TechnoWeek 2023: Scientific computing in the cloud

Decentralized Machine Learning Control (of Drone Swarms)

Miloš Stanković

University Singidunum Belgrade, Serbia Copelabs, Universidade Lusófona Lisboa, Portugal

Talk Outline

- 1. Our research on Decentralized Machine Learning Control
- 2. Multi Drone Reinforcement Learning Examples
- 3. Why we need cloud resources
- 4. About the specific OCRE project

Background

- Interdisciplinary subject: Control and Communication Engineering, Data Science (Machine Learning), Computer Science, Applied Mathematics
- Foundation of Intelligent Networked Cyber-Physical Systems (INCPS)

 Complex distributed autonomous multi-agent systems

 Numerous revolutionary and pervasive applications: swarm robotics, autonomous vehicles, smart buildings, cities and power grids, intelligent agriculture, transportation and manufacturing systems, etc.

Smart Power Grid

Robotic Wireless Networks

Biomolecular Networks

IoT

Platoons and Formations of Vehicles

4

Project Summary

• The general objective:

Development of advanced methods and algorithms for decentralized Machine Learning Control (MLC) for Networked Cyber-Physical Systems

- Complex, spatially distributed and networked autonomous multi-agent dynamical systems
- The methodological solutions cross the traditional boundaries between (deep) machine learning, control systems (reinforcement learning), and decentralization of functions.
- Acknowledgements: EC RIA, OCRE project, Science Fund of the Republic of Serbia, and FCT

Concept and Methodology

- Dimensionality, uncertainty and information structure constraints ⇒ decentralized decision making theory
- Uncertainty and vulnerability (subsystems, interconnections, environment, communication channels and computing devices) intrinsic to large-scale multi-agent systems

⇒ Decentralization provides superior **robustness** to **structural uncertainty**

• Drawbacks of decentralization:

1) Lack of awareness of the global mission

- Proposed approaches:
 - Distributed inter-agent agreement based on **consensus techniques**
 - Game theoretic approach
 - Learning and adaptation techniques:
 - **Reinforcement Learning (RL)** recently very popular methodology for dealing with decision making problems in uncertain environments. Could represent a basis for development of decentralized learning control for INCPS

2) Increased vulnerability (to inconvenient faults and/or security attacks)

- Proposed approaches increasing resilience:
 - Robust statistics and/or game theory
 - Learning and adaptation techniques

Our Results on Distributed Multi-Agent RL

RL Problem Setup and Basics

Basic Ideas

- Learning what to do how to map situations to actions so as to maximize a numerical reward
- Trial-and-error search
- Delayed (averaged) reward (interaction is with dynamical systems)
- Direct learning from own experience different from supervised learning or system identification
- Important challenge: trade-off between exploration and exploitation

RL Problem setup

- Markov decision process: $(S, \mathcal{A}, P, r, \gamma)$ finite set of states, finite actions set, transition matrix P(s'|s, a), r(s, a, s') immediate reward, $\gamma \in (0,1)$ discount factor
- Discounted infinite horizon payoff (value function):

$$V(s) = E\left\{\sum_{n=0}^{\infty} \gamma^n r_{n+1} | s(0) = s\right\}$$

Example

• (Windy) gridworld

- Reward = -1 per time-step until reaching goal
- Undiscounted

Example

• Driving on a highway model

- $p(\text{moving}, a^{highway}) = \frac{1}{\text{state}}$, $p(\text{stuck}, a^{highway}) = 1 \frac{1}{\text{state}}$
- $p(\text{moving}, a^{exit}) = 0.8$, $p(\text{stuck}, a^{exit}) = 0.2$
- $r(a^{exit}) = -4$, $r(a^{highway}) = -1$
- Goals:
 - Evaluate a (possibly randomized) policy (state-action map)
 - Find the optimal policy

