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Talk Outline

1. Our research on Decentralized Machine Learning Control

2. Multi Drone Reinforcement Learning Examples

3. Why we need cloud resources

4. About the specific OCRE project



Background

• Interdisciplinary subject: Control and Communication Engineering, Data 
Science (Machine Learning), Computer Science, Applied Mathematics 

• Foundation of Intelligent Networked Cyber-Physical Systems (INCPS)

• Complex distributed autonomous 
multi-agent systems

• Numerous revolutionary and pervasive applications: swarm robotics, 
autonomous vehicles, smart buildings, cities and power grids, intelligent 
agriculture, transportation and manufacturing systems, etc. 
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Smart Power Grid

Biomolecular Networks

Platoons and Formations 
of Vehicles

Robotic Wireless Networks

IoT

Smart Agriculture

Examples



Project Summary
• The general objective: 

Development of advanced methods and algorithms for decentralized 
Machine Learning Control (MLC) for Networked Cyber-Physical 
Systems

• Complex, spatially distributed and networked autonomous multi-agent 
dynamical systems 

• The methodological solutions cross the traditional boundaries 
between (deep) machine learning, control systems (reinforcement 
learning), and decentralization of functions.

• Acknowledgements: EC RIA, OCRE project, Science Fund of the Republic of Serbia, 
and FCT



Concept and Methodology
• Dimensionality, uncertainty and information structure constraints ⇒ decentralized decision making theory

• Uncertainty and vulnerability (subsystems, interconnections, environment, communication channels and computing devices) -
intrinsic to large-scale multi-agent systems

⇒ Decentralization provides superior robustness to structural uncertainty

• Drawbacks of decentralization:

1) Lack of awareness of the global mission

• Proposed approaches: 

• Distributed inter-agent agreement based on consensus techniques

• Game theoretic approach

• Learning and adaptation techniques:

• Reinforcement Learning (RL) – recently very popular methodology for dealing with decision making problems in 
uncertain environments. Could represent a basis for development of decentralized learning control for INCPS

2) Increased vulnerability (to inconvenient faults and/or security attacks) 

• Proposed approaches increasing resilience: 

• Robust statistics and/or game theory

• Learning and adaptation techniques



Our Results on Distributed 
Multi-Agent RL



RL Problem Setup and Basics



Basic Ideas

• Learning what to do – how to map situations to actions —
so as to maximize a numerical reward

• Trial-and-error search 

• Delayed (averaged) reward (interaction is with dynamical 
systems)

• Direct learning from own experience - different from 
supervised learning or system identification

• Important challenge: trade-off between exploration and 
exploitation



RL Problem setup

• Markov decision process: (𝑆,𝒜, 𝑃, 𝑟, 𝛾) – finite set of states, finite 
actions set, transition matrix 𝑃(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠′) immediate reward, 
𝛾 ∈ (0,1) discount factor

• Discounted infinite horizon payoff (value function):

𝑉 𝑠 = 𝐸 ෍

𝑛=0

∞

𝛾𝑛 𝑟𝑛+1|𝑠 0 = 𝑠



Example

• (Windy) gridworld



Example
• Driving on a highway model

• 𝑝 moving, 𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦 =
1

state
, 𝑝 stuck, 𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦 = 1 −

1

state

• 𝑝 moving, 𝑎𝑒𝑥𝑖𝑡 = 0.8 , 𝑝 stuck, 𝑎𝑒𝑥𝑖𝑡 = 0.2

• r(𝑎𝑒𝑥𝑖𝑡) = −4, r(𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦) = −1

• Goals: 
• Evaluate a (possibly randomized) policy (state-action map)
• Find the optimal policy

𝑎exit

𝑎ℎ1 2 3 14 15

𝑎exit



Policy Evaluation and Optimal Control of 
MDPs

• Randomized stationary policy 𝜋: 𝑆 ×𝒜 → [0,1]

• 1) For given 𝝅 find 𝑽𝝅(𝒔):

• Bellman prediction equation:
𝑉 = 𝑅 + 𝛾𝑃𝑉

𝑉 = 𝑉 𝑠1 , … , 𝑉 𝑠 𝑆
𝑇
, 𝑅 = 𝑅 𝑠1 , … , 𝑅 𝑠 𝑆

𝑇
,

𝑅 𝑠 = ෍

𝑠′ ∈𝑆

෍

𝑎∈𝒜

𝜋 𝑠′ , 𝑎 𝑃 𝑠′ 𝑠, 𝑎 𝑟(𝑠, 𝑎, 𝑠′ ) ,

𝑃 𝑠, 𝑠′ = ෍

𝑎∈𝒜

𝜋 𝑠′ , 𝑎 𝑃 𝑠′ 𝑠, 𝑎

• 2) Find 𝝅 maximizing the discounted reward:

• Bellman optimality equation:

𝑉∗ 𝑠 = max
a∈𝒜

{R s, a + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ }

𝑅 𝑠, 𝑎 = ෍

𝑠′ ∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑟(𝑠, 𝑎, 𝑠′ )

• Resulting policy is deterministic optimal policy



Iterative Policy Evaluation 
• For given 𝜋 find 𝑉𝜋(𝑠)

