TechnoWeek 2023: Scientific computing in the cloud

Decentralized Machine Learning
Control (of Drone Swarms)

Milos Stankovié

University Singidunum Copelabs, Universidade Luséfona
Belgrade, Serbia Lisboa, Portugal

@ Univerzitet F UNIVERSIDADE
Singidunum #% LUSOFONA

Talk Outline

1. Our research on Decentralized Machine Learning Control
2. Multi Drone Reinforcement Learning Examples
3. Why we need cloud resources

4. About the specific OCRE project

Background

* Interdisciplinary subject: Control and Communication Engineering, Data
Science (Machine Learning), Computer Science, Applied Mathematics

* Foundation of Intelligent Networked Cyber-Physical Systems (INCPS)

" Cyber- ™ 5
Physical
System

businessz | H“"\ zf" ’ Cyber World @

iy o
0 Zs
SIS
£
B
c
@
n

World Internet-

Connectivity

* Complex distributed autonomous | _<
multi-agent systems

* Numerous revolutionary and Ee(va.sive applications: swarm robotics,
autonomous vehicles, smart buildings, cities and power grids, intelligent
agriculture, transportation and manufacturing systems, etc.

Examples

55
a0 X
o)
5
o0
51
25
70|
— B
73 P 81
gl
77
System description: 75 7
sz b6
buses
=
branches =
1 load sides =
D e
54 thermal units. a5 o @, 53
FalP
7 i
€

Platoons and Formations
of Vehicles

Biomolecular Networks Smart Agriculture

Project Summary

* The general objective:

Development of advanced methods and algorithms for decentralized
Machine Learning Control (MLC) for Networked Cyber-Physical
Systems

* Complex, spatially distributed and networked autonomous multi-agent
dynamical systems

* The methodological solutions cross the traditional boundaries
between (deep) machine learning, control systems (reinforcement
learning), and decentralization of functions.

* Acknowledgements: EC RIA, OCRE project, Science Fund of the Republic of Serbia,
and FCT

Concept and Methodology

Dimensionality, uncertainty and information structure constraints = decentralized decision making theory

Uncertainty and vulnerability (subsystems, interconnections, environment, communication channels and computing devices) -
intrinsic to large-scale multi-agent systems

= Decentralization provides superior robustness to structural uncertainty

Drawbacks of decentralization:
1) Lack of awareness of the global mission
* Proposed approaches:
* Distributed inter-agent agreement based on consensus techniques
* Game theoretic approach
* Learning and adaptation techniques:

* Reinforcement Learning (RL) — recently very popular methodology for dealing with decision making problems in
uncertain environments. Could represent a basis for development of decentralized learning control for INCPS

2) Increased vulnerability (to inconvenient faults and/or security attacks)
* Proposed approaches increasing resilience:

* Robust statistics and/or game theory
* Learning and adaptation techniques

Our Results on Distributed
Multi-Agent RL

RL Problem Setup and Basics

Basic Ideas

Learning what to do — how to map situations to actions —
SO as to maximize a numerical reward

Trial-and-error search

Delayed (averaged) reward (interaction is with dynamical
systems)

Direct learning from own experience - different from
supervised learning or system identification

Important challenge: trade-off between exploration and
exploitation

RL Problem setup

* Markov decision process: (S, A, P,r,y) — finite set of states, finite
actions set, transition matrix P(s’|s, a), r(s,a,s’) immediate reward,
¥y € (0,1) discount factor

e Discounted infinite horizon payoff (value function):

V(s) = E<z V" Tni1]s(0) = S}

Example

e (Windy) gridworld

S G +%

standard king's
moves moves

00 01112 210

m Reward = -1 per time-step until reaching goal

m Undiscounted

Example

* Driving on a highway model

ex1t
ex1t

Ry /&

highway) —

» p(moving, a —, p(stuck, aMghway) =

. p(mOVing, aexit) = 0.8, p(StuCk, aexlt) — 072
. r(aexit) = —4, r(ahighway) — 1

state

* Goals:
* Evaluate a (possibly randomized) policy (state-action map)
* Find the optimal policy