Policy Evaluation and Optimal Control of MDPs

- Randomized stationary policy $\pi: S \times \mathcal{A} \rightarrow [0,1]$
- 1) For given π find $V^{\pi}(s)$:
- Bellman prediction equation:

$$V = R + \gamma PV$$

$$V = \left[V(s_1), \dots, V(s_{|S|})\right]^T, R = \left[R(s_1), \dots, R(s_{|S|})\right]^T,$$

$$R(s) = \sum_{s' \in S} \sum_{a \in \mathcal{A}} \pi(s', a) P(s' \mid s, a) r(s, a, s'),$$

$$P(s, s') = \sum_{a \in \mathcal{A}} \pi(s', a) P(s' \mid s, a)$$

- 2) Find π maximizing the discounted reward:
- Bellman optimality equation:

$$V^{*}(s) = \max_{a \in \mathcal{A}} \{ R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V^{*}(s') \}$$
$$R(s, a) = \sum_{s' \in S} P(s' | s, a) r(s, a, s')$$

• Resulting policy is deterministic optimal policy

Iterative Policy Evaluation • For given π find $V^{\pi}(s)$

$$\begin{aligned} V_{k+1} &= R + \gamma P V_k, & V_0 = 0\\ R(s) &= \sum_{s' \in S} \sum_{a \in \mathcal{A}} \pi(s', a) P(s' \mid s, a) r(s, a, s'), \\ P(s, s') &= \sum_{a \in \mathcal{A}} \pi(s', a) P(s' \mid s, a) \end{aligned}$$

- For finding optimal policy:
 - **policy iteration**: After finding V_{π} improve the policy greedily based on current V_{π}
 - value iteration: iteratively apply the Bellman optimality equation

$$V_{k+1}^{*}(s) = \max_{a \in \mathcal{A}} \{ R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V_{k}^{*}(s') \}$$

Example

Monte Carlo Methods

- To evaluate state *s*:
- The first time-step t that state s is visited in an episode:
 - Increment counter N(s)
 - Increment total return $S(s) \leftarrow S(s) + G_t$

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers, V(s) converges to true value
- Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Temporal Difference Methods

- We want to update in each iteration
- Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$:

$$V(S_t) \leftarrow V(S_t) + (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

On-policy vs. Off-policy Learning

- Behavior policy π^{b} is different than target policy π
- Importance sampling:

$$V(s) = E_{\pi}^{b} \left\{ \sum_{n=0}^{\infty} \rho_{n} \gamma^{n} r_{n+1} | s(0) = s \right\}$$
$$\rho_{n} = \frac{\pi(a_{n} | s_{n})}{\pi^{b}(a_{n} | s_{n})}$$

MC vs TD

- MC has high variance, zero bias (not very sensitive to initial value)
- Good convergence properties (even with function approximation)
- Very simple to understand and use
- TD has low variance, some bias
- Usually more efficient than MC
- TD not always convergent with function approx.

Control

Policy Optimization

Policy Iteration

• Recall – we use the Belman equation $V = R + \gamma PV$

Monte-Carlo Policy Iteration

TD – based Control

- Due to the advantages of TD: use TD instead of MC in our control loop
- Apply TD to Q(S, A)
- Use ε -greedy policy improvement
- Update every time-step

SARSA Learning

• SARSA learning:

 $Q_{k+1}(s_k, a_k) = Q_k(s_k, a_k) + \alpha(R_{k+1} + \gamma Q_k(s_{k+1}, a_{k+1}) - Q_k(s_k, a_k))$

• On-policy

SARSA Learning

- Every time-step:
- Policy evaluation SARSA, $Q \, \approx \, q_{\pi}$
- Policy improvement ε -greedy policy improvement

Q-Learning

• The **target policy** π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \operatorname{argmax}_{a'}Q(S_{t+1}, a')$$

- The **behavior policy** μ is ε -greedy w.r.t. Q(s, a)
- Q-learning:

$$Q_{k+1}(s_k, a_k) = Q_k(s_k, a_k) + \alpha(R_{k+1} + \gamma \max_a Q_k(s_{k+1}, a) - Q_k(s_k, a_k))$$

SARSA vs Q-learning

• Q-learning control converges to the **optimal action-value function**

 SARSA converges to the action-value function corresponding to the applied policy (usually ε- greedy)

Cliff Walking Example

Large-Scale Reinforcement Learning

- Examples:
 - Backgammon: 10^{20} states
 - Computer Go: 10^{170} states
 - Robots/Drones: continuous state space

Value Function Approximation

- Problem with large MDPs:
- Too many states and/or actions to store in memory
- It is too slow to learn the value of each state individually
- Solution for large MDPs:
- Function approximation

 $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$ or $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

- Possibility to generalize from seen states to unseen states
- Update parameters *w* using MC or TD learning

Which Function Approximator?

