Muon Upgrade 2 Scenarios & performance studies

Marco Santimaria on behalf of the MUON group 6th workshop on LHCb Upgrade 2 Barcelona, 30/03/2023

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

- The MUON detector is made up of four stations (M2-M5), divided into four regions (R1-R4) from the beam pipe. Between the stations are three 80-cm thick iron absorbers that filter muons.
- Each station is equipped with 4-gap MWPCs
- Coincidence of hits btw stations (isMuon) can be used with $\sim 100\%$ muon efficiency to reduce the hadron misID at the 10⁻²-10⁻³ level depending on the particle type and momentum
- This performance is enhanced with the D² (Run 2) and χ^2_{corr} (Run 3) variables (more in the following)

Challenges and solutions

- Challenge: maintain current MUON performance at U2!
- Limiting factors:
 - FEE deadtime for muon efficiency
 - High misID due to increased combinatorial rate &
- Three "handles" to solve it: improved granularity, r additional shielding
- Solutions proposed in the FTDR, currently under scru
 - R1-R2 (rates up to 1 MHz/cm^2):
 - μ -Rwell detectors w small pads \rightarrow dedicated talk
 - R3-R4 (rates \leq 50 KHz/cm²):

Keep most of the present MWPC and read them at t granularity (i.e. no pad grouping to form logical
Expected aging @ Run 6 in the outer regions alreaded the end of Run 2 on M2R1 chambers, with no efficie

- Expect to replace some MWPCs with high granulari
- Back-up solution: use RPCs / scintillating tiles
- Increased number of channels & new FEE across the

[LHCb-INT-2020-007] [LHCB-U2-FTDR]

MUON U2 detector granularity

		# of	Pad size
		chambers	$cm \times cm$
a particle flux	M2R1	12	0.9×0.9
new electronics and	M2R2	24	0.9 imes 1.8
	M3R1	12	1.0 imes 1.0
itinv.	M3R2	24	1.0×1.9
actiny.	M4R1	12	1.1 imes 1.0
	M4R2	24	1.1×2.1
by E. Santovetti	M5R1	12	1.2×1.1
	M5R2	24	1.2×2.2
	M2R3	72	2.5×12.5
cheir full	M2R3n	40	2.5×6.3
channels)	M2R4	128	5 imes 25
eady achieved at	M3R3	64	2.7×13.5
ency loss	M3R4	176	5.4×27.0
ty ones	M4R3	48	5.8×14.5
Ly Unes	M4R4	192	5.8 imes 29.0
	M5R3	48	6.2×15.5
whole detector	M5R4	192	6.2 imes 31.0
	Total	1104	

Shielding

- To mitigate the high particle flux on M2, we're studying the possibility of replacing HCAL (1.7m, 5.6 λ_I) with a passive shielding:
 - R1-R3: full iron, $10.1\lambda_{I}$
 - Median plane: iron/concrete/iron sandwich, $6.2\lambda_{I}$
 - Top and bottom: concrete, $4\lambda_{I}$
- Rate reduction M2R1:-42% M2R2:-69% M2R3:-64%
- Negligible muonID efficiency loss is evaluated from simulated $K_s^0 \rightarrow \mu^+ \mu^-$ events (Run 2 conditions):

	HCAL	Shielding
1μ , all regions	$97.5\pm0.2\%$	$97.7\pm0.2\%$
R1	$93.1\pm0.9\%$	$93.4\pm0.8\%$
R2	$98.2\pm0.3\%$	$98.7\pm0.2\%$
R3	$99.1\pm0.2\%$	$97.4\pm0.3\%$
R4	$96.9\pm0.4\%$	$98.8\pm0.2\%$
2μ , all regions	$94.8\pm0.4\%$	$95.4\pm0.3\%$

• Additional shielding studies are ongoing, e.g. Mirrobor against thermal neutrons

Marco Santimaria / Muon U2 performance

Estimate of U2 particle rates

- In 2022, we repeated a rate measurement campaign wit the shielding & FEE requirements
- For the extrapolation to U2 luminosity we used:
 - Luminosity scans, e.g. FILL8212 with 7 lumi points taken on 09/2022
 - At each point we recorded FEE scaler counts for each physical channel across the whole detector
 - Chamber rates (avg. of channels) are linearly extrapolated to $\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Extra shielding material installed during LS2 is accounted for in data (HCAL-M2 beam plugs + tungsten)