Policy Evaluation and Optimal Control of
MDPs

* Randomized stationary policy m: S X A — [0,1]
* 1) For given m find V™ (s):
e Bellman prediction equation:

V=R+yPV)
V=[V(s),...V(sis))] R = [R(s1), .., R(s15)]

R(s) = z z (s’ ,a) P(s’

s,a)r(s,a,s'),

s’ €s a€A
P(s,s') = Z (s’ ,a) P(s' |s,a)
aeA

* 2) Find T maximizing the discounted reward:
* Bellman optimality equation:
V'(s) = max(R(s,2) +7) P(s' |s,@) V' ("))
d
; s'es
R(s,a) = Z P(s' |s,a)r(s,as")

s’ es

e Resulting policy is deterministic optimal policy

iterative Policy Evaluation
* For given find V™ (s)

Vk+1 = R +yPVy,

V():O

R(s) = Z Z (s’ ,a)P(s’ ‘S, a)r(s,a,s'),

S’ €S A€EA

P(s,s') = z (s’ ,a) P(s' |s,a)

aeA
* For finding optimal policy:

olicy iteration: After finding I/, improve the policy greedily

[
Based on current I

 value iteration: iteratively apply the Bellman optimality equation
Vins(s) = max(R(s,2) +v) PG’ |5, @) Vi(s)
d

s'es

Example

“alue function

exit

a
3
0 T

AF

10 F

15 F

20 F

25k

S0k

-35

exit

a
14 15
oo

, :

State

15

Value function

Monte Carlo Methods

* To evaluate state s:

* The first time-step t that state s is visited in an episode:
* Increment counter N(s)
* Increment total return S(s) « S(s) + G;

Gt — Rt+1 +) 4 Rt+2 + ...+ yT_lRT
* Value is estimated by mean return V(s) = S(s)/N(s)
* By law of large numbers, I/ (s) converges to true value

* Monte-Carlo policy evaluation uses empirical mean return instead of
expected return

Temporal Difference Methods

 We want to update in each iteration

* Update value I/ (S;) toward estimated return Ry + ¥ V(S¢41):
TD target
A

V(Sy) « V(S +\((Rt+1 +y V(Sea1) = V(SD)

[

TD error

}

On-policy vs. Off-policy Learning

« Behavior policy Pis different than target policy 7
e Importance sampling:

V(s) = Ep {z PnY " Ts1ls(0) = s}
n=0

1 (an|Sn)

b (an|sn)

Pn

MCvs TD

* MC has high variance, zero bias (not very sensitive to initial value)
* Good convergence properties (even with function approximation)
* Very simple to understand and use

 TD has low variance, some bias
* Usually more efficient than MC
* TD not always convergent with function approx.

Control

Policy Optimization

Policy Iteration

e Recall — we use the Belman equation
V=R+yPlV

Monte-Carlo Policy Iteration

Every episode:

- MC policy evaluation, Q = g,

- Policy improvement e-greedy policy
O . improvement

Starting Q
Qs> T

We must have € — greedy strategy since
we need sufficient exploration!

TD — based Control

* Due to the advantages of TD: use TD instead of MC in our control loop
* Apply TDto Q(S,A)

* Use e-greedy policy improvement

e Update every time-step

SARSA Learning

S.A

R
* SARSA learning:

Qk+1(Sk, ar) = Qi (Skyag) + a(Rxy1 + Y Qi (Sk+1, Ag+1) — Qk (S, ak)
* On-policy

SARSA Learning

Starting Q
s T

* Every time-step:
* Policy evaluation SARSA, Q = g,
* Policy improvement e-greedy policy improvement

Q-Learning
* The target policy 1 is greedy w.r.t. Q(s,a)
m(S¢+1) = argmax,rQ(Se4q,a’)

* The behavior policy u is e-greedy w.r.t. Q(s,a)
* Q-learning:

Qk+1(Sk,ax) = Qr(Sk, ax) + a(Rgyq +y max Qx(Sk+1,a) — Q(sk, ax))

SARSA vs Q-learning

* Q-learning control converges to the optimal action-value function

* SARSA converges to the action-value function corresponding to the
applied policy (usually &- greedy)

Clitf Walking Example

Reward
per
epsiode

safe path

Y

optimal path

The Cliff G

Sarsa

-257
|"h""’"‘\~fh‘~v ﬂ\fu"‘f\, NN A f\s s
-50 : AAMMVAAVA
Q-learning
-75-
-100 T | . ' '
0 100 200 300 400 500

Episodes

Large-Scale Reinforcement Learning

e Examples:
« Backgammon: 102° states
« Computer Go: 10179 states
* Robots/Drones: continuous state space

Value Function Approximation

* Problem with large MDPs:
* Too many states and/or actions to store in memory
* |t is too slow to learn the value of each state individually

* Solution for large MDPs:
* Function approximation

D(s,w) = v,(s) or g(s,a,w) = q.(s,a)

* Possibility to generalize from seen states to unseen states
e Update parameters w using MC or TD learning

Which Function Approximator?

* There are many function approximators, e.g.
* Linear combinations of features
* Neural network

Decision tree

Nearest neighbour

Fourier / wavelet bases

Etc.

Linearly Approximated Q-learning in
Mountain Car Example

* Python code

MOUNTAIN CAR Goal

AT
/,’ e
Ve
/s

/f[\ R

~.

ode 166(“}“‘ ‘\7,

K

/ R
/ Episode 9000 ™,
Vi / LR,

1

Deep Q Learning

* DQN: Q-Learning with a Deep Neural Network as a function
approximator

* Training can be unstable

* Experience Replay and Target Network (T steps frozen parameters)
helps stabilization

* CNNs — applicability to purely vision based learning

Experience Replay in Deep Q-Networks (DQN)

* DQN uses experience replay and fixed Q-targets:

» Take action at according to e-greedy policy

* Store transition (S¢, a¢, 41, Sg41) in replay memory D

« Sample random mini-batch of transitions (s, a,r,s") from D
 Compute Q-learning targets w.r.t. old, fixed parameters w™

e Optimize (using SGD) MSE between Q-network output and Q-learning targets
o — 2
Li(Wi) — Es,a,r,sr{(r Ty rrg}XQ (S ,a , W) — Q(S; a, Wi))

Example - DQN in Atari

* End-to-end learning of values Q(s, a) from pixels

* Input state s is stack of raw pixels from last 4 frames
* Outputis Q(s, a) for 18 joystick/button positions

* Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connec ted linear
output lay
|6 Bx8 filters
4x84x84
Stack of 4 previous . L Fully-connec ted layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units

Policy gradient methods

e Parameterize the policy function

* Find gradient of the objective function with respect to the policy
parameters

e Typically results in the so called Actor-Critic methods

Summary of Typical Single-Agent Algorithms

* Value function learning/approximation:

* Monte-Carlo based
 Temporal-difference based (TD, TD(A), GTD(A), ETD(A))
* Least-Square methods

* Q-function learning:
* Q-learning
* SARSA

* Policy gradient/ Actor-Critic methods

Distributed Multi-Agent RL

Multi-Agent Policy Evaluation -Problem Setup

e N + 1 MDPs characterizeWS, A, pg’|g, a),R(s,a,s")}

Finite set of states Transition probabilities Random rewards

Finite set of actions

» Each MDP® has an associated stationary policy (9 (als)

* The goal of each agent: find the state-value function for the reference
MDP® with (target) policy (¥

* Each agent i applies (behavior) policy 7@ and can only observe local
state transitions and rewards

* Inter-agent communication is allowed
according to the given network topology
e Cooperative off-policy reinforcement learning