- There are many function approximators, e.g.
 - Linear combinations of features
 - Neural network
 - Decision tree
 - Nearest neighbour
 - Fourier / wavelet bases
 - Etc.

Linearly Approximated Q-learning in Mountain Car Example

• Python code

Deep Q Learning

- DQN: Q-Learning with a **Deep Neural Network as a function** approximator
- Training can be unstable
- Experience Replay and Target Network (*T* steps frozen parameters) helps stabilization
- CNNs applicability to purely vision based learning

Experience Replay in Deep Q-Networks (DQN)

- DQN uses experience replay and fixed Q-targets:
- Take action at according to *ε*-greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- Sample random mini-batch of transitions (s, a, r, s') from D
- Compute Q-learning targets w.r.t. old, fixed parameters w⁻

• Optimize (using SGD) MSE between Q-network output and Q-learning targets $\mathcal{L}_{i}(w_{i}) = \mathbb{E}_{s,a,r,s'} \{ (r + \gamma \max_{a'} Q(s', a', w^{-}) - Q(s, a, w_{i}))^{2} \}$

Example - DQN in Atari

- End-to-end learning of values Q(s, a) from pixels
- Input state *s* is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Policy gradient methods

- Parameterize the policy function
- Find gradient of the objective function with respect to the policy parameters
- Typically results in the so called Actor-Critic methods
Summary of Typical Single-Agent Algorithms

- Value function learning/approximation:
 - Monte-Carlo based
 - Temporal-difference based (TD, TD(λ), GTD(λ), ETD(λ))
 - Least-Square methods
- Q-function learning:
 - Q-learning
 - SARSA
 - ...
- Policy gradient/ Actor-Critic methods

Distributed Multi-Agent RL

Multi-Agent Policy Evaluation -Problem Setup

• N + 1 MDPs characterized by {S, A, p(s'|s, a), R(s, a, s')}

Finite set of states

Transition probabilities

Random rewards

Finite set of actions

- Each MDP⁽ⁱ⁾ has an associated stationary policy $\pi^{(i)}(a|s)$
- The goal of each agent: find the state-value function for the reference ${\rm MDP}^{(0)}$ with (target) policy $\pi^{(0)}$
- Each agent *i* applies (**behavior**) policy $\pi^{(i)}$, and can only observe local state transitions and rewards
- Inter-agent communication is allowed according to the given network topology
- Cooperative off-policy reinforcement learning

Off-Policy Value Function Approximation

- State space is typically large \Rightarrow value function parameterization: $v_{\pi^{(0)}} \approx v_{\theta} = \Phi \theta, \quad \theta \in \mathcal{R}^p, v_{\theta} \in \mathcal{R}^M$ • Typically $M \gg p$ Feature vectors $\phi(s), s \in S$
- Goal: find optimal set of parameters $\Theta = [\theta_1, \dots, \theta_N]$ minimizing $J(\Theta) = \sum_{\substack{i=1\\J_i(\Theta_i)}}^{n} q_i J_i(\Theta_i) \text{ subject to } \theta_1 = \theta_2 = \dots = \theta_N$

Projected generalized Bellman errors

(Weighted) projection operator

Generalized Bellman operator (with λ parameters)

Steady state distribution parameters

Off-Policy Value Function Approximation

- By calculating local gradients the following two **local gradient descent algorithms** (Sutton et al. 2009) can be derived:
 - GTD2(λ): Importance sampling weights Discount factors

$$\begin{aligned} \theta_{i}(n+1) &= \theta_{i}(n) + \alpha(n)\rho_{i}(n) \big[\Phi(S_{i}(n)) - \gamma_{i}(n+1)\phi(S_{i}(n+1)) \big] e_{i}(n)^{T} w_{i}(n) \\ w_{i}(n+1) &= w_{i}(n) + \beta(n) \left[e_{i}(n)\delta_{i}(v_{\theta_{i}},n) - \phi(S_{i}(n))\phi(S_{i}(n))^{T} w_{i}(n) \right] \end{aligned}$$