𝑉𝑘+1 = 𝑅 + 𝛾𝑃𝑉𝑘 , 𝑉0 = 0

𝑅 𝑠 = ෍

𝑠′ ∈𝑆

෍

𝑎∈𝒜

𝜋 𝑠′ , 𝑎 𝑃 𝑠′ 𝑠, 𝑎 𝑟(𝑠, 𝑎, 𝑠′ ) ,

𝑃 𝑠, 𝑠′ = ෍

𝑎∈𝒜

𝜋 𝑠′ , 𝑎 𝑃 𝑠′ 𝑠, 𝑎

• For finding optimal policy: 
• policy iteration: After finding 𝑉𝜋 improve the policy greedily 

based on current 𝑉𝜋
• value iteration: iteratively apply the Bellman optimality equation

𝑉𝑘+1
∗ 𝑠 = max

a∈𝒜
{R s, a + 𝛾 ෍

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑘
∗ 𝑠′ }



Example

Value function

𝑎exit

𝑎ℎ1 2 3 14 15

𝑎exit



Monte Carlo Methods

• To evaluate state 𝑠:

• The first time-step 𝑡 that state 𝑠 is visited in an episode: 
• Increment counter 𝑁(𝑠)
• Increment total return 𝑆 𝑠 ← 𝑆(𝑠) + 𝐺𝑡

𝐺𝑡 = 𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + …+ 𝛾𝑇−1𝑅𝑇
• Value is estimated by mean return 𝑉(𝑠) = 𝑆(𝑠)/𝑁(𝑠)

• By law of large numbers, 𝑉(𝑠) converges to true value

• Monte-Carlo policy evaluation uses empirical mean return instead of 
expected return 



Temporal Difference Methods

• We want to update in each iteration 

• Update value 𝑉(𝑆𝑡) toward estimated return 𝑅𝑡+1 + 𝛾 𝑉(𝑆𝑡+1):

𝑉 𝑆𝑡 ← 𝑉(𝑆𝑡) + (𝑅𝑡+1 + 𝛾 𝑉 𝑆𝑡+1 − 𝑉(𝑆𝑡))

TD target

TD error



On-policy vs. Off-policy Learning

• Behavior policy 𝜋bis different than target policy 𝜋

• Importance sampling:

𝑉 𝑠 = 𝐸𝜋
𝑏 ෍

𝑛=0

∞

𝜌𝑛𝛾
𝑛 𝑟𝑛+1|𝑠 0 = 𝑠

𝜌𝑛 =
𝜋(𝑎𝑛|𝑠𝑛)

𝜋𝑏(𝑎𝑛|𝑠𝑛)



MC vs TD

• MC has high variance, zero bias (not very sensitive to initial value)

• Good convergence properties (even with function approximation)

• Very simple to understand and use

• TD has low variance, some bias

• Usually more efficient than MC

• TD not always convergent with function approx.



Control
Policy Optimization



Policy Iteration

• Recall – we use the Belman equation
𝑉 = 𝑅 + 𝛾𝑃𝑉



Monte-Carlo Policy Iteration

We must have 𝜀 – greedy strategy since 
we need sufficient exploration!

Every episode:
- MC policy evaluation, 𝑄 ≈ 𝑞𝜋
- Policy improvement 𝜀-greedy policy 
improvement



TD – based Control

• Due to the advantages of TD: use TD instead of MC in our control loop

• Apply TD to 𝑄(𝑆, 𝐴)

• Use 𝜀-greedy policy improvement

• Update every time-step



SARSA Learning

• SARSA learning:
𝑄𝑘+1(𝑠𝑘 , 𝑎𝑘) = 𝑄𝑘(𝑠𝑘 , 𝑎𝑘) + 𝛼(Rk+1 + 𝛾𝑄𝑘(𝑠𝑘+1, 𝑎𝑘+1) − 𝑄𝑘(𝑠𝑘 , 𝑎𝑘)

• On-policy



SARSA Learning

• Every time-step:

• Policy evaluation SARSA, 𝑄 ≈ 𝑞𝜋
• Policy improvement 𝜀-greedy policy improvement



Q-Learning

• The target policy 𝝅 is greedy w.r.t. 𝑄(𝑠, 𝑎)

𝜋 𝑆𝑡+1 = argmax𝑎′𝑄(𝑆𝑡+1, 𝑎
′)

• The behavior policy 𝝁 is 𝜀-greedy w.r.t. 𝑄(𝑠, 𝑎)

• Q-learning:

𝑄𝑘+1(𝑠𝑘 , 𝑎𝑘) = 𝑄𝑘(𝑠𝑘 , 𝑎𝑘) + 𝛼(Rk+1 + 𝛾max
𝑎

𝑄𝑘 𝑠𝑘+1, 𝑎 − 𝑄𝑘 𝑠𝑘 , 𝑎𝑘 )



SARSA vs Q-learning

• Q-learning control converges to the optimal action-value function

• SARSA converges to the action-value function corresponding to the 
applied policy (usually 𝜀- greedy) 



Cliff Walking Example



Large-Scale Reinforcement Learning

• Examples:
• Backgammon: 1020 states

• Computer Go: 10170 states

• Robots/Drones: continuous state space



Value Function Approximation
• Problem with large MDPs:

• Too many states and/or actions to store in memory

• It is too slow to learn the value of each state individually

• Solution for large MDPs:

• Function approximation

ො𝑣 𝑠, 𝒘 ≈ 𝑣𝜋 𝑠 or              ො𝑞 𝑠, 𝑎, 𝒘 ≈ 𝑞𝜋(𝑠, 𝑎)

• Possibility to generalize from seen states to unseen states

• Update parameters 𝒘 using MC or TD learning



Which Function Approximator?

