

Mighty Tracker project overview and plans

6th Workshop on LHCb upgrade II Barcelona

30 March 2023 Pascal Perret

On behalf the Mighty Tracker Project

Overview

- ♦ A lot in front of us:
 - Up to 3 TDR to prepare
 - Run 4: «Opportunities for the detector at LS3»
 - LHCb Tracker TDR: early 2024?
 - Run 5:
 - Descoping TDR: 2024
 - U2 TDRs: 2025-2026
 - 1st Mighty tracker workshop organised at CERN March 7-8 https://indico.cern.ch/event/1251283/

• SciFi is the baseline solution. It was designed to run efficiently up to 50 fb⁻¹

- ~<3% loss expected in pattern recognition performance</p>
 - Some studies on-going (cf talk from Lennart)
 - But possibility to increase SiPM HV to compensate (partially?) this aging (cf Guido)
- Is it valid?
 - SiPM aging?
 - DCR comparison between expectation and measurements after 1 fb⁻¹ agrees very well (talk SciFi meeting: <u>Federico</u>)
 - Fibers aging
 - Oxidation ?
 - Test samples: continuing monitoring of 29 samples (5 year): average aging rate < 1% (talk SciFi meeting: Jan, Sonia)
 - Radiation?
 - To be checked, need of additional data (running at nominal lumi ...)

Not in time for a TDR early 2024

Replacement of SciFi central modules is a first option in case of needs (aging).

Replacement of SiPM inner modules with new SiPM development (cf Blake) ? 30/03/2023

- SciFi consolidation?
 - Critical points:
 - SiPM cooling liquid (using of C_6F_{14}): in case of leak?
 - Heating wires and CPS
 - Electronics: VTRx, Cluster FPGA reprogramming after radiation

- SciFi consolidation?
 - Critical points:
 - Detector access is an issue
 - Pilars
 - RICH2
 - We need some extra space on cryo side in order to open completely Cside, going out of RICH2

5

- SciFi consolidation?
 - Critical points:
 - Detector access is an issue
 - We need some extra space on cryo side in order to open completely Cside going out of RICH2

• Others?

 Need more running experience to identify possible point of failures that will have to be fixed

- Do we want/need to go above the baseline?
 - Some boundary conditions
 - Any additional part should not affect the reliability of the SciFi
 - SciFi detector access for maintenance has to be granted
 - Additional material budget should not degrade the tracking (and LHCb) performances
 - Should not compromise U2
 - Resources dispersion/availabilities
 - Manpower, budget
 - Mpix is an option
 - What could be available?
 - Inner part (6 modules)
 - 2 layers (after T2, front of T3)?
 - Is the time scale realistic?
 - What could be re-used for Run 5?
 - Installation of complete cooling system?
 - Financial agency support? (~10% 20% of U2?)
 Pascal Perret LPC Clerm

- What are the motivations to go above the baseline?
 - Do we plan to collect more than 50 fb⁻¹ before LS4?
 - Physics performance enhancement?
 - Heavy ion run program in Run 4
 - How many pixel layers needed, which area? \rightarrow What will bring 2 Si layers?
 - Other physics channel?
 - Is SciFi enhancement needed/ enough?
 - We need some guidelines

- Installation of new infrastructure during LS3 for LS4/Run 5?
 - Or for a "pilot detector" that could be installed during 1 EYETS in ~2031?

Internal review Q4 2023 to preparing a decision on LS3/Run 4

How to decrease the cost (impact on performances?)?

Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF

		-14%	-32%	
3.8: Cost for the Upgrade II I	Mighty Tracker detector.		Detector	Baselin
Component	Cost []-CIIE]			(kCH)
	Cost [KCHF]		VELO	148
Outer region: SciFi			\mathbf{UT}	89
Scintillating fibre mats	4250		Magnet Stations	22
SiPMs	2500			0.0.4
Electronics	6300		MT-SciFi	224
Infrastructure	9300		MT-CMOS	195
Inner and Middle regions: Sili	con		RICH	156
MightyPix	8950		TORCH	99
Electronics	5850		ECAL	3/18
Infrastructure	4700		Maria	0 40
Total	41850		Muon	71
			RTA	174
			Online	89
			Infrastructure	135
			Total	1751

30/03/2023

LHCD

How to decrease the cost (impact on performances?)?

Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF

Table 3.8: Cost for the Upgrade II Mighty Tracker detector.

-14%

-32%

How to decrease the cost (impact on performances?)?

Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF

Table 3.8: Cost for the Upgrade II Mighty Tracker detector.

FTDR:

-14%

Reducing the number of fiber layers from 6 to 4 will have a small impact (~3%)

-32%

Reducing the number of Si layers from 6 to 5 will have a small impact (<6%)

Infrastructure is a large part

Bridge modification/replacement not costed

LHCD THCD

- How to decrease the cost (impact on performances?)?
 - Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF

-14%

-32%

- Mighty Tracker
 - Reduce the number of channels
 - Reduce the acceptance
 - Change of B field (magnet)
 - Increase the granularity (fibre diameter, pixel size or combine electronics/readout channel)
 - Reduce the number of layers/station
 - New technologies
 - Revisit the cost estimate

- How to decrease the cost (impact on performances?)?
 - Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF

-14%

-32%

- SciFi tracker
 - Reducing the number of fibre layers will have a small impact (3%)
 - Remove outer part (24/128) (assuming same infrastructure) \Rightarrow 6%
 - Reduce the height of the modules?
 - Increase radiation hardness of fibres and/or SiPM
 - Alternative to cryogenic cooling?
 - Infrastructure: 42%. How to reduce the cost?
- Pixel tracker
 - Reduce the detector area (impact on SciFi (radiation?))
 - Reducing the number of Si layers from 6 to 5 will have a small impact (<6%)
 - Reducing by a factor 2 Pix + Electronics (assuming same infrastructure) \Rightarrow 18% ...

-14%

-32%

- How to decrease the cost (impact on performances?)?
 - Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF
 - SciFi tracker
 - Reducing the number of fiber layers will have a small impact (3%)
 - Remove outer part (24/128) (assuming same infrastructure) \Rightarrow 6%
 - Reduce the height of the modules?
 - Increase radiation hardness of fibres and/or SiPM
 - Alternative to cryogenic cooling?
 - Infrastructure: 42%. How to reduce the cost?
 - Pixel tracker
 - Reduce the detector area (impact on SciFi (radiation?))
 - Reducing the number of Si layers from 6 to 5 will have a small impact (<6%)
 - Reducing by a factor 2 Pix + Electronics (assuming same infrastructure) \Rightarrow 18% ...

-12%

-14%

-32%

- How to decrease the cost (impact on performances?)?
 - Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF
 - SciFi tracker
 - Reducing the number of fiber layers will have a small impact (3%)
 - Remove outer part (24/128) (assuming same infrastructure) \Rightarrow 6%
 - Reduce the height of the modules?
 - Increase radiation hardness of fibres and/or SiPM
 - Alternative to cryogenic cooling?
 - Infrastructure: 42%. How to reduce the cost?
 - Pixel tracker
 - Reduce the detector area (impact on SciFi (radiation?))
 - Reducing the number of Si layers from 6 to 5 will have a small impact (<6%)
 - Reducing by a factor 2 Pix + Electronics (assuming same infrastructure) \Rightarrow 18% ...

-24%

-14%

-32%

- How to decrease the cost (impact on performances?)?
 - Descoping: FTDR ~ 175 MCHF ; MEDIUM ~ 150 MCHF ; LOW ~ 120 MCHF
 - SciFi tracker
 - Reducing the number of fiber layers will have a small impact (3%)
 - Remove outer part (24/128) (assuming same infrastructure) \Rightarrow 6%
 - Reduce the height of the modules?
 - Increase radiation hardness of fibres and/or SiPM
 - Alternative to cryogenic cooling?
 - Infrastructure: 42%. How to reduce the cost?
 - Pixel tracker
 - Reduce the detector area (impact on SciFi (radiation?))
 - Reducing the number of Si layers from 6 to 5 will have a small impact (<6%)
 - Reducing by a factor 2 Pix + Electronics (assuming same infrastructure) \Rightarrow 18% ...