Step sizes

Temporal difference term

Feature vector

• Eligibility traces:

$$e_i(n) = \lambda_i(n)\gamma_i(n)\rho_i(n-1)e_i(n-1) + \phi(S_i(n))$$

Off-Policy Value Function Approximation

• TDC(λ):

$$\theta_i(n+1) = \theta_i(n) + \alpha(n) [e_i(n)\delta_i(v_{\theta_i},n) - \rho_i(n)(1-\lambda_i(n+1))\gamma_i(n+1)\phi(S_i(n+1))]e_i(n)^T w_i(n)$$

$$w_i(n+1) = w_i(n) + \beta(n) \left[e_i(n)\delta_i(v_{\theta_i}, n) - \Phi(S_i(n))\Phi(S_i(n))^T w_i(n) \right]$$

Non-gradient based algorithms (faster)

- Instead of calculating gradients of the objective, we consider algorithms:
- 1) Standard TD(λ) (not stable in general!):

$$\theta_{i}(n+1) = \theta_{i}(n) + \alpha_{i}(n)e_{i}(n)\rho_{i}(n)[R_{i}(n) - \gamma_{i}(n+1)\phi_{i}(n+1)^{T}\theta_{i}(n) - \phi_{i}(n)^{T}\theta_{i}(n)]$$
Step size Importance sampling weights Feature vector Temporal difference term

Discount factors

- Eligibility trace vector: $e_i(n) = \lambda_i(n)\gamma_i(n)\rho_i(n-1)e_i(n-1) + \phi_i(n)$
- 2) Emphatic TD(λ) (ETD(λ), stable!, Sutton et al. 2016):

$$e_{i}(n) = \lambda_{i}(n)\gamma_{i}(n)\rho_{i}(n-1)e_{i}(n-1) + \mu_{i}(n)\phi_{i}(n)$$

$$\mu_{i}(n) = \lambda_{i}(n)w_{i}(n) + (1 - \lambda_{i}(n))f_{i}(n)$$

$$f_{i}(n) = \gamma_{i}(n)\rho_{i}(n-1)f_{i}(n-1) + w_{i}(n)$$

• D1-GTD2(λ):

$$\begin{aligned} \theta_i'(n) &= \theta_i(n) + \alpha(n)q_i\rho_i(n) \big[\Phi\big(S_i(n)\big) - \gamma_i(n+1)\phi\big(S_i(n+1)\big) \big] e_i(n)^T w_i(n) \\ w_i'(n) &= w_i(n) + \beta(n) \left[e_i(n)\delta_i\big(v_{\theta_i},n\big) - \phi\big(S_i(n)\big)\phi\big(S_i(n)\big)^T w_i(n) \right] \end{aligned}$$

• Convexification: $\theta_i(n+1) = \sum_{\substack{j=1\\ j=1}}^N a_{ij}(n)\theta_j'(n)$ $w_i(n+1) = w_i'(n)$ Random network weights

• D2-GTD2(λ):

$$\theta_{i}'(n) = \theta_{i}(n) + \alpha(n)q_{i}\rho_{i}(n) \left[\Phi(S_{i}(n)) - \gamma_{i}(n+1)\phi(S_{i}(n+1)) \right] e_{i}(n)^{T}w_{i}(n) w_{i}'(n) = w_{i}(n) + \beta(n) \left[e_{i}(n)\delta_{i}(v_{\theta_{i}}, n) - \phi(S_{i}(n))\phi(S_{i}(n))^{T}w_{i}(n) \right]$$

• Convexification:

Random network weights

$$\theta_{i}(n+1) = \sum_{\substack{j \in \mathbb{N} \\ \overline{N}}}^{N} a_{ij}(n) \theta_{j}'(n)$$
$$w_{i}(n+1) = \sum_{\substack{j=1}}^{N} a_{ij}(n) w_{j}'(n)$$

• D1-TDC(λ):

$$\begin{aligned} \theta_{i}'(n) &= \theta_{i}(n) + \alpha(n) \big[e_{i}(n) \delta_{i} \big(v_{\theta_{i}}, n \big) - \rho_{i}(n) \big(1 - \lambda_{i}(n+1) \big) \gamma_{i}(n+1) \phi \big(S_{i}(n+1) \big) \big] e_{i}(n)^{T} w_{i}(n) \\ w_{i}'(n) &= w_{i}(n) + \beta(n) \big[e_{i}(n) \delta_{i} \big(v_{\theta_{i}}, n \big) - \phi \big(S_{i}(n) \big) \phi \big(S_{i}(n) \big)^{T} w_{i}(n) \big] \end{aligned}$$

