; rel. area 0.00010364)
de Plac	

 Observables/Statistics.txt: compilation of the statistics about the model parameters and observables included in the fit, correlations, etc

Jorge de Blas University of Granada

SMEFT-Tools 2022 Zürich, September 16, 2022

ID and 2D marginal distributions, correlations between parameters and/or observables, etc

Making it work... Adding your own models/observables

Adding your model and Observables to HEPfit

- Check template in examples/myModel
- In myModel.h:

```
#include <HEPfit.h>
                                    Extend the SM (typically) or, if more convenient,
/**
                                    the NPBase model, or the NPd6SMEFT model, ...
* Oclass myModel
* Obrief My own Model.
*/
class myModel: public StandardModel {
public:
   static const int NmyModelvars = 4; /* Define number of mandatory parameters in the model. */
   static const std::string myModelvars[NmyModelvars]; /* Vector of model variable names. */
double c1, c2, c3, c4; /* Model Parameters */
                                                 Define number and variables for model
                                                 parameters and get methods
double getc1() const { return c1; }
double getc2() const { return c2; }
double getc3() const { return c3; }
double getc4() const { return c4; }
```
Adding your model and Observables to HEPfit

• In myModel.cpp:

/* Model parameters and their derived quantities can be set here. */
void myModel::setParameter(const std::string name, const double& value)

```
{
    if(name.compare("c1") == 0)
        c1 = value;
    else if(name.compare("c2") == 0)
        Li
        c2 = value;
    else if(name.compare("c3") == 0)
        c3 = value;
    else if(name.compare("c4") == 0)
        c4 = value;
    else
        StandardModel::setParameter(name,value);
}
```

Link to parameter names to variables and values in the setParameter method

Adding your model and Observables to HEPfit

Finally register the model in the "Model Factory" in myModel_MCMC.cpp:

/* register user-defined model named ModelName defined in class ModelClass using the following syntax: */
ModelF.addModelToFactory("myModel", boost::factory<myModel*>());

- <u>Custom Observables</u> do not depend on having a custom model or not. Defined as functions of parameters already defined in a HEPfit model, in a custom model or a combination of both
- Need to be added to the ThObsFactory, e.g. in myModel_MCMC.cpp

/* register user-defined ThObservable named ThObsName defined in class ThObsClass using the following syntax	: */
ThObsF.addObsToFactory("BIN1", boost::bind(boost::factory <yield*>(), _1, 1));</yield*>	
ThObsF.addObsToFactory("BIN2", boost::bind(boost::factory <yield*>(), _1, 2));</yield*>	
ThObsF.addObsToFactory("BIN3", boost::bind(boost::factory <yield*>(), _1, 3)); Require argument</yield*>	
ThObsF.addObsToFactory("BIN4", boost::bind(boost::factory <yield*>(), _1, 4));</yield*>	
ThObsF.addObsToFactory("BIN5", boost::bind(boost::factory <yield*>(), _1, 5));</yield*>	
ThObsF.addObsToFactory("BIN6", boost::bind(boost::factory <yield*>(), _1, 6));</yield*>	
ThObsF.addObsToFactory("C_3", boost::factory <c_3*>());</c_3*>	
ThObsF.addObsToFactory("C_4", boost::factory <c_4*>()); Do not require extra arguments</c_4*>	

Summary

- **HEPfit** provides a flexible framework for the calculation of observables and studies of indirect constraints on new physics using the large amount of data collected at the LHC and lower energy experiments
 - ✓ Includes modules for the description of EFTs ...
 - \checkmark ... as well as other more specific BSM extensions/models
 - ✓ User can extend default set of models/observables via external modules
 - ✓ Flexibility in input format for construction of likelihoods → WiP: DNN likelihoods
- Current implementation (Developer's version) includes (separate) SMEFT modules to describe EW/Higgs/diBoson, Top and Flavor physics:

✓ Ultimate goal: Global consistent EW/Higgs/Top/Flavor

- A lot of work in progress (in particular in the SMEFT)
 - $\checkmark\,$ RGE evolution, extension of observables to NLO in SMEFT, \ldots
 - ✓ GeoSMEFT

✓ Complete the "interpretation" workflow chain by connecting the output of matching tools (M MatchMakereft) directly to HEPfit