• There are many function approximators, e.g.
• Linear combinations of features

• Neural network

• Decision tree

• Nearest neighbour

• Fourier / wavelet bases

• Etc.



Linearly Approximated Q-learning in 
Mountain Car Example
• Python code



Deep Q Learning

• DQN: Q-Learning with a Deep Neural Network as a function 
approximator

• Training can be unstable

• Experience Replay and Target Network (T steps frozen parameters) 
helps stabilization

• CNNs – applicability to purely vision based learning



Experience Replay in Deep Q-Networks (DQN)

• DQN uses experience replay and fixed Q-targets:

• Take action at according to 𝜀-greedy policy

• Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in replay memory 𝐷

• Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝐷

• Compute Q-learning targets w.r.t. old, fixed parameters 𝑤−

• Optimize (using SGD) MSE between Q-network output and Q-learning targets
ℒ𝑖 𝑤𝑖 = 𝔼𝑠,𝑎,𝑟,𝑠′{ 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′, 𝑤− − 𝑄 𝑠, 𝑎, 𝑤𝑖

2



Example - DQN in Atari

• End-to-end learning of values 𝑄(𝑠, 𝑎) from pixels 

• Input state 𝑠 is stack of raw pixels from last 4 frames

• Output is 𝑄(𝑠, 𝑎) for 18 joystick/button positions

• Reward is change in score for that step



Policy gradient methods

• Parameterize the policy function

• Find gradient of the objective function with respect to the policy 
parameters

• Typically results in the so called Actor-Critic methods



Summary of Typical Single-Agent Algorithms

• Value function learning/approximation:
• Monte-Carlo based

• Temporal-difference based (TD, TD(𝜆), GTD(𝜆), ETD(𝜆)) 

• Least-Square methods

• Q-function learning:
• Q-learning

• SARSA

• …

• Policy gradient/ Actor-Critic methods



Distributed Multi-Agent RL



Multi-Agent Policy Evaluation -Problem Setup

• 𝑁 + 1 MDPs characterized by {𝑆, 𝐴, 𝑝 𝑠′ 𝑠, 𝑎 , 𝑅 𝑠, 𝑎, 𝑠′ }

• Each MDP(𝑖) has an associated stationary policy 𝜋 𝑖 (𝑎|𝑠)

• The goal of each agent: find the state-value function for the reference 
MDP(0) with (target) policy 𝝅 𝟎

• Each agent 𝑖 applies (behavior) policy 𝝅 𝒊 , and can only observe local 
state transitions and rewards

• Inter-agent communication is allowed 

according to the given network topology

• Cooperative off-policy reinforcement learning

Finite set of states

Finite set of actions

Transition probabilities Random rewards



Off-Policy Value Function Approximation

• State space is typically large ⇒ value function parameterization: 
𝑣𝜋(0) ≈ 𝑣𝜃 = Φ𝜃, 𝜃 ∈ ℛ𝑝, 𝑣𝜃 ∈ ℛ𝑀

• Typically 𝑀 ≫ 𝑝

• Goal: find optimal set of parameters Θ = [𝜃1, … , 𝜃𝑁] minimizing

𝐽 Θ =෍

𝑖=1

𝑁

𝑞𝑖𝐽𝑖 𝜃𝑖 subject to 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑁

𝐽𝑖 𝜃𝑖 = Π𝜉𝑖 𝑇
𝜆𝑖 𝑣 𝜃𝑖 − 𝑣 𝜃𝑖 𝜉𝑖

Projected generalized 
Bellman errors

(Weighted) projection 
operator

Generalized Bellman 
operator (with 𝜆-
parameters)

Steady state distribution 
parameters

Feature vectors 𝜙 𝑠 , 𝑠 ∈ 𝑆



Off-Policy Value Function Approximation

• By calculating local gradients the following two local gradient descent 
algorithms (Sutton et al. 2009) can be derived:
• GTD2(𝜆):

𝜃𝑖 𝑛 + 1 = 𝜃𝑖 𝑛 + 𝛼 𝑛 𝜌𝑖 𝑛 Φ 𝑆𝑖 𝑛 − 𝛾𝑖 𝑛 + 1 𝜙 𝑆𝑖 𝑛 + 1 𝑒𝑖 𝑛
𝑇𝑤𝑖(𝑛)

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + 𝛽(𝑛) 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜙 𝑆𝑖 𝑛 𝜙 𝑆𝑖 𝑛
𝑇
𝑤𝑖(𝑛)

• Eligibility traces:

𝑒𝑖 𝑛 = 𝜆𝑖 𝑛 𝛾𝑖 𝑛 𝜌𝑖 𝑛 − 1 𝑒𝑖 𝑛 − 1 + 𝜙(𝑆𝑖 𝑛 )

Step sizes

Importance sampling weights

Temporal difference term

Discount factors

Feature vector



Off-Policy Value Function Approximation

• TDC(𝜆):