• Convexification:

$$\theta_i(n+1) = \sum_{\substack{j=1\\ w_i(n+1)}}^N a_{ij}(n)\theta_j'(n)$$

• D2-TDC(λ):

$$\begin{aligned} \theta_{i}'(n) &= \theta_{i}(n) + \alpha(n) \big[e_{i}(n) \delta_{i} \big(v_{\theta_{i}}, n \big) - \rho_{i}(n) \big(1 - \lambda_{i}(n+1) \big) \gamma_{i}(n+1) \phi \big(S_{i}(n+1) \big) \big] e_{i}(n)^{T} w_{i}(n) \\ w_{i}'(n) &= w_{i}(n) + \beta(n) \big[e_{i}(n) \delta_{i} \big(v_{\theta_{i}}, n \big) - \phi \big(S_{i}(n) \big) \phi \big(S_{i}(n) \big)^{T} w_{i}(n) \big] \end{aligned}$$

• Convexification:

Random network weights

$$\theta_{i}(n+1) = \sum_{\substack{j \in \mathbb{N} \\ \overline{N}^{1}}}^{N} a_{ij}(n) \theta_{j}'(n)$$
$$w_{i}(n+1) = \sum_{\substack{j=1 \\ j=1}}^{N} a_{ij}(n) w_{j}'(n)$$

• D-TD(λ) and D-ETD(λ) :

 $\theta_i'(n) = \theta_i(n) + \alpha_i(n)e_i(n)\rho_i(n)[R_i(n) - \gamma_i(n+1)\phi_i(n+1)^T\theta_i(n) - \phi_i(n)^T\theta_i(n)]$

• Convexification: $\theta_i(n+1) = \sum_{j=1}^N a_{ij}(n)\theta_j'(n)$ Random network weights

Convergence

- Rigorous proofs of stochastic convergence:
 - M.S. Stankovic, M. Beko and S.S. Stankovic. **Distributed Consensus-Based Multi-Agent Temporal-Difference Learning**, *Automatica*, Vol. 151, 2023.
 - M.S. Stanković, M. Beko and S.S. Stanković, Distributed Value Function Approximation for Collaborative Multi-Agent Reinforcement Learning, IEEE Transactions on Control of Network Systems, 8(3), pp. 1270 – 1280, 2021.
 - M. S. Stankovic, M. Beko and S. S. Stankovic, Distributed Consensus-Based Multi-Agent Temporal-Difference Learning, 60th IEEE Conference on Decision and Control (CDC), 2021..
 - •

Illustrative simulation results

• Highway model

- $p(\text{moving}, a^{highway}) = \frac{1}{\text{state}}$, $p(\text{stuck}, a^{highway}) = 1 \frac{1}{\text{state}}$
- $p(\text{moving}, a^{exit}) = 0.8$, $p(\text{stuck}, a^{exit}) = 0.2$
- $R(a^{exit}) = -4$, $R(a^{exit}) = -1$
- Target policy: $p(a^{exit}) = 0.8$
- *N* = 10 agents
- Behavior policies: $p(a^{exit}) = (0.6, 0.5, 0.9, 0.81, 0.4, 0.67, 0.3, 0.55, 0.45, 0.6)$
- 7 features Gaussian radial basis distances to states 1,3,5,7,9,11 and 13

Variance and rate of convergence comparison

- 50 Monte Carlo simulations
- $\lambda = 0.4$
- Average variance of D-TD(λ) : 0.93
- Average variance of D-ETD(λ) is 1.46
- Conclusion: D-TD(λ) has smaller variance and faster rate of convergence

Multi-Task Policy Optimization

- Q-learning (similar to policy evaluation)
- Actor-Critic (much better convergence properties)

- Off-policy setup each agent interacts with its environment using a local behavior policy π_b^i
- Each agent can only observe local state transitions and rewards
- Inter-agent communication is allowed according to the given network topology
- Cooperative reinforcement learning

Value and Policy Function Approximations

- State space is typically large \Rightarrow value and policy function parameterizations
- *Critic stage linear parameterization:*

$$V_{\theta^{i}}^{i}(s) = \theta^{iT} \varphi^{i}(s) \longrightarrow \text{Local features } \varphi^{i}(s) \in \mathcal{R}^{L_{\theta}}$$