Off-Policy Value Function Approximation

 State space is typically large = value function parameterization:
v_0) = Vg = PO, 0 € RP, vy € RM

¢ Typlcally M > p Feature vectors ¢p(s),s € S
* Goal: find optimal}\?et of parameters ® = [0, ..., Oy] minimizing
J©) =) iji(6;) subjectto6; = 6, = - = O

=1
Ji(8) = [0 {T% v, —vo } |,

/ / \ l \
Projected generalized (Weighted) projection Generalized Bellman Steady state distribution

Bellman errors operator operator (with A- parameters
parameters)

Off-Policy Value Function Approximation

* By calculating local gradients the following two local gradient descent
algorithms (Sutton et al. 2009) can be derived:

o GTDZ(/l): /Irvnportance Sampwv Discount factors

0;(n+ 1) = 0;(n) + a(n)p;(n)[@(S;(n) —yi(n + Dp(S;(n + %))]ei(n)TWi(n)
wi(n+1) = Wi(%ﬁ(”) [ei(n)5i(v6i:n) — p(S;(n)p(S: () Wi(n)]
\ .

Step sizes Temporal difference term Feature vector

* Eligibility traces:

e;(n) = A4;(n)y;(n)p;(n — De;(n — 1) + ¢(S5;(n))

Off-Policy Value Function Approximation

* TDC(A):
Qi (Tl + 1)

= 6;(n)
+ a(m)|e;(n)6;(vg, n) — pi(M)(1 — A;(n+ 1))y;(n + Do (S;(n + 1))]e; () Tw; (n)

wi(n+ 1) = wy(n) + () |e;(0);(ve,) — @(S; (M) D(S;(n)) wy(n)]

Non-gradient based algorithms (faster)

* Instead of calculating gradients of the objective, we consider algorithms:
* 1) Standard TD(A) (not stable in general!): Discount factors

/
0;(n+1) =6;(n) + ai(n)ei(n)pi(n)\[Ri(n) —yi(n+ 1)/4)1'(71 +1)76;(n) — d)i(n)THi(n)]/
|
Impo‘rtéme / Temporal difference term
sampling weights

Step size Feature vector

* Eligibility trace vector: e;(n) = 1;(n)y;(n)p;(n — De;(n — 1) + ¢;(n)
* 2) Emphatic TD(A) (ETD(A), stable!, Sutton et al. 2016):

e;(n) = A4;(n)y;(m)p;(n — De;(n — 1) + u;(n)p;(n)
ui(n) = 4;(mw;(n) + (1 — 4;(n)) fi(n)
fim) =yi(m)pi(n—1)fi(n—1) + w;(n)

Proposed Algorithms for
Distributed VF Approximation

* D1-GTD2(A):

0;'(n) = 6;(n) + a(n)q;p;(M)|[P(S;(n)) — y;(n + Dp(S;(n + 1);]ei(n)TWi(n)
wi'(n) = wi(n) + B() |e,()8; (v, n) — B(S: (W) P(S: () wi ()|

Random network weights

* Convexification:

Proposed Algorithms for
Distributed VF Approximation

* D2-GTD2(A):

0;'(n) = 6;(n) + a(M)qip;(M)|P(S;(n)) — yi(n + Dp(S;(n + 1))lei(n)TWi(n)
w;'(n) = w;(n) + p(n) [ei(n)c?i(vgi,n) — ¢ (S;(n))p(S;()) Wi(n)]

Random network weights

e Convexification: N /
Hi(n + 1) = z

a;j(n)6;'(n)
JF1
wiln+ 1) =) a;(mw;'(n)

j=1

Proposed Algorithms for
Distributed VF Approximation

* D1-TDC(A):

0;'(n) = 6;(n) + a(n)|e;(n)8;(vg,, n) — p;(M)(1 — A;(n + 1))y;(n + 1)¢T>(5i(n +1))]e;(m)Tw;(n)
w;'(n) = w;(n) + B(n) [ei(n)5i(v9i:n) — o (Si () (S () Wi(n)]