𝜃𝑖 𝑛 + 1
= 𝜃𝑖 𝑛
+ 𝛼 𝑛 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜌𝑖 𝑛 1 − 𝜆𝑖 𝑛 + 1 𝛾𝑖(𝑛 + 1)𝜙 𝑆𝑖 𝑛 + 1 𝑒𝑖 𝑛

𝑇𝑤𝑖(𝑛)

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + 𝛽(𝑛) 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − Φ 𝑆𝑖 𝑛 Φ 𝑆𝑖 𝑛
𝑇
𝑤𝑖(𝑛)



Non-gradient based algorithms (faster)

• Instead of calculating gradients of the objective, we consider algorithms:

• 1) Standard TD(𝝀) (not stable in general!):

𝜃𝑖 𝑛 + 1 = 𝜃𝑖 𝑛 + 𝛼𝑖 𝑛 𝑒𝑖(𝑛)𝜌𝑖 𝑛 𝑅𝑖 𝑛 − 𝛾𝑖 𝑛 + 1 𝜙𝑖 𝑛 + 1 𝑇𝜃𝑖 𝑛 − 𝜙𝑖 𝑛
𝑇𝜃𝑖(𝑛)

• Eligibility trace vector: 𝑒𝑖 𝑛 = 𝜆𝑖 𝑛 𝛾𝑖 𝑛 𝜌𝑖 𝑛 − 1 𝑒𝑖 𝑛 − 1 + 𝜙𝑖(𝑛)

• 2) Emphatic TD(𝝀) (ETD(𝝀), stable!, Sutton et al. 2016):

𝑒𝑖 𝑛 = 𝜆𝑖 𝑛 𝛾𝑖 𝑛 𝜌𝑖 𝑛 − 1 𝑒𝑖 𝑛 − 1 + 𝜇𝑖(𝑛)𝜙𝑖(𝑛)
𝜇𝑖 𝑛 = 𝜆𝑖 𝑛 𝑤𝑖 𝑛 + (1 − 𝜆𝑖 𝑛 )𝑓𝑖(𝑛)
𝑓𝑖 𝑛 = 𝛾𝑖 𝑛 𝜌𝑖 𝑛 − 1 𝑓𝑖 𝑛 − 1 + 𝑤𝑖(𝑛)

Step size Importance 
sampling weights

Temporal difference term

Discount factors

Feature vector



Proposed Algorithms for 
Distributed VF Approximation

• D1-GTD2(𝜆):

𝜃𝑖′ 𝑛 = 𝜃𝑖 𝑛 + 𝛼 𝑛 𝑞𝑖𝜌𝑖 𝑛 Φ 𝑆𝑖 𝑛 − 𝛾𝑖 𝑛 + 1 𝜙 𝑆𝑖 𝑛 + 1 𝑒𝑖 𝑛
𝑇𝑤𝑖(𝑛)

𝑤𝑖′ 𝑛 = 𝑤𝑖 𝑛 + 𝛽(𝑛) 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜙 𝑆𝑖 𝑛 𝜙 𝑆𝑖 𝑛
𝑇
𝑤𝑖(𝑛)

• Convexification:

𝜃𝑖 𝑛 + 1 =෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑛 𝜃𝑗′(𝑛)

𝑤𝑖 𝑛 + 1 = 𝑤𝑖′ 𝑛

Random network weights



Proposed Algorithms for 
Distributed VF Approximation

• D2-GTD2(𝜆):

𝜃𝑖′ 𝑛 = 𝜃𝑖 𝑛 + 𝛼 𝑛 𝑞𝑖𝜌𝑖 𝑛 Φ 𝑆𝑖 𝑛 − 𝛾𝑖 𝑛 + 1 𝜙 𝑆𝑖 𝑛 + 1 𝑒𝑖 𝑛
𝑇𝑤𝑖(𝑛)

𝑤𝑖′ 𝑛 = 𝑤𝑖 𝑛 + 𝛽(𝑛) 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜙 𝑆𝑖 𝑛 𝜙 𝑆𝑖 𝑛
𝑇
𝑤𝑖(𝑛)

• Convexification:

𝜃𝑖 𝑛 + 1 =෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑛 𝜃𝑗′(𝑛)

𝑤𝑖 𝑛 + 1 =෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑛 𝑤𝑗′ 𝑛

Random network weights



Proposed Algorithms for 
Distributed VF Approximation

• D1-TDC(𝜆):

𝜃𝑖′ 𝑛 = 𝜃𝑖 𝑛 + 𝛼 𝑛 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜌𝑖 𝑛 1 − 𝜆𝑖 𝑛 + 1 𝛾𝑖(𝑛 + 1)𝜙 𝑆𝑖 𝑛 + 1 𝑒𝑖 𝑛
𝑇𝑤𝑖(𝑛)

𝑤𝑖′ 𝑛 = 𝑤𝑖 𝑛 + 𝛽(𝑛) 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜙 𝑆𝑖 𝑛 𝜙 𝑆𝑖 𝑛
𝑇
𝑤𝑖(𝑛)

• Convexification:

𝜃𝑖 𝑛 + 1 =෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑛 𝜃𝑗′(𝑛)

𝑤𝑖 𝑛 + 1 = 𝑤𝑖′ 𝑛



Proposed Algorithms for 
Distributed VF Approximation

• D2-TDC(𝜆):

