

Towards a global optimisation of the tracker layout: new tools and ideas

Fred Blanc, Renato Quagliani (EPFL) [with input from: M. De Cian, L. Dufour, R. Forty, V. V. Gligorov, M. Merk]

6th Workshop on LHCb Upgrade II 29 March 2023

Why a new tracker optimisation?

- What drives the optimal tracker geometry and size?
 - acceptance (driven by physics: lifetime, rapidity & momentum spectra)
 - running conditions (luminosity \rightarrow pile-up \rightarrow occupancies)
 - performance (detector technologies)
 - cost

 \Rightarrow is the original 9m-long tracker still optimal for $\mathscr{L} = 1.5 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$?

- High luminosity
 - strips don't scale well with luminosity (\Rightarrow need for inner tracker)
 - pixels are more "natural" candidates
- Magnet
 - can the LHCb magnet be operated until ≥ 2040 ? (structural integrity, cost of electricity)
 - if replaced, is a new superconducting magnet an option?

\Rightarrow LHCb could consider a reoptimisation of the tracker/detector

Path to re-optimisation

- Define the target tracker characteristics:
 - fully pixel tracker
 - smaller tracker dimensions (factor 3 in this study)
 - new superconducting magnet $([\vec{B} \cdot d\vec{\ell}] = 4 \text{ Tm})$
 - remove RICH1 to minimise material budget
 (⇒ PID optimisation will be needed: RICH/CALO/MUON)
- Tool development:
 - use momentum resolution, dp/p, as figure of merit
 - not studied here: efficiency, ghosts, occupancy (and impact on PID detectors)
 - flexible standalone code to evaluate dp/p for various geometries
 - developed and implemented by Renato Quagliani
 - based on the "Weight matrix formalism" proposed by Pierre Billoir at the <u>6th LHCb computing workshop, 2015</u>
- Toy studies:
 - $1.\,\mathrm{Run}\ 3$ geometries, for validation of the tools
 - $2.\,\mathrm{Run}$ 5 (FTDR, and variations), to define the benchmark
 - 3. Run 5 (MiniLHCb)

 \rightarrow MiniL

Method and basic principle

- <u>Weight matrix formalism</u> (by Pierre Billoir)
- Add multiple scattering as noise around unaffected reference trajectory
- Build the Kalman Filter to obtain the sensitivity on the fitted parameters for each measurement, given the previous measurements
 - 1. Use barycenter with matrices $(W = C^{-1})$ as measurement weights
 - 2. Propagation along z induces "rotation-elongation" of the ellipse
 - 3. New measurement of weight W_{meas} is added to the propagated state
 - 4. Noise from multiple scattering added to W⁻¹ at boundaries of material layers
 - 5. Invert W after the last measurement to obtain the expected σ_p

Full details in <u>talk by Renato Quagliani</u>, "Upgrade2 studies, Mini LHCb" at <u>RTA WP6 meeting</u>, 23 March 2023

F. Blanc, R. Quagliani, 29/3/2023

Layer description

The Weight method

Ingredient 1: a measurement is added at given z (+ W_{meas})

A measurement at a given z is introduced with flexible information on $z,\sigma,\alpha,thick$

What is the contribution to the fit assuming no misalignment and track pass exactly

- Where σ is derived from the pitch size of the measurements (Run3 detectors):
 - **1** Velo : $\sigma = \frac{56 \, \mu m}{\sqrt{12}} = 16 \, \mu m$ 2 UT : $\sigma = \frac{196 \,\mu\text{m}}{\sqrt{12}} = 56 \,\mu\text{m}$, corrected for $|x, y| < 200 \,\text{mm}$ to be $\frac{96}{\sqrt{12}} \,\mu m$ 3 SciFi : $\sigma = \frac{250 \,\mu\text{m}}{\sqrt{12}} = 80 \,\mu\text{m}$ (rounded to 100 μm as baseline)¹
- Where α is a stereo angle:
 - **1** Pixel-like: duplicate contribution with $\alpha = 0(90)$ at same z 2 x-u-v-x measurements : $\alpha = 0/+5^{\circ}/-5^{\circ}/0$ (SciFi & UT)
- *thick* is δ_z/X_0 of the measurement layer. Noise for measurements made dimensionless (thin-layer approximation).