* Convexification: N

O(n+1) = 2 a;j(n)6;’ (n)

Jj=1
win+1) =w;'(n)

Proposed Algorithms for
Distributed VF Approximation

* D2-TDC(A):

0;'(n) = 6;(n) + a(n)|e;(n)8;(vg,, n) — p;(M)(1 — A;(n + 1))y;(n + 1)¢T>(5i(n + 1))]e;(n)Tw;(n)
wy'(n) = wi(n) + B(n) [e;()8; (v, m) — $(S5:(0)$(5: (W) wy(m)

Random network weights

e Convexification: N /
Hl-(n + 1) = 2

a;;(n)8;'(n)
JF1
win+ 1) = > a;(mw;'(n)

j=1

Proposed Algorithms for
Distributed VF Approximation

* D-TD(A) and D-ETD(A) :

6;'(n)
= 0;(n) + a;(n)e;(n)p;(M)[R;(n) —y;(n + Dp;(n + 1DT0;(n) — p;(m)"6;(n)]

e Convexification: Random network weights

N
O(n+1) = z ai]/('n)ﬁj’(n)

j=1

Convergence

* Rigorous proofs of stochastic convergence:

* M.S. Stankovic, M. Beko and S.S. Stankovic. Distributed Consensus-Based
Multi-Agent Temporal-Difference Learning, Automatica, Vol. 151, 2023.

 M.S. Stankovi¢, M. Beko and S.S. Stankovi¢, Distributed Value Function
Approximation for Collaborative Multi-Agent Reinforcement Learning, /EEE
Transactions on Control of Network Systems, 8(3), pp. 1270 — 1280, 2021.

M. S. Stankovic, M. Beko and S. S. Stankovic, Distributed Consensus-Based
Multi-Agent Temporal-Difference Learning, 60th IEEE Conference on Decision
and Control (CDC), 2021..

Illustrative simulation results

Highway model it
ex1t

=y AR

» p(moving, aM9hway) = — p(stuck, aht9way) = 1 —

. p(moving, aexit) = 0.8, p(stuck, ae’“t) = 0.2
. R(aexit) = —4 R(aexit) - —1

state

« Target policy: p(a®**) = 0.8

e N =10 agents

» Behavior policies: p(a®**) = (0.6,0.5,0.9,0.81,0.4,0.67,0.3,0.55, 0.45, 0.6)
» 7 features — Gaussian radial basis distances to states 1,3,5,7,9,11 and 13

Variance and rate of convergence comparison

* 50 Monte Carlo simulations

el = 04

* Average variance of D-TD(A) : 0.93

* Average variance of D-ETD(A) is 1.46

e Conclusion: D-TD(A) has smaller
variance and faster rate of
convergence

MSE

140

120

100 §

= D-TD(0.6)
— & D-TD(0)
4% D-ETD(0.6)
D-TDC{0.6) [Stankovi¢ et al., 2021]

Mean MSE curves

50

100

150 200
[terations

250

Multi-Task Policy Optimization
* Q-learning (similar to policy evaluation)

e Actor-Critic (much better convergence properties)

Problem setup

N MDPs characterized by {S, 4, p'(s’|s,a), R;(s, a,s")}

/

Finite set of states \ Transition probabilities Random rewards
Finite set of actions

Discount factors

Each agent i applies a control policy 7 (als)

The local goal of each agent: find 7 (a|s) optimizing the state-value function:

© J

i

VPi(s) = EfiqReyq + Z ‘ ‘ I (5£+k)R£+j+1|5£ =S
j=1k=1

Off-policy setup — each agent interacts with its environment using a local behavior policy ﬂ,i,
Each agent can only observe local state transitions and rewards

Inter-agent communication is allowed according to the given network topology
Cooperative reinforcement learning

Value and Policy Function Approximations

* State space is typically large = value and policy function parameterizations
* Critic stage — linear parameterization:

Vi(s) = 0T pi(s
Hl() \ v ()\ Local features ¢'(s) € RL6

* Typically Lg << M
* Actor stage:

Local parameter vector

e Policy ! = 1 ,i parameterized using the policy parameter vector wt € RLw
L, << M

* Off-policy scenario — importance ratio: pé' = ﬂwi(aHSf:)/ﬂb (GHSD

Local objectives

* The expected linear approximation of the local value function

Ji (Qi(wi)) _ QiTEi{Cpg} — 0T) di (5)ei(s)
2.0

Steady state distribution
parameters

e Locally optimal values are wt* = Argmaxwi]i (Hi(wi)), (i=1,..,N

Multi-Agent Objective

. Utility parameter vector
* Multi-objective optimization dim(c) = N,0 < ci < 1,%,¢l =1

* Global objective function: /
Jwt, o wh;e) = 2 ctJ (Hi(wi))
i=1
* The goal is to learn a single policy that performs optimally for the
averaged tasks
* The common policy function:
7‘[\1‘/* — see — T[x

Proposed Critic algorithm 1 (ETD(A))

St =Rl +7y'0T @l — 0T o}
e = mipt +y' Alel_y
="+ (1 - 2')q;

qi=1+vy'pi_1qi_4

Proposed Critic algorithm 2 (GTD(1))

step size a% > 0 (fast time scale)

0i = 0 + aipibie;
St =Rl +v' 0T ol — 0 o}
ef = @r +v'pi_1eiq

pt = m,i(at|st)/mp(at|st)

Proposed Actor 1

* Derived using exact policy gradient, assuming ETD(A) for the Critic
* The policy gradient can be derived as:

Filid) — Ve 5 f Al i
wa] (W) = gl}rgEl{pt(Ytgt)}
s =t L y o
& = [V ilogm,i(alls) + @t +yipl_, &L,
i ~/‘1i" .. o) .. iy
.u% — ft l + VLP£—1[(m ;—1 - Al)vwi lognwi(aﬂS,f) + .Ué—1
”Ai,i i i DL
;=g Yo AR

mtlf =1+)/ipg_l(rﬁi_l — 29

P rO p OS e d ACtO I 1 step size B¢ < a! (slow time scale)

e Part 1 (local updates):
Wt = Wt + .Bt5t

 Part 2 (distributed consensus):

i _ E i ~J
Wti1 = ar Wi

JEN;
. at elements of an N X N row-stochastic random matrix A = [at]

. at = 0 if Agent j does not communicate with Agent i at time step ¢t

* The algorithm asymptotically provides consensus

Proposed Actor 2

 Derived using exact policy gradient, assuming GTD(1) for the Critic
* The policy gradient can be derived as:

v iJt(w!) = th_)r?oEl{p (€0}

pt=m i(aﬂsg)/ﬂb(a%l#)
8t = Riy1 +v'0 0ty — 0 0}

~l

ol — fthWi logﬂwi(a“SD‘FV Pt 1€¢-1

fi=14+vypi Ay

P rO p OS e d ACtO I 2 step size B¢ < a! (slow time scale)

e Part 1 (local updates): , _ -
wi = wi + Bipisie]

 Part 2 (distributed consensus):

i _ E i ~J
Wti1 = ar Wi

JEN;
. at elements of an N X N row-stochastic random matrix A = [at]

. at = 0 if Agent j does not communicate with Agent i at time step ¢t

* The algorithm asymptotically provides consensus

Convergence

* Rigorous proofs of stochastic convergence:

* M.S. Stankovic, M. Beko, N llic and S.S. Stankovic. Multi-Agent Off-Policy
Actor-Critic Algorithm for Distributed Multi-Task Reinforcement Learning,
European Control Conference, ECC 2023, 2023.

* M.S. Stankovic, M. Beko, N llic and S.S. Stankovic. Multi-Agent Actor-Critic
Multitask Reinforcement Learning based on GTD(1) with Consensus, 61st
IEEE Conference on Decision and Control, CDC 2022, Cancun, Mexico, 2022.