𝜃𝑖′ 𝑛 = 𝜃𝑖 𝑛 + 𝛼 𝑛 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜌𝑖 𝑛 1 − 𝜆𝑖 𝑛 + 1 𝛾𝑖(𝑛 + 1)𝜙 𝑆𝑖 𝑛 + 1 𝑒𝑖 𝑛
𝑇𝑤𝑖(𝑛)

𝑤𝑖′ 𝑛 = 𝑤𝑖 𝑛 + 𝛽(𝑛) 𝑒𝑖 𝑛 𝛿𝑖 𝑣𝜃𝑖 , 𝑛 − 𝜙 𝑆𝑖 𝑛 𝜙 𝑆𝑖 𝑛
𝑇
𝑤𝑖(𝑛)

• Convexification:

𝜃𝑖 𝑛 + 1 =෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑛 𝜃𝑗′(𝑛)

𝑤𝑖 𝑛 + 1 =෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑛 𝑤𝑗′ 𝑛

Random network weights



Proposed Algorithms for 
Distributed VF Approximation

• D-TD(𝜆) and D-ETD(𝜆) :

𝜃𝑖′ 𝑛
= 𝜃𝑖 𝑛 + 𝛼𝑖 𝑛 𝑒𝑖(𝑛)𝜌𝑖 𝑛 𝑅𝑖 𝑛 − 𝛾𝑖 𝑛 + 1 𝜙𝑖 𝑛 + 1 𝑇𝜃𝑖 𝑛 − 𝜙𝑖 𝑛

𝑇𝜃𝑖(𝑛)

• Convexification:

𝜃𝑖 𝑛 + 1 =෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑛 𝜃𝑗′(𝑛)

Random network weights



Convergence

• Rigorous proofs of stochastic convergence:
• M.S. Stankovic, M. Beko and S.S. Stankovic. Distributed Consensus-Based 

Multi-Agent Temporal-Difference Learning, Automatica, Vol. 151, 2023.

• M.S. Stanković, M. Beko and S.S. Stanković, Distributed Value Function 
Approximation for Collaborative Multi-Agent Reinforcement Learning, IEEE 
Transactions on Control of Network Systems, 8(3), pp. 1270 – 1280, 2021.

• M. S. Stankovic, M. Beko and S. S. Stankovic, Distributed Consensus-Based 
Multi-Agent Temporal-Difference Learning, 60th IEEE Conference on Decision 
and Control (CDC), 2021..

• …



Illustrative simulation results

• Highway model

• 𝑝 moving, 𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦 =
1

state
, 𝑝 stuck, 𝑎ℎ𝑖𝑔ℎ𝑤𝑎𝑦 = 1 −

1

state

• 𝑝 moving, 𝑎𝑒𝑥𝑖𝑡 = 0.8 , 𝑝 stuck, 𝑎𝑒𝑥𝑖𝑡 = 0.2

• R(𝑎𝑒𝑥𝑖𝑡) = −4, R(𝑎𝑒𝑥𝑖𝑡) = −1

• Target policy: 𝑝 𝑎𝑒𝑥𝑖𝑡 = 0.8

• 𝑁 = 10 agents

• Behavior policies: 𝑝 𝑎𝑒𝑥𝑖𝑡 = (0.6, 0.5, 0.9, 0.81, 0.4, 0.67, 0.3, 0.55, 0.45, 0.6)

• 7 features – Gaussian radial basis distances to states 1,3,5,7,9,11 and 13

𝑎exit

𝑎ℎ1 2 3 14 15

𝑎exit



Variance and rate of convergence comparison

• 50 Monte Carlo simulations 

• 𝜆 = 0.4

• Average variance of D-TD(λ) : 0.93

• Average variance of D-ETD(λ) is 1.46

• Conclusion: D-TD(𝜆) has smaller 
variance and faster rate of 
convergence

Mean MSE curves



Multi-Task Policy Optimization

• Q-learning (similar to policy evaluation)

• Actor-Critic (much better convergence properties)



Problem setup

• 𝑁 MDPs characterized by {𝑆, 𝐴, 𝑝𝑖 𝑠′ 𝑠, 𝑎 , 𝑅𝑖 𝑠, 𝑎, 𝑠
′ }

• Each agent 𝑖 applies a control policy 𝜋 𝑖 (𝑎|𝑠)

• The local goal of each agent: find 𝜋 𝑖 (𝑎|𝑠) optimizing the state-value function:

𝑉𝜋𝑖,𝑖 𝑠 = 𝐸𝜋𝑖 𝑅𝑡+1
𝑖 +෍

𝑗=1

∞

ෑ

𝑘=1

𝑗

𝛾𝑖 𝑠𝑡+𝑘
𝑖 𝑅𝑡+𝑗+1

𝑖 |𝑠𝑡
𝑖 = 𝑠

• Off-policy setup – each agent interacts with its environment using a local behavior policy 𝜋𝑏
𝑖

• Each agent can only observe local state transitions and rewards

• Inter-agent communication is allowed according to the given network topology

• Cooperative reinforcement learning

Finite set of states

Finite set of actions

Transition probabilities Random rewards

Discount factors 



Value and Policy Function Approximations

• State space is typically large ⇒ value and policy function parameterizations

• Critic stage – linear parameterization:

𝑉
𝜃𝑖
𝑖 𝑠 = 𝜃𝑖𝑇𝜑𝑖 𝑠

• Typically 𝐿𝜃 << 𝑀

• Actor stage:

• Policy 𝜋𝑖 = 𝜋𝑤𝑖 parameterized using the policy parameter vector 𝑤𝑖 ∈ ℛ𝐿𝑤

𝐿𝑤 << 𝑀

• Off-policy scenario – importance ratio:    𝜌𝑡
𝑖 = 𝜋𝑤𝑖 𝑎𝑡

𝑖 𝑠𝑡
𝑖 /𝜋𝑏 𝑎𝑡

𝑖 𝑠𝑡
𝑖

Local features 𝜑𝑖 𝑠 ∈ ℛ𝐿𝜃

Local parameter vector



Local objectives

• The expected linear approximation of the local value function

𝐽𝑖 𝜃𝑖 𝑤𝑖 = 𝜃𝑖𝑇𝐸𝑖 𝜑𝑡
𝑖 = 𝜃𝑖𝑇෍

𝑠

𝑑𝑏
𝑖 𝑠 𝜑𝑖 𝑠

• Locally optimal values are 𝑤𝑖∗ = Argmax𝑤𝑖 𝐽𝑖 𝜃𝑖 𝑤𝑖 , 𝑖 = 1,… ,𝑁

Steady state distribution 
parameters



Multi-Agent Objective

• Multi-objective optimization 

• Global objective function:

𝐽 𝑤1, … , 𝑤𝑁; 𝑐 =෍

𝑖=1

𝑁

𝑐𝑖 𝐽𝑖 𝜃𝑖 𝑤𝑖

• The goal is to learn a single policy that performs optimally for the 
averaged tasks

• The common policy function: 
𝜋𝑤∗
1 = ⋯ = 𝜋𝑤∗

𝑁 = 𝜋𝑤∗

Utility parameter vector

dim(𝑐) = 𝑁, 0 ≤ 𝑐𝑖 ≤ 1, σ𝑖 𝑐
𝑖 = 1



Proposed Critic algorithm 1 (ETD(𝜆))

෨𝜃𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛼𝑡
𝑖𝜌𝑡

𝑖𝛿𝑡
𝑖𝜀𝑡
𝑖

𝛿𝑡
𝑖 = 𝑅𝑡+1

𝑖 + 𝛾𝑖𝜃𝑡
𝑖𝑇𝜑𝑡+1

𝑖 − 𝜃𝑡
𝑖𝑇𝜑𝑡

𝑖

𝜀𝑡
𝑖 = 𝑚𝑡

𝑖𝜑𝑡
𝑖 + 𝛾𝑖𝜆𝑖𝑒𝑡−1

𝑖

𝑚𝑡
𝑖 = 𝜆𝑖 + 1 − 𝜆𝑖 𝑞𝑡

𝑖

𝑞𝑡
𝑖= 1 + 𝛾𝑖𝜌𝑡−1

𝑖 𝑞𝑡−1
𝑖

step size 𝛼𝑡
𝑖 > 0 (fast time scale) 



Proposed Critic algorithm 2 (GTD(1))

෨𝜃𝑡
𝑖 = 𝜃𝑡

𝑖 + 𝛼𝑡
𝑖𝜌𝑡

𝑖𝛿𝑡
𝑖𝑒𝑡

𝑖

𝛿𝑡
𝑖 = 𝑅𝑡+1

𝑖 + 𝛾𝑖𝜃𝑡
𝑖𝑇𝜑𝑡+1

𝑖 − 𝜃𝑡
𝑖𝑇𝜑𝑡

𝑖

𝑒𝑡
𝑖 = 𝜑𝑡

𝑖 + 𝛾𝑖𝜌𝑡−1
𝑖 𝑒𝑡−1

𝑖

𝜌𝑡
𝑖 = 𝜋𝑤𝑖 𝑎𝑡

𝑖 𝑠𝑡
𝑖 /𝜋𝑏 𝑎𝑡

𝑖 𝑠𝑡
𝑖

step size 𝛼𝑡
𝑖 > 0 (fast time scale) 



Proposed Actor 1

• Derived using exact policy gradient, assuming ETD(𝝀) for the Critic

• The policy gradient can be derived as:

∇𝑤𝑖𝐽𝑖 𝑤𝑖 = lim
𝑡→∞

𝐸𝑖 𝜌𝑡
𝑖𝛿𝑡

𝑖 ǁ𝜀𝑡
𝑖)

ǁ𝜀𝑡
𝑖 = ሚ𝑓𝑡

𝜆𝑖,𝑖
∇𝑤𝑖 log 𝜋𝑤𝑖 𝑎𝑡

𝑖 𝑠𝑡
𝑖 + ǁ𝜇𝑡

𝑖 + 𝛾𝑖𝜌𝑡−1
𝑖 ෥𝜀 𝑡−1

𝑖

෤𝜇𝑡
𝑖 = ሚ𝑓𝑡

𝜆𝑖,𝑖
+ 𝛾𝑖𝜌𝑡−1

𝑖 [ ( ෥𝑚 𝑡−1
𝑖 − 𝜆𝑖)∇𝑤𝑖 log 𝜋𝑤𝑖 𝑎𝑡

𝑖 𝑠𝑡
𝑖 + ǁ𝜇𝑡−1

𝑖

ሚ𝑓𝑡
𝜆𝑖,𝑖 = ෤𝑚𝑡

𝑖 + 𝛾𝑖𝜌𝑡−1
𝑖 𝜆𝑖 ǁ𝑓𝑡−1

𝜆𝑖,𝑖

෤𝑚𝑡
𝑖 = 1 + 𝛾𝑖𝜌𝑡−1

𝑖 ( ǁ𝑚𝑡−1
𝑖 − 𝜆𝑖)



