Status of the TORCH R&D project

6th Workshop on LHCb Upgrade II T. Blake on behalf of the TORCH collaboration

TORCH concept

- Large area time of flight detector designed to provide PID in the 2–10 GeV/c momentum range.
- Exploits prompt production of Cherenkov light in a fused-silica radiator.
- For K/π separation over 9.5m, aim for a resolution of 10–15 ps per track (requires 70 ps per photon).

TORCH detector

- Exploit prompt production of Cherenkov light in an array of fused-silica bars to provide timing.
- Cherenkov photons are propagated to detector plane via total internal reflection from the quartz surfaces.
- Cylindrical focussing block, focusses the image onto a detector plane.
 - Used to correct for chromatic dispersion.
- Large area detector required to cover the LHCb acceptance (5x6m²).

For more details on the TORCH concept see [NIM A 639 (1) (2011) 173]

PID performance

• Performance studied using a simplified **DetDesc** geometry and a standalone TORCH reconstruction:

• Good separation is seen in the 2–10 (2–15) GeV/*c* momentum range.

PID performance

- Simplified TORCH geometry produced in DetDesc.
 - Conversion to **DD4HEP** is currently being validated.
- Simulate **U1a** events and merge to achieve **UII** occupancies.
 - Samples are weighted to obtain representative luminosity profile.
- Run a standalone TORCH reconstruction:
 - Reconstruction and performance described in [LHCb-PUB-2022-004], [LHCb-PUB-2022-006], [LHCb-PUB-2022-007].
- We assume that timing information with 20 picosecond precision is available from timing in UII VELO:
 - In principle we can reconstruct the PV time in TORCH likelihood calculation (by varying t_0 in the fit).
- Work is ongoing to obtain a combined TORCH/RICH PID performance.

Performance with occupancy

• Performance is strongly dependent on the detector occupancy (modules closer to beam line have worse performance).

Physics case

- Provides particle identification at low momentum with benefits to:
 - Flavour tagging (cut based analysis shows gains of 25–50% in effective tagging power possible).
 - Uniformity of angular/Dalitz distributions.
 - Analyses requiring $p/K/\pi$ separation (e.g. analyses of Λ_b decays).
- Can provide deuteron and He separation (for e.g. searches for hyper-nuclei).
 - Note, h/α produces 4x the light-yield due to their charge and have a measured momentum that is 1/2 their true momentum from tracking.

TORCH physics performance: improving low-momentum PID performance during Upgrade IB and beyond

S. Bhasin¹, T. Blake⁵, M. Flavia Cicala⁵, R. Forty², C. Frei², E. P. M. Gabriel³, S. Gambetta³, R. Gao⁴, T. Gershon⁵, T. Gys², T. Hadavizadeh⁴, T. H. Hancock⁴, N. Harnew⁴, M. Kreps⁵, E. J. Millard⁵, F. Muheim³, D. Piedigrossi², J. Rademacker¹, M. Van Dijk², G. Wilkinson⁴.

Physics case

- Provides particle identification at low momentum with benefits to:
 - Flavour tagging (cut based analysis shows gains of 25–50% in effective tagging power possible).
 - Uniformity of angular/Dalitz distributions.
 - Analyses requiring $p/K/\pi$ separation (e.g. analyses of Λ_b decays).
- Can provide deuteron and He separation (for e.g. searches for hyper-nuclei).
 - Note, h/α produces 4x the light-yield due to their charge but have a measured momentum that is 1/2 true momentum from tracking.

- In principle could also provide downstream timing for use in ghost rejection.
 - Main limitation is the speed of the reconstruction.

S. Bhasin¹, T. Blake⁵, M. Flavia Cicala⁵, R. Forty², C. Frei², E. P. M. Gabriel³,
S. Gambetta³, R. Gao⁴, T. Gershon⁵, T. Gys², T. Hadavizadeh⁴, T. H. Hancock⁴,
N. Harnew⁴, M. Kreps⁵, E. J. Millard⁵, F. Muheim³, D. Piedigrossi², J. Rademacker¹,
M. Van Dijk², G. Wilkinson⁴.

TORCH physics performance: improving low-momentum PID performance during Upgrade IB and beyond

Current prototype

- Full-scale half-length module with 1250x660x10 mm³ fused-silica radiator bar.
- Focussing block glued to the radiator bar with Pactan 8030 silicone-based adhesive.
- Can be equipped with 11 MCP-PMTs and associated electronics.