* M.S. Stankovic, M. Beko and S.S. Stankovic. Convergent Distributed Actor-
Critic Algorithm Based on Gradient Temporal Difference, 30th European
Signal Processing Conference, EUSIPCO 2022, Belgrade, Serbia, 2022.

Main Properties and Benefits

* Fully decentralized (only local state transitions and rewards
observations)

* Tool for organizing/fusing coordinated actions (behavior policies,
eligibility traces), speeding-up/enabling convergence by exploiting
agents’ complementarities

* Tool for parallelization, speeding up the convergence by reducing the
overall variance which has two sources:

* underlying MC stochastic dynamics
* possible presence of white noise noise in the one-step rewards

* Tool for improvement of the final VF approximation precision (error
with respect to the true VF of the target policy)

Experiment 1

Multi task setup: p(moving, aexit)’ 0 —j%True optimal value fun'ctions for each of thg 10 agents o
exit oxit —o— Average of the agents' optimal value functions (global criterion)
p(stuck, a), R(a®***) and

Ty (ae’Cit|S) differ among the agents

2

Actor: Gibbs parameterization with
tabular features

Value function

Equal local consensus weights ol

Successful convergence to the optimal State
policy using our algorithm

Experiment 1

Average value function

=
i

-

o
A

da

W
in

— Average value function of the agents’ policy estimates
— Optimal average value function

R0 1000 1500 2000 2500 3000
lterations

3500

Experiment 1

Value function

—v—Averaged agents' optimal value functions (global criterion)
—*— Average value functions of the final optimal policy estimates
— Final values of each agent's Ciritic

State

15

Experiment 2

* Actor: Gibbs parameterization with binary features with lower dimensionality
* The agents are not restricted to particular subsets of states

e Convergence to the optimal policy is not guaranteed

-8 -

-85 |— Average value function of the agents' policy estimates
—— Optimal average value function

i
=]
T

Average value function
[

0 1 1 1 1 I 1 1 1
0 1000 2000 3000 4000 5000 G000 7000 2000

lterations

Experiment 2

—7— True optimal value function
—+—Value function of the final agents' optimal policy estimates /

Final value function estimates of each agent's Critic

4

-

-2

Value function

State

Drone Swarms Project Summary

* Specific focus: Algorithmic solutions that enable a system of autonomous Micro-Aerial
Vehicles (Cooperative Swarm), to safely perform complex tasks in unknown
environments

* Using: on-board sensors and inter-drone communication

* Automatic accomplishment of environmental mapping, localization, path planning, target
detection/tracking and flight control

* Applications:
* Prevention and assistance with natural disasters (e.g. floods, earthquakes, wildfires etc.)
* Inspection and maintenance of industrial infrastructure
* Assistance with search and rescue operations
* Tracking the spread of disease, etc.

Advantages:
e Efficient and accurate mission accomplishment (faster
than any human)
* No risk of physical harm
e Coordinated actions for mission optimization

Autonomous drone control for
visual search based on deep
reinforcement learning

RL model

* Based on the DQN algorithm

* Deep NN is used to approximate the state
 Memory of past experience

* Target network and training network

* e-greedy policy

* Input from 3 different sources

* Action space is discrete

e Reward is calculated with object detection algorithm (YOLO) with
assistance of feature extraction network (ResNet)

Deep Q Approximation Neural Network

-

Environment example

Targets

State representation

m— > - n

RGB-D

RGB Feature extraction

> Feature extraction

Target

A
P
P
R
O
X
|
\Y
A
T
|
O
N

Actions

Forward
° Up

* Down
Left 30°
Right 30°
Stop

Rewards

Object detection Feature extraction
YOLO ResNet

Feature extraction Feature
ResNet comparison

Object ratio on
image

Large penalties for collision and small velocities.