¹No dependency on track slope and 1.2mm thickness of SciFi so far in toy-model, only rough assumption.

R. Quagliani

Momentum Resolution studies with toy model for Upgrade2 and Run3 scenarios March 27, 2023

4 / 30

cf. talk by Renato Quagliani, "Upgrade2 studies, Mini LHCb"

at RTA WP6 meeting, 23 March 2023

Detector geometries and magnetic field

- GDML file loaded for material budget navigation¹
 - removed RICH1 and replaced with air
- Magnetic field:
 - default LHCb field map
 - parabolic extrapolator to propagate the tracks in the field
 - emulated miniLHCb magnet by increasing the field and shorten the lever arm by the same factor (=3 in this study)

Examples of simulated geometries

Run5 (UT4Pix, Pix/SciFi mix)

Run5 (UT4Pix, Pix)

MiniLHCb (UT4Pix950, Pix)

MiniLHCb (UT4Pix1300, Pix)

MiniLHCb (UT4Pix800, Pix)

Sample of tracks

- Generate xgen file of $B^\pm \to K^\pm \mu^+ \mu^-$ decays
- Use the K^{\pm} kinematics for the study (10k events)
- Emulate K_S^0 by linear extrapolation of K^{\pm} from origin to fixed z_{decay} , then start propagation with charge from z_{decay}

LONG TRACKS

Run 3 resolution (for tool validation)

- Predicted resolution in Run 3, compared with HLT2 Kalman fit
 - results are in agreement with the expectation
 - dependence on η not perfectly reproduced

F. Blanc, R. Quagliani, 29/3/2023

From Run 3 to Run 5

Run3 + UT pixel (3 or 4 layers, $50 \times 150 \,\mu\text{m}^2$ or $30 \times 30 \,\mu\text{m}^2$)

F. Blanc, R. Quagliani, 29/3/2023

From Run 3 to Run 5

MiniLHCb Tracker

- Shorter lever arm has a visible impact on momentum resolution
- Sensitivity to the location of the measurements \rightarrow impact on long-lived particles
- Performance can be better than FTDR at low p, worse at high p

MiniLHCb Tracker

- Shorter lever arm has a visible impact on momentum resolution
- Sensitivity to the location of the measurements \rightarrow impact on long-lived particles
- Performance can be better than FTDR at low p, worse at high p

DOWNSTREAM+T TRACKS

Long-lived particles in Run3

- Emulating $K_{\rm S}^0$ with K^+ track
- Top: have measurement in UT, decay before magnet region
- Bottom: no measurement in UT, decay in magnet region

DOWNSTREAM+T TRACKS

Long-lived particles: from Run3 to Run5

- Changing SciFi for SciFi/Pix or full-Pix, and changing UT
- Top: no VELO measurements, only UT+Downstream \rightarrow major improvement from pixels for z < 2.4 m
- Bottom: pixels are powerful in fringe field tails

DOWNSTREAM+T TRACKS

Long-lived particles: miniLHCb

- With MiniLHCb, 1% 10% resolution up to $z_{decay} = 2.3 \text{ m}$
- Clear acceptance effect, can be partly recovered from UT and downstream stations in the B field tail
- Long-lived particles are neutral \rightarrow maybe gain in acceptance at low p

Track distribution in CALO region

- Consider a $8m\times8m$ detector at 10 (13) meters
- Kaons with $p>2.5\,{\rm GeV}$ from $B\to K\mu\mu$ are in acceptance
 - $97.5\,(93.4)\,\%$ of the time in the nominal magnetic field
 - 95 (90) % of the time in the $B \times 3$ setup (MiniLHCb)

Summary

- Momentum resolution improves from using
 - fully pixel tracker (resolution)
 - lower material budget (multiple scattering)
 - placing tracking stations in the tail of the \overrightarrow{B} field
- The MiniLHCb setup looks interesting:
 - full downstream pixel detector with $9\times {\rm smaller}$ area
 - lower material budget (UT, no RICH1, less air), i.e. fewer secondaries
 - \overrightarrow{B} field map and detector size/geometry can be further tuned for performance
 - some impact on long-lived physics programme, but room for improvement
- Global optimisation:
 - must include RICH, CALO, MUON (and VELO?)
 - can include beam pipe design to minimise secondaries
 - resolution, occupancy, efficiency, ghosts, \ldots