Current prototype

- Full-scale half-length with 1250x660x10 mm³ fusedsilica radiator bar.
- Focussing block glued to the radiator bar with Pactan 8030 silicone-based adhesive.
- Can be equipped with 11 MCP-PMTs and associated electronics.

Electronics backboard

Current prototype

- Full-scale half-length module with 1250x660x10 mm³ fused-silica radiator bar.
- Focussing block glued to the radiator bar with Pactan 8030 silicone-based adhesive.
- Can be equipped with 11 MCP-PMTs and associated electronics.

Thickness variation $\leq 3 \mu m$ and surface roughness $0.5 {\rm \AA}$

Test beam campaigns

- Two test beam campaigns with the TORCH prototype in mixed π/p beams in T9:
 - 2018 test beam with two MCP-PMTs.
 - November 2022 test beam with six MCP-PMTs.

2022 test beam experimental area

- Prototype detector equipped with six MCP-PMTs and associated electronics.
- New DAQ, LV and HV supplies.

Photon yield in 2018 test beam

 Results from the 2018 beam test have recently published in [NIMA 1050 (2023) 168181].

Compare the test beam data to a **Geant4** simulation taking into account surface effects in the radiator bar and our understanding of the MCP-PMT response (QE, gain and chargesharing).

Photon yield data/ simulation 82–85%.

Time resolution in 2018 test beam

- Time response approaching TORCH requirement of 70ps per-track (reach 50ps for MCP and electronics in lab using the HPTDC in very-high resolution mode).
- Further improvements expected from improved detector calibration (e.g. improved charge-to-width calibration) and event-by-event tracking.

Pattern in 2022 test beam

Data taken at six beam positions on the radiator bar at 3, 5, 8 and 10 GeV/*c* beam momentum.

Time resolution in 2022 test beam

Entries

Std Dev

5

reltime

Mean

- Analysis of the 2022 data is ongoing.
- Early comparisons indicate a similar • time resolution is seen in 2018 and 2022.
- Data are corrected for integral nonlacksquarelinearities in the HPTDC and NINO tim

ар

 Δt [ns] w.r.t. T2 time reference

4500

4000

3500

3000

2500

2000

1500

1000

500

One reflection

2.5

3

reltime {reltime <5 & reltime >2 & x==14}

3.5

Vertical pixel

Direct signal

4.5

- Prediction from Geant4 simulation

- Conceptual design for a light weight carbonfibre holding frame for the TORCH modules produced and under internal review.
- Mechanics are designed to:
 - minimise material in the detector acceptance.
 - reduce optical contact with the radiator bar.
- Prototyping/finite element analysis is underway.

Upper and lower modules supported on rails

- Conceptual design for a light weight carbonfibre holding frame for the TORCH modules produced and under internal review.
- Mechanics are desig
 - minimise material ir
 - reduce optical con^{*}
- Prototyping/finite ele underway.

- Conceptual design for a light weight carbonfibre holding frame for the TORCH modules produced and under internal review.
- Mechanics are designed to:
 - minimise material in the detector acceptance.
 - reduce optical contact with the radiator bar.
- Prototyping/finite element analysis is underway.

Additional set of rails for the electronics assembly

Accurate position of the sensors achieved using push/pull screws

Electronics mounted separately to reduce weight during handling

- Conceptual design for a light weight carbonfibre holding frame for the TORCH modules produced and under internal review.
- Mechanics are designed to:
 - minimise material in the detector acceptance.
 - reduce optical contact with the radiator bar.

U-shaped

side-beam

 Prototyping/finite element analysis is underway.

- Conceptual design for a light weight carbonfibre holding frame for the TORCH modules produced and under internal review.
- Mechanics are designed to:
 - minimise material in the detector acceptance.
 - reduce optical contact with the radiator bar.
- Prototyping/finite element analysis is underway.

Exoskeleton used for quartz handling and jigging

MCP-PMT development

- Currently use custom 64-by-64 pad Photek MCP-PMTs with 60mm pitch and 53-by-53mm active area [JINST 10 (2015) C05003].
- Pads are electronically ganged into a 8-by-64 pixel arrangement.
- Readout connectors are mounted on an external PCB and connected via anisotropic conductive film.

60 mm pitch

Need higher granularity devices to cope with occupancies in **UII** conditions

MCP-PMT development

- Move from capacitively coupled device to direct feed throughs.
 - Aim to reduce occupancy by reducing charge sharing.
- Increase granularity from 8-by-64 to 16-by-96 pixels to compensate for the loss of spatial resolution without clustering.
- Use 110 Hirose FX25-110s-0.4SV connectors with 96 connected channels and the ground pins.
- Discussing specifications with Photek. Expect delivery of the new MCP-PMT at the end of the summer.