Proposed Actor 1
• Part 1 (local updates):

෥𝑤𝑡
𝑖 = 𝑤𝑡

𝑖 + 𝛽𝑡
𝑖𝛿𝑡

𝑖 ǁ𝜀𝑡
𝑖

• Part 2 (distributed consensus):

𝑤𝑡+1
𝑖 = ෍

𝑗∈𝒩𝑖

𝑎𝑡
𝑖𝑗
෥𝑤𝑡
𝑗

• 𝑎𝑡
𝑖𝑗

elements of an 𝑁 × 𝑁 row-stochastic random matrix 𝐴𝑡 = 𝑎𝑡
𝑖𝑗

• 𝑎𝑡
𝑖𝑗
= 0 if Agent 𝑗 does not communicate with Agent 𝑖 at time step 𝑡

• The algorithm asymptotically provides consensus

𝑤1 = ⋯ = 𝑤𝑁 = 𝑤∗

step size 𝛽𝑡
𝑖 ≪ 𝛼𝑡

𝑖 (slow time scale) 



Proposed Actor 2

• Derived using exact policy gradient, assuming GTD(1) for the Critic

• The policy gradient can be derived as:

∇𝑤𝑖𝐽𝑖 𝑤𝑖 = lim
𝑡→∞

𝐸𝑖 𝜌𝑡
𝑖𝛿𝑡

𝑖 ǁ𝑒𝑡
𝑖)

ǁ𝑒𝑡
𝑖 = 𝑓𝑡

𝑖∇𝑤𝑖 log 𝜋𝑤𝑖 𝑎𝑡
𝑖 𝑠𝑡

𝑖 +𝛾𝑖𝜌𝑡−1
𝑖 ෥𝑒 𝑡−1

𝑖

𝑓𝑡
𝑖 = 1 + 𝛾𝑖𝜌𝑡−1

𝑖 𝜆𝑖𝑓𝑡−1
𝑖

𝛿𝑡
𝑖 = 𝑅𝑡+1

𝑖 + 𝛾𝑖𝜃𝑡
𝑖𝑇𝜑𝑡+1

𝑖 − 𝜃𝑡
𝑖𝑇𝜑𝑡

𝑖

𝜌𝑡
𝑖 = 𝜋𝑤𝑖 𝑎𝑡

𝑖 𝑠𝑡
𝑖 /𝜋𝑏 𝑎𝑡

𝑖 𝑠𝑡
𝑖



Proposed Actor 2
• Part 1 (local updates):

෥𝑤𝑡
𝑖 = 𝑤𝑡

𝑖 + 𝛽𝑡
𝑖𝜌𝑡

𝑖𝛿𝑡
𝑖 ǁ𝑒𝑡

𝑖

• Part 2 (distributed consensus):

𝑤𝑡+1
𝑖 = ෍

𝑗∈𝒩𝑖

𝑎𝑡
𝑖𝑗
෥𝑤𝑡
𝑗

• 𝑎𝑡
𝑖𝑗

elements of an 𝑁 × 𝑁 row-stochastic random matrix 𝐴𝑡 = 𝑎𝑡
𝑖𝑗

• 𝑎𝑡
𝑖𝑗
= 0 if Agent 𝑗 does not communicate with Agent 𝑖 at time step 𝑡

• The algorithm asymptotically provides consensus

𝑤1 = ⋯ = 𝑤𝑁 = 𝑤∗

step size 𝛽𝑡
𝑖 ≪ 𝛼𝑡

𝑖 (slow time scale) 



Convergence

• Rigorous proofs of stochastic convergence:
• M.S. Stankovic, M. Beko, N Ilic and S.S. Stankovic. Multi-Agent Off-Policy 

Actor-Critic Algorithm for Distributed Multi-Task Reinforcement Learning, 
European Control Conference, ECC 2023, 2023.

• M.S. Stankovic, M. Beko, N Ilic and S.S. Stankovic. Multi-Agent Actor-Critic 
Multitask Reinforcement Learning based on GTD(1) with Consensus, 61st 
IEEE Conference on Decision and Control, CDC 2022, Cancun, Mexico, 2022.

• M.S. Stankovic, M. Beko and S.S. Stankovic. Convergent Distributed Actor-
Critic Algorithm Based on Gradient Temporal Difference, 30th European 
Signal Processing Conference, EUSIPCO 2022, Belgrade, Serbia, 2022.