-33%

Organisation

WP0	WP1 Simulations and performances			Work Package breakdown		
Coordination	WP2	SciFi detector	WP3	CMOS pixel detector	 Structure under discussion 2 coordinators for each WP 	
	WP2.x		WP3.x		Institute interests	
	WP4 Readout			Institutes have to be involve in the decision process: extended IB		
	WP5 Mechanics, integration and services					

Some work packages exist already and are very active!

- To help to answer all these questions, each WP will have to provide
- > A roadmap
- Milestones
- Estimated (needed/available) FTE
- SciFi is a new project!

New collaborators welcome: plenty of tasks not covered

Open questions

- R&D detector choices
 - HV-CMOS
 - Radiation damage
 - Low material budget
 - Operating temperature
 - SciFi: this is a new detector
 - Radiation damage (Impact of new ECAL on radiation?)
 - Improvement in fibre radiation tolerance
 - Neutron shielding
 - Cryogenic cooling, vacuum insulation
 - Fibre mirroring
 - Could timing information be useful?
 - FE electronics architecture
 - Detector integration

Tracking algorithm improvements (Retina, Graphical Neural Network, etc.)

LHCD THCD

First step: Project Timeline

What next

• We have to identify commonalities with other projects

Pixel: UT

- Common meetings to present our progress and to identify possible common R&D
 - Pre-meeting next week
- cooling
- SiPM/cooling : RICH?
- Fibres: ECAL ?
 - Meeting mid-April
- Others?
- Workshop in Bonn 31/05 02/06: https://indico.cern.ch/event/1266905/
 - Wider audience
 - Attract new collaborators
 - Every one is welcome to join and participate
- Prepare our roadmap 30/03/2023

Pascal Perret - LPC Clermont

Summary

♦ Run 4

- SciFi is the baseline
 - Detector access is an issue
 - Benefit of LHC cryo displacement to extend a bit available space
- Internal review Q4 2023: to prepare a decision (needs, Mpix readiness, resources, impact, etc.)

We need some guidelines

THCP

+ Global optimisation

- Run 5 & Descoping
 - Revisit the cost
 - New technologies (fibres, cooling, etc.)
 - Decrease of the number of channels \Rightarrow Reduce detector acceptance
- We need new collaborators: you are welcome
- ◆ Mighty Tracker Workshop in Bonn 31/05 02/06 https://indico.cern.ch/event/1266905/
- More information: Simulation (Matt), Fibre (Blake), Pixel (Klaas)

BACKUP

SciFi view from C-side

Blake

CHICP LPC 23

Pascal Perret - LPC Clermont

SciFi top view C-side

Pascal Perret - LPC Clermont

Descoping roadmap

Descoping

- Revisit the cost estimate
- Global detector optimisation process needed:
 - Reduce peak luminosity (integrated luminosity?), reduce detector futures
 - Reduce detector acceptance \Rightarrow Impact on physics performances
- Reduce Si size
 - 6 \rightarrow 5 layers: impact on tracking performances?
 - Reduce Si area:
 - SciFi radiation hardness?
 - Could timing information be useful?
- SciFi
 - Reduce the number of layers?
 - Remove outer modules (flexibility: no design changes, decision could be take at the construction time)
 - Have shorter modules?

Downscoping: A modest tracker

- In FTDR main descope option discussed is reducing the silicon area: assume we gain from cryo cooling on the SciFi side.
- Also reduce to 5 silicon layers
- Silicon area reduces to 11 m²
- Reduces cost of Silicon by 40 %
- With 4 fiber layers for SciFi total system cost also reduces

26

Acceptance

Tim

High LPC

27

Pascal Perret - LPC Clermont