Future MCP-PMT developments

- It will also be necessary to increase the lifetime and rate capability of the MCP-PMTs for UII conditions.
- TORCH requirements are compatible with the requirements of the PANDA DIRC and proposed HIKE KTAG.
- Lifetime > 30 C cm⁻² demonstrated by Photonis using ALD (c.f. > 5 C cm⁻² in our current devices).
- Rate capability can be increased by reducing the MCP resistance & capacitance and operating at lower gain.

Electronics developments

 Current electronics are based on NINO/HPTDC chipsets. Originally developed for the ALICE TPC (i.e. designed for MRPC signals).

[JINST 11 (2016) 04 C04012]

Electronics developments

- New electronics planned based on Fast-IC [JINST 17 (2022) C05027] and picoTDC [users meeting] (3 and 12ps binning). Design in progress.
- Possible synergy with RICH in Fast-RICH developments (integrated Fast-IC ASIC with 25ps TDC).

Preliminary cost estimate

Based on tender process for the TORCH prototype and PANDA DIRC.

MCP-PMT cost assumes 198 MCP-PMTs at 11.5 kCHF per device (need 220 with spares).

From the FTDR:

Item	Cost (kCHF)
Quartz radiator plates	2300
Quartz focussing block	1510
MCP-PMTs	2380
Mechanical superstructure	1000
On-detector electronics	1570
Off-detector electronics	1170
Total	9930

On-detector electronics cost assumes 1.5CHF/channel. Off-detector electronics cost based on 27Tb/s output rate and 91 PCIe40.

• A tender process is ongoing for a second 1250x660x10 mm³ fusedsilica plate. Costs have increased (driven by manufacturing costs).

We are exploring cost savings from reducing tolerance requirements.

Scoping options

- Operating at lower luminosity only yields a modest cost saving:
 - Operating at $1.0 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ instead of $1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ could save 800kCHF in electronics costs.
- We are exploring cost reductions from tolerances on radiator surfaces.
- Main cost driver is the area of the detector:
 - Reducing from 18 → 12 modules reduces the cost of TORCH by ~1/3 and retains 76% coverage of low momentum particles.
 - We are preparing for an optimisation of scoping options over the summer.

Summary

- Several important developments since the last upgrade workshop:
 - Prototype with seven MCP-PMTs tested in beam test in T9.
 - Design of new generation of MCP-PMT with DC connected anode and improved granularity.
 - Design of carbon-fibre holding mechanics for TORCH.
 - Design work started for new readout electronics based on Fast-IC and picoTDC (aim for synergy with developments for the RICH).
- We aim to produce a full scale prototype module this year using the newly designed holding mechanics,
- We are investigating the possibility of using SiPMs as an alternative to MCP-PMTs in TORCH.
 - Potential solution for the highest occupancy modules that would have synergy with developments for the RICH.

Software developments

- A significant speed-up has been obtained in the reconstruction by implementing a semi-analytic calculation of the PDF (now 1s per event on CPU). Further improvements expected with code optimisation.
- TORCH reconstruction is well suited to parallelisation and hardware acceleration.
- A proof-of-principle implementation of the TORCH PID algorithm has been implemented on an IPU [graphcore.ai/products/ipu].
- Plan to also develop the reconstruction for GPUs.

Calibration system

 We have developed a calibration system that can be used to inject a known charge into each channel of the NINO and HPTDC boards.

- The calibration system has been used to set the threshold of the NINO boards in the 2022 test beam.
- The calibration system will be used to improve the time-walk and integral non-linearity corrections of the lab and test beam data.

Results from the lab

- Extensive measurements performed at CERN to qualify the MCP-PMTs used in the TORCH prototype:
 - Measurements of QE and gain uniformity.
 - Intrinsic time response of the MCP and electronics using 405nm picosecond pulsed laser.

TORCH image

Colour indicates time of arrival (purple earliest/red latest)

Photon reconstruction

Photon reconstruction

- Linear dependence on path length due to chromatic dispersion and finite pixel size.
- Limited resolution is due to:
 - The unknown emission point and entrance point to the focusing block.
 - Resolution on the track slope and multiple scattering in the radiator.
- The combined 55ps resolution from the MCP-PMT and readout electronics is not included.