• Typically $L_{\theta} << M$

Local parameter vector

- Actor stage:
- Policy $\pi^i = \pi_{w^i}$ parameterized using the policy parameter vector $w^i \in \mathcal{R}^{L_w}$ $L_w << M$
- Off-policy scenario importance ratio: $\rho_t^i = \pi_{w^i}(a_t^i | s_t^i) / \pi_b(a_t^i | s_t^i)$

Local objectives

• The expected linear approximation of the local value function

$$J^{i}\left(\theta^{i}(w^{i})\right) = \theta^{iT}E_{i}\{\varphi^{i}_{t}\} = \theta^{iT}\sum_{s}d^{i}_{b}(s)\varphi^{i}(s)$$
Steady state distribution parameters

• Locally optimal values are $w^{i*} = \operatorname{Argmax}_{w^i} J^i(\theta^i(w^i)), i = 1, ..., N$

Multi-Agent Objective

- Multi-objective optimization
- Global objective function:

Utility parameter vector dim(c) = $N, 0 \le c^i \le 1, \sum_i c^i = 1$ *ie function:* $J(w^1, ..., w^N; c) = \sum_{i=1}^{N} c^i J^i \left(\theta^i(w^i)\right)$

- The goal is to learn a *single policy* that performs optimally for the averaged tasks
- The common policy function:

$$\pi^1_{w^*} = \dots = \pi^N_{w^*} = \pi_{w^*}$$

Proposed Critic algorithm 1 (ETD(λ))

 \rightarrow step size $\alpha_t^i > 0$ (fast time scale)

$$\tilde{\theta}_t^i = \theta_t^i + \alpha_t^i \rho_t^i \delta_t^i \varepsilon_t^i$$

$$\delta_t^i = R_{t+1}^i + \gamma^i \theta_t^{iT} \varphi_{t+1}^i - \theta_t^{iT} \varphi_t^i$$

$$\varepsilon_t^i = m_t^i \varphi_t^i + \gamma^i \lambda^i e_{t-1}^i$$

$$m_t^i = \lambda^i + (1 - \lambda^i) q_t^i$$

 $q_t^i = 1 + \gamma^i \rho_{t-1}^i q_{t-1}^i$

Proposed Critic algorithm 2 (GTD(1))

step size $\alpha_t^i > 0$ (fast time scale)

$$\tilde{\theta}_t^i = \theta_t^i + \alpha_t^i \rho_t^i \delta_t^i e_t^i$$

$$\delta_t^i = R_{t+1}^i + \gamma^i \theta_t^{iT} \varphi_{t+1}^i - \theta_t^{iT} \varphi_t^i$$

$$e_t^i = \varphi_t^i + \gamma^i \rho_{t-1}^i e_{t-1}^i$$

$$\rho_t^i = \pi_{w^i} \left(a_t^i \big| s_t^i \right) / \pi_b \left(a_t^i \big| s_t^i \right)$$

- Derived using exact policy gradient, assuming $ETD(\lambda)$ for the Critic
- The policy gradient can be derived as:

$$\begin{split} \nabla_{w^{i}}J^{i}\left(w^{i}\right) &= \lim_{t \to \infty} E_{i}\left\{\rho_{t}^{i}\delta_{t}^{i}\tilde{\varepsilon}_{t}^{i}\right)\right\}\\ \tilde{\varepsilon}_{t}^{i} &= \tilde{f}_{t}^{\lambda^{i},i}\nabla_{w^{i}}\log\pi_{w^{i}}(a_{t}^{i}|s_{t}^{i}) + \tilde{\mu}_{t}^{i} + \gamma^{i}\rho_{t-1}^{i}\,\tilde{\varepsilon}_{t-1}^{i}\\ \tilde{\mu}_{t}^{i} &= \tilde{f}_{t}^{\lambda^{i},i} + \gamma^{i}\rho_{t-1}^{i}[\,(\tilde{m}_{t-1}^{i} - \lambda^{i})\nabla_{w^{i}}\log\pi_{w^{i}}(a_{t}^{i}|s_{t}^{i}) + \tilde{\mu}_{t-1}^{i}\\ \tilde{f}_{t}^{\lambda^{i},i} &= \tilde{m}_{t}^{i} + \gamma^{i}\rho_{t-1}^{i}\lambda^{i}f_{t-1}^{\lambda^{i},i}\\ \tilde{m}_{t}^{i} &= 1 + \gamma^{i}\rho_{t-1}^{i}(\tilde{m}_{t-1}^{i} - \lambda^{i}) \end{split}$$