Protons colliding poblic bunch (μ real):	er	
μ = 1.10	•	L = 1.05x10 ³² cm ⁻² s ⁻¹
μ = 1.45	•	L = 1.39x10 ³² cm ⁻² s ⁻¹
μ = 2.29	•	L = 2.19×10^{32} cm ⁻² s ⁻¹
μ = 2.92	•	L = 2.79×10^{32} cm ⁻² s ⁻¹
μ = 3.50	•	L = 3.35×10^{32} cm ⁻² s ⁻¹
μ = 4.05	•	L = 3.87x10 ³² cm ⁻² s ⁻¹
μ = 4.56	•	L = 4.36×10^{32} cm ⁻² s ⁻¹

• In 2022, we repeated a rate measurement campaign with new data \rightarrow this is crucial to understand the details of

taken on 09/2022 the physical channel across the whole detector papolated to $\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ accounted for in data (HCAL-M2 beam plugs + tungsten)

Results (with present detector)

Chamber rates on M2 (Hz/cm²)

1001	910	1247	18	893	25	12	1403	1025	1096
917	804	1165	17	776	21	10	1280	849	1036
1389	784	1307	19	931	2106		1299	841	1533
1559	747	1322	21	153	24	56	1375	811	1743
2347	911	1878	30	049	33	57	1832	1028	2520
2149	964	2212	39	923	41	69	2213	1117	2377
3008	1346	3158	60	023	65	85	3145	1505	3162
2771	1266	3808	8	021	91	70	3865	1686	2988
3612	2067	5441	12	527	132	263	5342	2258	3856
6452	2411	6748	17	733	207	/86	7056	2598	3711
4870	3228	10223	29	439	326	66	10271	3561	5056
4546	3825	12713	47	328	533	862	12902	4084	4784
6446	5028	17773	66493	120583	148811	77788	19378	5429	6676
5886	5787	23113	99470	217584	255560	107048	23768	6213	6244
8355	7272	31962	147585	321062 538980	508077 340550	170105	32190	7757	8502
7262	7473	34047	187623	<mark>594044</mark>	573691	205862	35821	7902	7647
9783	7957	39218	193571	496249	549110	217988	37922	8619	9938
6942	6921	30431	143561	341093 <mark>558687</mark>	546084 344551	152596	30842	7337	7299
7764	6280	25658	103585	209874	248696	114114	25527	6609	8103
5358	4802	17515	65005	122387	135696	73421	17909	5125	5503
5779	4111	14025	49	121	489	87	14323	4421	5783
3889	3116	9632	30	130	310)72	9905	3232	4095
4183	2658	8154	19	704	214	154	8021	2835	4469
5035	1972	4899	12	240	138	314	5210	2104	3253
3301	1674	2767	91	149	95	54	4351	1880	3542
2431	1283	2943	5789		64	30	2771	1397	2646
2470	1138	2533	4446		47	89	2448	1250	2668
1776	891	1725	2909		31	07	1702	927	1901
1861	821	1525	2350		24	74	1492	876	2060
1200	719	1195	1(661	18	73	1173	760	1451
1210	864	1387	17	765	18	54	1316	922	1351
1009	1161	1857	21	117	2322		1755	1188	1094

• <u>Maximum rate per region</u> (black) and the mitigation effect of the shielding (-> red) (kHz/cm²)

Maximum chamber rate (kHz/cm²)							
	M2	M3	M4	M5			
R1	594.0 -> 344.5	274.5	203.5	232.7			
R2	255.6 -> 79.2	64.2	34.1	39.0			
R3	53.4 -> 19.2	8.9	6.2	8.9			
R4	9.9	3.0	1.7	6.8			

Chamber rates on <u>M2R1-R2</u> (Hz/cm²)

66493	120583	148811	77788
99470	217584	255560	107048
147585	321062 <mark>538980</mark>	508077 340550	170105
187623	<mark>594044</mark>	<mark>573691</mark>	205862
193571	496249	<mark>549110</mark>	217988
143561	341093 <mark>558687</mark>	546084 344551	152596
103585	209874	248696	114114
65005	122387	135696	73421

<u>Rates: harder than it looks!</u>

- Currently, there's one FEE channel per bi-gap, made of two physically OR-ed gaps. The two FEE outputs are further OR-ed.
- However, reading each gap individually reduce the rate significantly and is desirable for U2
- To investigate different readout schemes, we measured bi-gap and quadri-gap rates, and also split:
 - <u>Uncorrelated rate (U):</u> due to random hits in each gap
 - <u>Correlated rate (C):</u> due to muons / tracks, or in general time-correlated hits

