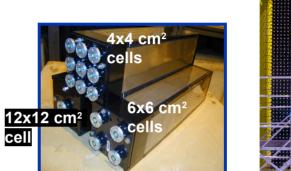
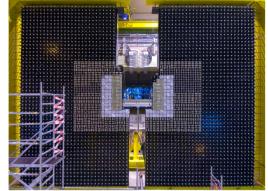
Next steps towards the PicoCal

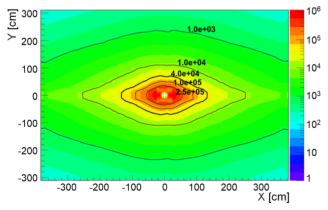
Philipp Roloff (CERN) on behalf of the LHCb ECAL Upgrade II R&D group

LHCb in collaboration with Crystal Clear, supported by EP R&D (WP 3.2.0 and 3.2.1)

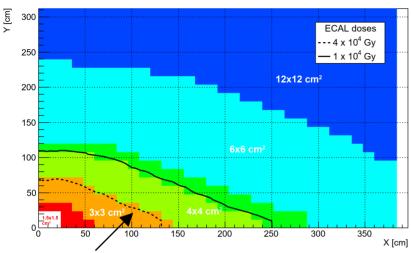

6th Workshop on the LHCb Upgrade II Barcelona, 30/03/2023



The current ECAL and motivation to upgrade


Current LHCb ECAL:

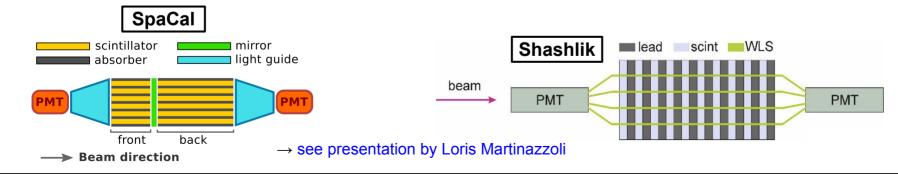
- Optimised for π^0 and γ identification in the few GeV to 100 GeV region at 2 x 10³² cm⁻²s⁻¹
- Shashlik technology with 4x4, 6x6 and 12x12 cm² cell size
- Radiation hard up to 40 kGy
- Energy resolution: $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$
- Large array of \approx 50 m² with 3312 modules and 6016 channels


Accumulated radiation dose [Gy] after 300 fb⁻¹

Requirements for the Upgrade II:

- Sustain radiation doses up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV neq / cm² in the centre
- Keep current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$
- Pile-up mitigation crucial
- \rightarrow Timing capabilities with O(10) ps precision, preferably directly in the calorimeter modules
- \rightarrow Increased granularity in the central region with denser absorber
- Better time resolution, less impact of radiation damage, more information for event reconstruction and particle identification from longitudinal segmentation

Technologies for the Upgrade II


SpaCal technology for inner region:

- Innermost modules with scintillating crystal fibres and W absorber
- → Development of radiation-hard scintillating crystals
- \rightarrow 1.5x1.5 cm² cell size
- 40-200 kGy region with scintillating plastic fibres and Pb absorber
- → Need radiation-tolerant organic scintillators
- \rightarrow 3x3 cm² cell size

Shashlik technology:

- Timing with new WLS fibres, long. segmentation (double-sided readout)
- \rightarrow Cost optimisation by refurbishing \approx 2000 existing modules for timing
- \rightarrow Adapt to the required cell sizes by adding \approx 1300 new modules

LS3 consolidation: W absorber for innermost modules equipped with scintillating plastic fibre for 2x2 cm² cell size

Radiation limit of current Shashlik technology

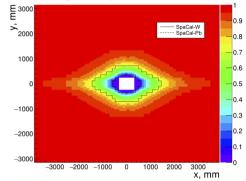
Next steps towards the PicoCal

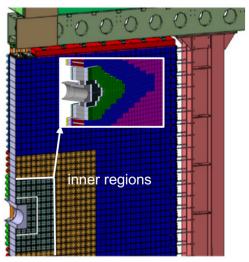
LHCb ECAL upgrade strategy

Run 3 in 2022-2025:

Run with unmodified ECAL Shashlik modules at L = $2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ (new 40 MHz readout)

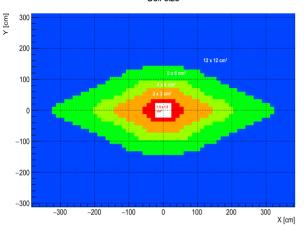
LS3 consolidation in 2026-2028:


Introduce single-section rad. tolerant SpaCal (2x2 and 3x3 cm² cells) in inner regions and rebuilt ECAL in rhombic shape to improve performance at L = 2(4) x 10^{33} cm⁻²s⁻¹ \rightarrow 32 SpaCal-W & 144 SpaCal-Pb modules with plastic fibres compliant with Upgrade II conditions \rightarrow Option to include timing information with single-sided readout to inner regions


LS4 Upgrade II in 2033/2034:

Introduce double-section radiation hard SpaCal (1.5x1.5 & 3x3 cm² cells) and improve timing of Shashlik modules for a luminosity of up to $L = 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- \rightarrow Innermost SpaCal-W modules equipped with crystal fibres
- → Include timing information and double-sided readout to full ECAL for pile-up mitigation

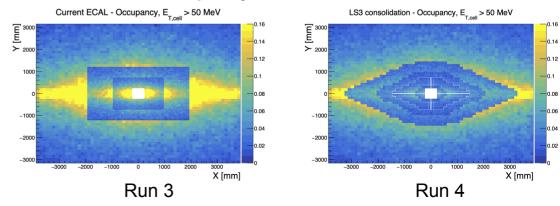

ECAL light output after 2025 (48 fb⁻¹)

Baseline LS3 configuration

Cell size

No longitudinal segmentation

 $\begin{array}{c} \hline \text{Cell size:} \\ \textbf{2 x 2 cm}^2 \\ \textbf{3 x 3 cm}^2 \\ \textbf{4 x 4 cm}^2 \\ \textbf{6 x 6 cm}^2 \\ \textbf{12 x 12 cm}^2 \end{array}$


Modules: 32 *new* SpaCal-W modules 144 *new* SpaCal-Pb modules 176 existing modules in rhombic configuration 448 existing modules in rhombic configuration 2'512 existing modules in rhombic configuration

- 9'344 cells (compared to 6'064 in current ECAL)
- Modules tilted in the SpaCal region
- Existing modules will be rearranged

(4x4 cm² Shashlik modules moved out to avoid too much radiation damage, WLS fibres could be easily replaced)

- Timing could be implemented for SpaCal region
- \rightarrow requires new electronics for up to \approx 3'500 cells

Occupancy at L = 2 x 10^{33} cm⁻²s⁻¹

Next steps towards the PicoCal

Philipp Roloff

Planning for 2023 and 2024

Light-weight LHCb-internal review by U2PG on LS3 consolidation:

- Scheduled for May 3 and 4 (to be followed by official agreement from TB to proceed with TDR)
- Main reviewers: Hassan Jawahery, Guy Wilkinson, Tim Gershon (+ ad-hoc experts: Ken, Renaud, Niko, Eric)
- Should include: physics opportunities, technology readiness, schedule, availability of person-power and resources

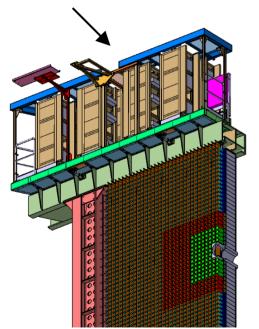
Light-weight TDR for LS3 consolidation:

- Submission to LHCC planned by September 2023 (combined PID TDR with RICH)
- Physics performance gain as compared to Run 3 configuration
- Demonstration of required technological performance (R&D and prototyping) for proposed consolidation
- Infrastructure requirements for LS3 and LS4 (new platform)
- Institute responsibilities
- Planning, schedule (personnel loaded) and cost

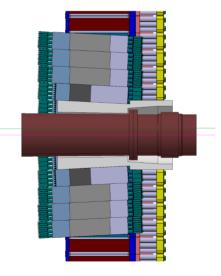
Scoping document (for LS4 Upgrade II):

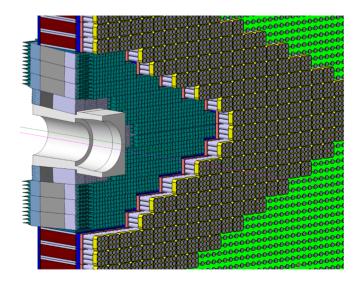
- Towards the end of 2024 (exact date to be decided by the collaboration)
- Comparison of physics performance for key channels between baseline and descoped option
- Realistic estimate of cost for baseline and descoped options