REWARD

Observation examples

Reward evolution

rollout/ep_len_mean rollout/ep_rew_mean rollout/exploration_rate
tag: rollout/ep_len_mean tag: rollout/ep_rew_mean tag: rollout/exploration_rate
45 -
500
35
300
25
15 100
5 | -100
0 5k 10k 15k 20k 25k 30k 35k 40k 0 5k 10k 15k 20k 25k 30k 35k 40k 0 5k 10k 15k 20k 25k 30k 35k 40k

rna - ra
LJd —

(]

Time steps

Long-time training needed — distribution and decentralization is a necessity

Example Evaluation Video

Current Source Control Modes

nmga

Content Settings Blueprints Pause Stop Eject

Clockspead config, actual; 5.
requestApiControl was succe
Vehicle is already armed
AP call was not received,

ing hover mode for safety

New plugins are avai

Ln4o, CoL150 Spacesid UIFE Lr

Example Evaluation Video

= q- ¥ nme

Content Settings Blueprints Cinematics Pause Stop Eject

cle is already armed
API call was not received, ent

Ln34,Col127 Spacesi4 UTF8 LF

Example Evaluation Video

e Vv E T SS T onme

Save Current Source Control Modes Content Settings Blueprints Cinematics Pause Stop Eject

2 o

| In32,Col32 Spaces:4 UTF8 LF

Power line inspection example

Power line inspection example

Power line inspection example

\

b

..§

i a.f AT

“&k ﬁ«.

Power line inspection example

Power line inspection example

RL Drawbacks

e Stability with function approximation (especially using DNNs)
 Security (exploration might be risky)

 Learning from other agents/previous experience
* Sample (in)efficiency —

* In many cases too much exploration is needed for convergence compared to
some other adaptive model based approaches (e.g. adaptive Model
Predictive Control)

rone wind turbine inspection

local_planner.rviz* - RViz
File Panels Help

d"yinteract | “§*Move Camera [JSelect < FocusCamera ==Measure .~ 2DNavGoal @ Publish Point

(3 Image

Drones formation control

Object tracking

Cloud resources and the
OCRE project

Collaboration

e Institutions involved:

1. Copelabs, Universidade Lusofona, Lisboa, Portugal 2= UNIVERSIDADE
* The largest private university in Portugal #: LUSOFONA

* 10 Higher Education Institutes

e Copelabs: interdisciplinary approach to cyber-physical
interconnected systems: telecommunications and
networking; management information systems; data
science and artificial intelligence

2. Singidunum University Sil%idUnﬁerziI‘gfji
unu

* The largest private university in Serbia

e Research in cutting-edge engineering areas of Artificial
Intelligence, Cyber-Physical Systems, Internet of Things, and
other modern Computer, Communication and
Cryptographic Systems

Cloud resources

* The project requires specialized computing resources to perform
complex and computationally heavy processing when dealing with
complex CPS including Swarms of Drones:

* Training of the algorithms
* Demanding simulators of real-life environments

e Real-time control and learning (when possible)

Benefits of cloud resources

* Access to state-of-the-art technology (e.g. latest GPU technology and high
scale compute technology)

» Agility (flexible experiments without investing significant funds and pivot to
the types of resources optimal for the specific Al applications)

* Speed of implementation (the time savings from not having to acquire,
provision, implement and configure the necessary resources)

* IT know-how (the research team can focus more on scientific applications,
the project does not require IT experts or training)

e Cost (no investment in the compute resources, which will soon become
obsolete)

The OCRE call and the mini competition

* The grant was awarded in December 2020

* Mini competition was well organized by OCRE
* The whole process lasted about 2 months

* Our main requirements:

 Virtual machines with strong both CPUs and GPUs (including both visualization and
machine learning)

* Machine learning toolsets (deep learning, reinforcement learning)

4 offers by leading global cloud service and infrastructure providers
* Google Cloud—Sparkle has been awarded

Future plans

 Use efficiently the obtained cloud resources
* The project and future research and exploitation plans are ambitious

* As the project evolves we are expecting a need for more cloud
resources

* Consider other calls providing cloud resources for research