• Part 1 (local updates):

step size $\beta_t^i \ll \alpha_t^i$ (slow time scale)

$$\widetilde{w}_t^i = w_t^i + \beta_t^i \delta_t^i \widetilde{\varepsilon}_t^i$$

• Part 2 (distributed consensus):

$$w_{t+1}^i = \sum_{j \in \mathcal{N}_i} a_t^{ij} \, \widetilde{w}_t^j$$

- a_t^{ij} elements of an $N \times N$ row-stochastic **random** matrix $A_t = \begin{bmatrix} a_t^{ij} \end{bmatrix}$ • $a_t^{ij} = 0$ if Agent *j* does not communicate with Agent *i* at time step *t*
- The algorithm asymptotically provides consensus

$$w^1 = \cdots = w^N = w^*$$

- Derived using exact policy gradient, assuming GTD(1) for the Critic
- The policy gradient can be derived as:

$$\nabla_{w^{i}}J^{i}(w^{i}) = \lim_{t \to \infty} E_{i}\{\rho_{t}^{i}\delta_{t}^{i}\tilde{e}_{t}^{i})\}$$

$$\rho_{t}^{i} = \pi_{w^{i}}(a_{t}^{i}|s_{t}^{i})/\pi_{b}(a_{t}^{i}|s_{t}^{i})$$

$$\delta_{t}^{i} = R_{t+1}^{i} + \gamma^{i}\theta_{t}^{iT}\varphi_{t+1}^{i} - \theta_{t}^{iT}\varphi_{t}^{i}$$

$$\tilde{e}_{t}^{i} = f_{t}^{i}\nabla_{w^{i}}\log\pi_{w^{i}}(a_{t}^{i}|s_{t}^{i}) + \gamma^{i}\rho_{t-1}^{i}\tilde{e}_{t-1}^{i}$$

$$f_{t}^{i} = 1 + \gamma^{i}\rho_{t-1}^{i}\lambda^{i}f_{t-1}^{i}$$

• Part 1 (local updates):

step size $\beta_t^i \ll \alpha_t^i$ (slow time scale)

$$\widetilde{w}_t^i = w_t^i + \beta_t^i \rho_t^i \delta_t^i \widetilde{e}_t^i$$

• Part 2 (distributed consensus):

$$w_{t+1}^i = \sum_{j \in \mathcal{N}_i} a_t^{ij} \, \widetilde{w}_t^j$$

- a_t^{ij} elements of an $N \times N$ row-stochastic **random** matrix $A_t = \begin{bmatrix} a_t^{ij} \end{bmatrix}$ • $a_t^{ij} = 0$ if Agent *j* does not communicate with Agent *i* at time step *t*
- The algorithm asymptotically provides consensus

$$w^1 = \cdots = w^N = w^*$$

Convergence

•

- Rigorous proofs of stochastic convergence:
 - M.S. Stankovic, M. Beko, N Ilic and S.S. Stankovic. Multi-Agent Off-Policy Actor-Critic Algorithm for Distributed Multi-Task Reinforcement Learning, European Control Conference, ECC 2023, 2023.
 - M.S. Stankovic, M. Beko, N Ilic and S.S. Stankovic. Multi-Agent Actor-Critic Multitask Reinforcement Learning based on GTD(1) with Consensus, 61st IEEE Conference on Decision and Control, CDC 2022, Cancun, Mexico, 2022.
 - M.S. Stankovic, M. Beko and S.S. Stankovic. **Convergent Distributed Actor-Critic Algorithm Based on Gradient Temporal Difference**, *30th European Signal Processing Conference*, *EUSIPCO 2022*, Belgrade, Serbia, 2022.