- The fractions of correlated hits (f_c) have been measured on data
- The single-gap rate is thus made up of $R_1 = R_{1U} + R_C$, where $R_C = R_4 \times f_C$
- This distinction is important because the deadtime-induced inefficiency for a given readout depends differently on these two components. For example if we read 4 gaps individually:

$$1 - \epsilon = \frac{R_{true} \times \delta}{1 + R_{true} \times \delta} = R_{obs} \times \delta \qquad 1 - \epsilon_{uncorr}^{gap} = R_1 \times \delta \rightarrow 1 - \epsilon_{uncorr}^{cham} = (1 - \epsilon_{uncorr}^{gap})^4 \qquad \text{Uncorrelated inefficiency is negliging}$$

$$1 - \epsilon_{uncorr}^{gap} = R_4 \times f_C \times \delta \rightarrow 1 - \epsilon_{corr}^{cham} = 1 - \epsilon_{corr}^{gap} \qquad \text{Correlated inefficiency dominates!}$$

Measured f_C values

	M2	M3	M4	M5
R1	0.08	0.05	0.12	0.10
R2	0.10	0.08	0.14	0.14
R3	0.16	0.22	0.34	0.33
R4	0.33	0.46	0.51	0.32

Marco Santimaria / Muon U2 performance

<u>Deadtime inefficiency: a toy MC</u>

- The previous formulas are valid only when the time distribution of the hits is uniform, but at LHC:
- 1. the hits are produced in bunches
- 2. background and muon hits have different time distributions \rightarrow we are interested in muon inefficiency
- 3. deadtime fluctuates
 - \rightarrow we developed a Monte Carlo simulation to validate the formulas
 - Background time distributions are generated from measured TDC spectra for each chamber (superposition of 3 consecutive BX)

Marco Santimaria / Muon U2 performance

Deadtime inefficiency maps

- Now that we trust the formulas, we can map the (correlated part of) deadtime-induced inefficiency
- to be in the range 75-100 ns with the present FEE [JINST (2016) 11 P04010]
- M2 especially crucial due to high rates, here shown for the worst case i.e. <u>current MWPCs & no shielding</u>:

	0.83	0.75	1.03	1.	.57	2.0	8	1.16	0.85	0.91
MZ	0.76	0.67	0.97	1.	.47	1.7	5	1.06	0.70	0.86
I-I C	1.15	0.65	1.08	1.	.60	1.7	5	1.08	0.70	1.27
	1.29	0.62	1.10	1.	.79	2.0	4	1.14	0.67	1.44
	1.95	0.76	1.56	2.	.53	2.7	8	1.52	0.85	2.09
$1 - \epsilon \% $	1.78	0.80	1.83	3.	.25	3.4	6	1.83	0.93	1.97
	2.49	1.12	2.62	4.	.99	5.4	6	2.61	1.25	2.62
	2.30	1.05	3.16	6.	.65	7.6	0	3.20	1.40	2.48
	2.99	1.71	0.74	1.	.69	1.7	9	0.72	1.87	3.20
	5.35	2.00	0.91	2.	.40	2.8	1	0.95	2.15	3.08
	4.04	2.68	1.38	3.	.98	4.4	1	1.39	2.95	4.19
	3.77	3.17	1.72	6.	.40	7.2	1	1.74	3.39	3.97
	5.34	4.17	2.40	4.63	8.40	10.37	5.42	2.62	4.50	5.54
	4.88	4.80	3.12	6.93	15.16	17.81	7.46	3.21	5.15	5.18
	6.93	6.03	4.32	10.28	9.26 15.55	14.66 9.82	11.85	4.35	6.43	7.05
	6.02	6.20	4.60	13.07	17.14	16.55	14.34	4.84	6.55	6.34
	8.11	6.60	5.30	13.49	14.32	15.84	15.19	5.12	7.15	8.24
	5.76	5.74	4.11	10.00	9.84 16.12	15.75 9.94	10.63	4.17	6.08	6.05
	6.44	5.21	3.47	7.22	14.62	17.33	7.95	3.45	5.48	6.72
	4.44	3.98	2.37	4.53	8.53	9.45	5.12	2.42	4.25	4.56
	4.79	3.41	1.90	6.	.64	6.6	2	1.94	3.67	4.80
	3.22	2.58	1.30	4.	.07	4.2	0	1.34	2.68	3.40
	3.47	2.20	1.10	2.	.66	2.9	0	1.08	2.35	3.71
	4.17	1.64	0.66	1.	.65	1.8	7	0.70	1.74	2.70
	2.74	1.39	2.29	7.	.59	7.9	2	3.61	1.56	2.94
	2.02	1.06	2.44	4.	.80	5.3	3	2.30	1.16	2.19
	2.05	0.94	2.10	3.	.69	3.9	7	2.03	1.04	2.21
	1.47	0.74	1.43	2	.41	2.5	8	1.41	0.77	1.58
	1.54	0.68	1.26	1.95		2.0	5	1.24	0.73	1.71
	1.00	0.60	0.99	1.	.38	1.5	5	0.97	0.63	1.20
	1.00	0.72	1.15	1.	.46	1.5	4	1.09	0.76	1.12
	0.84	0.96	1.54	1.	.76	1.9	3	1.45	0.99	0.91