Conclusion

- A small-size tracker can provide FTDR-like momentum resolution
- Global reoptimisation of the detector geometry/technology may provide a descoping option with reduced loss of physics reach
- A tool is available for studying the momentum resolution for various geometries; can be extended to study IP resolution, impact of misalignments

Backup

VELO model

The detection layers used

 Different layers of material used, with a 'thin' thickness scatter model and a resolution in the reference plane (prior to stereo rotation)

Velo measurements

						Velo mo	dules (2)							
Velo modules (1)				<i>z</i> [mm]	α	σ[μm]	$\delta_z / X_0 [\%]$	geometry						
<i>z</i> [mm]	α	σ[μm]	$\delta_z / X_0 [\%]$	geometry	50	0	15.9	0.61	velo					
-275	0	15.9	0.61	velo	50	90	15.9	0.61	velo			Velo mod	dules (3)	
-275	90	15.9	0.61	velo	75	0	15.9	0.61	velo	<i>z</i> [mm]	α	σ [μm]	δ_z/X_0 [%]	geometry
-250	0	15.9	0.61	velo	75	90	15.9	0.61	velo	325	0	15.9	0.61	velo
-250	90	15.9	0.61	velo	100	0	15.9	0.61	velo	325	90	15.9	0.61	velo
-225	0	15.9	0.61	velo	100	90	15.9	0.61	velo	400	0	15.9	0.61	velo
-225	90	15.9	0.61	velo	125	0	15.9	0.61	velo	400	90	15.9	0.61	velo
-200	0	15.9	0.61	velo	125	90	15.9	0.61	velo	500	0	15.9	0.61	velo
-200	90	15.9	0.61	velo	150	0	15.9	0.61	velo	500	90	15.9	0.61	velo
-125	0	15.9	0.61	velo	150	90	15.9	0.61	velo	600	0	15.9	0.61	velo
-125	90	15.9	0.61	velo	175	0	15.9	0.61	velo	600	90	15.9	0.61	velo
-50	0	15.9	0.61	velo	175	90	15.9	0.61	velo	650	0	15.9	0.61	velo
-50	90	15.9	0.61	velo	200	0	15.9	0.61	velo	650	90	15.9	0.61	velo
-25	0	15.9	0.61	velo	200	90	15.9	0.61	velo	700	0	15.9	0.61	velo
-25	90	15.9	0.61	velo	225	0	15.9	0.61	velo	700	90	15.9	0.61	velo
0	0	15.9	0.61	velo	225	90	15.9	0.61	velo	750	0	15.9	0.61	velo
0	90	15.9	0.61	velo	250	0	15.9	0.61	velo	750	90	15.9	0.61	velo
25	0	15.9	0.61	velo	250	90	15.9	0.61	velo					
25	90	15.9	0.61	velo	275	0	15.9	0.61	velo					
					275	90	15.9	0.61	velo					

R. Quagliani

Momentum Resolution studies with toy model for Upgrade2 and Run3 scenarios M

March 23, 2023 8 / 30

VELO description identical in all geometries

T models

The detection layers used

- Different layers of material used, with a 'thin' thickness scatter model. Duplicate at z to add both x/y resolution.
- For stronger B field, alternative locations in z
- Tested also $30 \times 30 \,\mu m^2$ pitch size case.
- UTRun3 material reduced per layer from 2% to 1% in UT3/4Pix.
 T measurements Run5 (3 layers)
 UT4Pix

UT measurements Run3

UTRun3								
<i>z</i> [mm]	α	σ[μm]	$\delta_z / X_0 [\%]$	geometry				
2327.5	0	55	2	UTa				
2372.5	5	55	2	UTa				
2597.5	-5	55	2	UTb				
2642.5	0	55	2	UTb				

	UT3Pix									
	<i>z</i> [mm]	α	σ[μm]	$\delta_z / X_0 [\%]$	geometry					
	2327.5	0	15	0.5	UTa					
	2327.5	90	43	0.5	UTa					
	2485.5	0	15	0.5	UTb					
	2485.5	90	43	0.5	UTb					
1	2642.5	0	15	0.5	UTb					
	2642.5	90	43	0.5	UTb					