• …



Main Properties and Benefits

• Fully decentralized (only local state transitions and rewards 
observations)

• Tool for organizing/fusing coordinated actions (behavior policies, 
eligibility traces), speeding-up/enabling convergence by exploiting 
agents’ complementarities 

• Tool for parallelization, speeding up the convergence by reducing the 
overall variance which has two sources:
• underlying MC stochastic dynamics
• possible presence of white noise noise in the one-step rewards

• Tool for improvement of the final VF approximation precision (error 
with respect to the true VF of the target policy)



Experiment 1

• Multi task setup: 𝑝 moving, 𝑎𝑒𝑥𝑖𝑡 , 
𝑝 stuck, 𝑎𝑒𝑥𝑖𝑡 , R(𝑎𝑒𝑥𝑖𝑡) and 
𝜋𝑏 𝑎𝑒𝑥𝑖𝑡 𝑠 differ among the agents

• Actor: Gibbs parameterization with 
tabular features

• Equal local consensus weights

• Successful convergence to the optimal 
policy using our algorithm



Experiment 1



Experiment 1



Experiment 2

• Actor: Gibbs parameterization with binary features with lower dimensionality

• The agents are not restricted to particular subsets of states

• Convergence to the optimal policy is not guaranteed



Experiment 2



Drone Swarms Project Summary
• Specific focus: Algorithmic solutions that enable a system of autonomous Micro-Aerial 

Vehicles (Cooperative Swarm), to safely perform complex tasks in unknown 
environments

• Using: on-board sensors and inter-drone communication

• Automatic accomplishment of environmental mapping, localization, path planning, target 
detection/tracking and flight control

• Applications:
• Prevention and assistance with natural disasters (e.g. floods, earthquakes, wildfires etc.)
• Inspection and maintenance of industrial infrastructure
• Assistance with search and rescue operations
• Tracking the spread of disease, etc.

• Advantages: 
• Efficient and accurate mission accomplishment (faster 

than any human)
• No risk of physical harm
• Coordinated actions for mission optimization



Autonomous drone control for 
visual search based on deep 

reinforcement learning



RL model

• Based on the DQN algorithm

• Deep NN is used to approximate the state

• Memory of past experience

• Target network and training network

• e-greedy policy

• Input from 3 different sources

• Action space is discrete

• Reward is calculated with object detection algorithm (YOLO) with 
assistance of feature extraction network (ResNet)



Deep Q Approximation Neural Network



Environment example

Targets



State representation

RGB-D

RGB

Target

Feature extraction

Feature extraction

S
T
A
T
E

A
P
P
R
O
X
I

M
A
T
I
O
N



Actions

• Forward

• Up

• Down

• Left 30°

• Right 30°

• Stop



Rewards

Object detection
YOLO

Feature extraction
ResNet

Feature extraction
ResNet

Feature 
comparison

PENALTY

REWARD

Object ratio on 
image

<70%>70%

Large penalties for collision and small velocities.



Observation examples



Reward evolution

Time steps

Long-time training needed – distribution and decentralization is a necessity 



Example Evaluation Video 



Example Evaluation Video 



Example Evaluation Video 



Power line inspection example



Power line inspection example



Power line inspection example



Power line inspection example



Power line inspection example



RL Drawbacks

• Stability with function approximation (especially using DNNs)

• Security (exploration might be risky)
• Learning from other agents/previous experience  

• Sample (in)efficiency –
• In many cases too much exploration is needed for convergence compared to 

some other adaptive model based approaches (e.g. adaptive Model 
Predictive Control)



Drone wind turbine inspection



Drones formation control



Object tracking



Cloud resources and the 
OCRE project



Collaboration 
• Institutions involved:

1. Copelabs, Universidade Lusófona, Lisboa, Portugal
• The largest private university in Portugal 

• 10 Higher Education Institutes

• Copelabs: interdisciplinary approach to cyber-physical 
interconnected systems: telecommunications and 
networking; management information systems; data 
science and artificial intelligence

2. Singidunum University
• The largest private university in Serbia

• Research in cutting-edge engineering areas of Artificial 
Intelligence, Cyber-Physical Systems, Internet of Things, and 
other modern Computer, Communication and 
Cryptographic Systems



Cloud resources

• The project requires specialized computing resources to perform 
complex and computationally heavy processing when dealing with 
complex CPS including Swarms of Drones:

• Training of the algorithms

• Demanding simulators of real-life environments

• Real-time control and learning (when possible)



Benefits of cloud resources

• Access to state-of-the-art technology  (e.g. latest GPU technology and high 
scale compute technology)

• Agility (flexible experiments without investing significant funds and pivot to 
the types of resources optimal for the specific AI applications)

• Speed of implementation (the time savings from not having to acquire, 
provision, implement and configure the necessary resources)

• IT know-how (the research team can focus more on scientific applications, 
the project does not require IT experts or training)

• Cost (no investment in the compute resources, which will soon become 
obsolete) 



The OCRE call and the mini competition

• The grant was awarded in December 2020

• Mini competition was well organized by OCRE
• The whole process lasted about 2 months
• Our main requirements:

• Virtual machines with strong both CPUs and GPUs (including both visualization and 
machine learning)

• Machine learning toolsets (deep learning, reinforcement learning)

• 4 offers by leading global cloud service and infrastructure providers
• Google Cloud–Sparkle has been awarded 



Future plans

• Use efficiently the obtained cloud resources

• The project and future research and exploitation plans are ambitious

• As the project evolves we are expecting a need for more cloud 
resources

• Consider other calls providing cloud resources for research