Main Properties and Benefits

- Fully decentralized (only local state transitions and rewards observations)
- Tool for organizing/fusing coordinated actions (behavior policies, eligibility traces), speeding-up/enabling convergence by exploiting agents' complementarities
- Tool for **parallelization**, speeding up the convergence by **reducing the overall variance** which has two sources:
 - underlying MC stochastic dynamics
 - possible presence of white noise **noise in the one-step rewards**
- Tool for **improvement of the final VF approximation precision** (error with respect to the true VF of the target policy)

- Multi task setup: $p(\text{moving}, a^{exit})$, $p(\text{stuck}, a^{exit})$, $R(a^{exit})$ and $\pi_b(a^{exit}|s)$ differ among the agents
- Actor: Gibbs parameterization with tabular features
- Equal local consensus weights
- -10 5 0 • Successful convergence to the optimal policy using our algorithm

- Actor: Gibbs parameterization with binary features with lower dimensionality
- The agents are **not restricted** to particular subsets of states
- Convergence to the optimal policy is **not guaranteed**

Drone Swarms Project Summary

- Specific focus: Algorithmic solutions that enable a system of autonomous Micro-Aerial Vehicles (Cooperative Swarm), to safely perform complex tasks in unknown environments
- Using: on-board sensors and inter-drone communication
- Automatic accomplishment of environmental mapping, localization, path planning, target detection/tracking and flight control
- Applications:
 - Prevention and assistance with natural disasters (e.g. floods, earthquakes, wildfires etc.)
 - Inspection and maintenance of industrial infrastructure
 - Assistance with search and rescue operations
 - Tracking the spread of disease, etc.
- Advantages:
 - Efficient and accurate mission accomplishment (faster than any human)
 - No risk of physical harm
 - Coordinated actions for mission optimization

Autonomous drone control for visual search based on deep reinforcement learning

RL model

- Based on the DQN algorithm
- Deep NN is used to approximate the state
- Memory of past experience
- Target network and training network
- e-greedy policy
- Input from 3 different sources
- Action space is discrete
- Reward is calculated with object detection algorithm (YOLO) with assistance of feature extraction network (ResNet)
Deep Q Approximation Neural Network

Environment example

Targets

Actions

- Forward
- Up
- Down
- Left 30°
- Right 30°
- Stop

Rewards

Observation examples

Reward evolution

Time steps

Long-time training needed – distribution and decentralization is a necessity

Example Evaluation Video

Example Evaluation Video

Example Evaluation Video

RL Drawbacks

- Stability with function approximation (especially using DNNs)
- Security (exploration might be risky)
 - Learning from other agents/previous experience
- Sample (in)efficiency
 - In many cases too much exploration is needed for convergence compared to some other adaptive model based approaches (e.g. adaptive Model Predictive Control)

Drone wind turbine inspection

Drones formation control

Object tracking

Cloud resources and the OCRE project

Collaboration

- Institutions involved:
 - 1. Copelabs, Universidade Lusófona, Lisboa, Portugal
 - The largest private university in Portugal
 - 10 Higher Education Institutes
 - Copelabs: interdisciplinary approach to cyber-physical interconnected systems: telecommunications and networking; management information systems; data science and artificial intelligence
 - 2. Singidunum University
 - The largest private university in Serbia
 - Research in cutting-edge engineering areas of Artificial Intelligence, Cyber-Physical Systems, Internet of Things, and other modern Computer, Communication and Cryptographic Systems

Cloud resources

- The project requires specialized computing resources to perform complex and computationally heavy processing when dealing with complex CPS including Swarms of Drones:
 - Training of the algorithms
 - Demanding simulators of real-life environments
 - Real-time control and learning (when possible)

Benefits of cloud resources

- Access to state-of-the-art technology (e.g. latest GPU technology and high scale compute technology)
- **Agility** (flexible experiments without investing significant funds and pivot to the types of resources optimal for the specific AI applications)
- **Speed of implementation** (the time savings from not having to acquire, provision, implement and configure the necessary resources)
- IT know-how (the research team can focus more on scientific applications, the project does not require IT experts or training)
- Cost (no investment in the compute resources, which will soon become obsolete)

The OCRE call and the mini competition

- The grant was awarded in December 2020
- Mini competition was well organized by OCRE
- The whole process lasted about 2 months
- Our main requirements:
 - Virtual machines with strong both CPUs and GPUs (including both visualization and machine learning)
 - Machine learning toolsets (deep learning, reinforcement learning)
- 4 offers by leading global cloud service and infrastructure providers
- Google Cloud–Sparkle has been awarded

Future plans

- Use efficiently the obtained cloud resources
- The project and future research and exploitation plans are ambitious
- As the project evolves we are expecting a need for more cloud resources
- Consider other calls providing cloud resources for research