		U I 4Pix									
	<i>z</i> [mm]	α	σ [μ m]	δ_z/X_0 [%]	geometry						
1	2327.5	0	15	0.5	UTa						
	2327.5	90	43	0.5	UTa						
	2432.5	0	15	0.5	UTa						
	2432.5	90	43	0.5	UTa						
	2537.5	0	15	0.5	UTb						
	2537.5	90	43	0.5	UTb						
	2642.5	0	15	0.5	UTb						
	2642.5	90	43	0.5	UTb						

R. Quagliani

Momentum Resolution studies with toy model for Upgrade2 and Run3 scenarios March 23, 2023 9 / 30

Downstream tracker models

Detector specifics (resolution/acceptance)

The detection layers used

Different layers of material used, with a 'thin' thickness scatter model and a resolution in the reference plane (prior to stereo rotation) Mighty Tracker

z [mm]

 α

-5

-5

-5

Downstream region measurements

D9	$\mathbf{Run3}$
KUII3	(100% pixe
SciFi	Pixels

		30	.11 1		Pixeis				
<i>z</i> [mm]	α	σ [μ m]	δ_z/X_0 [%]	geometry	<i>z</i> [mm]	α	σ[μm]	$\delta_z / X_0 [\%]$	geometry
7827	0	100	1.1	FullSciFi	7827	0	15	0.5	Pixels
7897	5	100	1.1	FullSciFi	7827	90	43	0.5	Pixels
7967	-5	100	1.1	FullSciFi	8037	0	15	0.5	Pixels
8037	0	100	1.1	FullSciFi	8037	90	43	0.5	Pixels
8509	0	100	1.1	FullSciFi	8509	0	15	0.5	Pixels
8579	5	100	1.1	FullSciFi	8509	90	43	0.5	Pixels
8649	-5	100	1.1	FullSciFi	8719	0	15	0.5	Pixels
8719	0	100	1.1	FullSciFi	8719	90	43	0.5	Pixels
9194	0	100	1.1	FullSciFi	9194	0	15	0.5	Pixels
9264	5	100	1.1	FullSciFi	9194	90	43	0.5	Pixels
9334	-5	100	1.1	FullSciFi	9404	0	15	0.5	Pixels
9404	0	100	1.1	FullSciFi	9404	90	43	0.5	Pixels

(U2 FTDR) Pix/SciFi mix

σ [μ m]	$\partial_z / X_0 [\%]$	geometry			D.,				
15	0.5	InnerPix			nu	G H			
43	0.5	InnerPix					1		
100	1.1	SciFiExternalOnly		miniLHCb					
100	1.1	SciFiExternalOnly					<u> </u>		
100	1.1	SciFiExternalOnly	Pix3 = Pixels at z/3 location						
15	0.5	InnerPix	<i>z</i> [mm]	α	σ [μ m]	δ_z/X_0 [%]	geometry		
43	0.5	InnerPix	2609	0	15	0.5	Pixels3		
100	1.1	SciFiExternalOnly	2609	90	43	0.5	Pixels3		
15	0.5	InnerPix	2679	0	15	0.5	Pixels3		
43	0.5	InnerPix	2679	90	43	0.5	Pixels3		
100	1.1	SciFiExternalOnly	2836	0	15	0.5	Pixels3		
100	1.1	SciFiExternalOnly	2836	90	43	0.5	Pixels3		
100	1.1	SciFiExternalOnly	2906	0	15	0.5	Pixels3		
15	0.5	InnerPix	2906	90	43	0.5	Pixels3		
43	0.5	InnerPix	3064	0	15	0.5	Pixels3		
100	1.1	SciFiExternalOnly	3064	90	43	0.5	Pixels3		
15	0.5	InnerPix	3134	0	15	0.5	Pixels3		
43	0.5	InnerPix	3134	90	43	0.5	Pixels3		
100	1.1	SciFiExternalOnly							
100	1.1	SciFiExternalOnly							
100	1.1	SciFiExternalOnly							
15	0.5	InnerPix							
43	0.5	InnerPix							
100	1.1	SciFiExternalOnly							

R. Quagliani

Momentum Resolution studies with toy model for Upgrade2 and Run3 scenarios March 23, 2023 10 / 30