Schedule for LS3 consolidation and Upgrade II during LS4

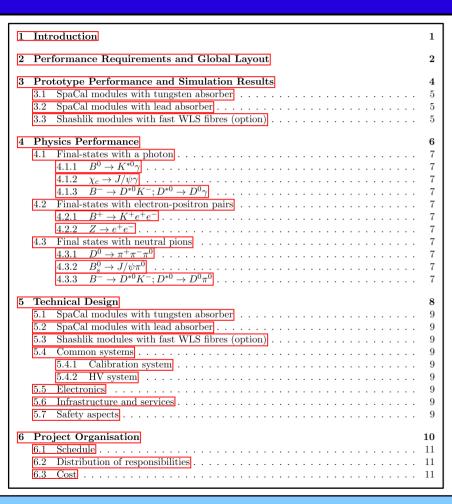

(5) 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2	Schedule as of Jan 2022)
	2034 2035 20
Run 2 LS2 Run 3 LS3 Run 4 LS4	Run 5 - 6
LHC 13 TeV 14 TeV HL-LHC	
4×10 ³² cm ² s ⁻¹ 9 fb ⁻¹ Upgrade I 2×10 ³³ cm ⁻² s ⁻¹ 23 fb ⁻¹ LS3 Enhancements 2×10 ³³ cm ⁻² s ⁻¹ 50 fb ⁻¹ Upgrade	de II 1.5×10 ³⁴ cm ⁻² s ⁻¹ 300 fb ⁻¹

Schedule summary:


- May 2023: Light-weight internal U2PG review to approve ECAL LS3 consolidation (LHCb-internal)
- September 2023: Light-weight PID TDR to LHCC for LS3 consolidation (ECAL & RICH)
- End of 2024: Scoping document for Upgrade phase IIb in LS4 (including ECAL)
- 2025-2027: Production of 176 SpaCal modules, 3'500 new electronics channels and PCIe400 for the Run 4 ECAL
- 2026-2028: Infrastructure modifications (platform) and ECAL re-build (new modules, rhombic arrangement) during LS3
- 2026: TDR for ECAL Upgrade phase IIb in LS4
- 2028-2032: Production/refurbishment of Shashlik modules, production of SpaCal/GAGG, introduction of double-sided readout
- 2033-2034: Re-building of ECAL with addition of new modules during LS4


Modification of the infrastructure during LS3

Platform to be modified


- Increased number of electronics channels (up to factor 5 in LS4)
- \rightarrow Platform on top of the ECAL needs to be modified to provide more rack space
- SpaCal modules need to be rotated by 3°+3° to achieve energy resolution goal
- \rightarrow New beam plug to be adapted
- Cable management will be more challenging
- Dedicated infrastructure meetings have started recently

Philipp Roloff

Preparation of TDR for LS3

- General structure defined
- Benchmark studies comparing Run 3 configuration (also with expected radiation damage!) to LS3 consolidation ongoing
 → see presentation by Liupan An
- Updated cost estimate ongoing based on today's knowledge

30/03/2023

Scoping document and cost

ECAL Upgrade II baseline and options defined in FTDR:

- Baseline: SpaCal & Shashlik with double-sided readout
- \rightarrow 30208 channels, cost \approx 35 MCHF
- Downscoped: SpaCal with double-sided readout, Shashlik with single-sided readout
- \rightarrow 19456 channels, cost \approx 22 MCHF
- Physics loss of downscoped version still to be evaluated (needs work on reconstruction)!
- \rightarrow Intermediate option not excluded

Scoping document aims at three LHCb Upgrade II cost options:

- FTDR baseline option: cost ≈175 MCHF
- Intermediate option: cost reduction of order 15%
- Minimal option: cost reduction of order 30%

 \rightarrow ECAL downscoped option already well within the minimal upgrade option! (with FTDR costing and assuming flat cut everywhere)

Summary and conclusions

ECAL upgrade strategy:

- Baseline technologies and configurations for LS3 and LS4 defined in FTDR
- LS3 consolidation with additional 3'500 channels and rhombic shape of ECAL
- Upgrade II during LS4 introduces dual readout with 30'000 channels

Upcoming milestones:

- Light-weight U2PG review and LS3 TDR in 2023
- Scoping document in 2024, Upgrade II TDR in 2026
- No show stoppers identified,

but tight schedule for LS3 consolidation (including infrastructure)!

More details in the following talks:

- Liupan An: PicoCal simulations and benchmarking
- Loris Martinazzoli: PicoCal technologies
- Patrick Robbe: PicoCal electronics

Thank you!

Philipp Roloff

Backup slides