• Conservatively assuming $\delta = 100 \text{ ns}$: these values have been measured on data across the whole detector and found

<u>Deadtime inefficiencies & µRWell</u>

- As $1 \epsilon \propto R$, the effect of the shielding is the same shown for the rates in $\rightarrow \underline{slide\#6}$
- Instead, here the current MWPCs are compared to μ Rwell chambers, which have smaller readout pads:

Current pads (black)

Reg / Sta	M2	M3	M4	M5
R1	38x31 -> 9x9	41x34 -> 10x10	29x36 -> 11x10	31x39 -> 12x11
R2	76x31 -> 9x18	82x34 -> 10x19	58x73 -> 11x21	62x77 -> 12x22
R3	25x125	27x135	58x145	62x155
R4	50x250	54x270	58x290	62x309

Maximum deadtime inefficiency % <u>HCAL - MWPC</u>								
	M2	МЗ	M4	M5				
R1	17.14	6.65	7.50	8.66				
R2	17.81	4.62	5.69	7.34				
R3	7.21	1.72	3.49	5.68				
R4	8.24	3.37	2.30	8.55				
			- Movin	g to high-				

- High inefficiencies are strongly mitigated in R1-R2 with μ Rwell chambers
- Some high values remain in R3-R4, where MWPCs have large pads

->	muRwell	pads	(red)	in	mm ²
----	---------	------	-------	----	-----------------

Maximum deadtime inefficiency % <u>HCAL - µRWELL</u>								
	M2	МЗ	M4	M5				
R1	1.18	0.48	0.79	0.95				
R2	1.22	0.32	0.31	0.41				
R3	7.21	1.72	3 .49	5.68				
R4	8.24	3.37	2.30	8.55				

granularity µRWell chambers

Marco Santimaria / Muon U2 performance

- look at muonID and hadron misID behaviour.
- Our basic algorithm at HLT1:
- 1. Open a Field of Interest (FoI) along the track
- to track momentum ("isMuon")

<u>MuonID: testing performance</u>

- Different regions of the MUON detector are impacted differently by new detectors and shielding \rightarrow high momentum tracks more likely fall into inner regions
- The impact of all the quoted effects is therefore evaluated on the muonID efficiency for **benchmark channels**

- 2. <u>Shielding</u> in place of HCAL \rightarrow rate reduction M2R1:-42% M2R2:-69% M2R3:-64%
- 3. <u>Improved granularity on R1-R2</u>. As per Table in \rightarrow <u>slide#10</u>
- 4. <u>Removal of the M2 station</u>, a possibility if highly inefficient

Momentum (GeV)	isMuon w∕o M2			
p < 3	FALSE			
3 < p < 6	M3			
6 < p < 10	M3 & (M4 M5)			
p > 10	M3 & M4 & M5			

1. <u>Deadtime-induced inefficiency</u> \rightarrow per-chamber maps from previous slides are applied to channel kinematics

 \rightarrow the aim is to check the impact of dropping M2 from the present algorithm, not a proposed algorithm for U2!

MuonID: results on physics channels

	$B_s^0 \to \mu^+ \mu^-$		$D^0 \rightarrow \mu^+ \mu^-$		K_s^0 –	$\rightarrow \mu^+ \mu^-$	$B_s^0 \to J/\psi(\mu^+\mu^-) \ \phi(K^+K^-)$		
Scenario	1-ε 1-ε (MWPC) (μRwell)		1-ε (MWPC)	1-ε (μRwell)	1-ε (MWPC)	1-ε (μRwell)	1-ε (MWPC)	1-ε (μRwell)	
HCAL	24.7 %	10.3 %	25.9 %	9.4 %	20.0 %	8.4 %	24.9 %	9.5 %	
SHIELD	19.0 %	8.6 %	19.4 %	7.6 %	13.9 %	6.3 %	18.7 %	7.8 %	
w∕o M2	13.4 %	6.0 %	13.7 %	5.3 %	8.3 %	3.2 %	13.1 %	5.3 %	

- The simulated event is considered lost if one+ muon does not pass the isMuon selection
- M2 removal seems more effective than the shielding in mitigating the deadtime inefficiency, but the misID must be kept under control

n does not pass the isMuon selection in mitigating the deadtime inefficiency, but the

MisID: dealing with lots of hits

- No U2 simulation available \rightarrow emulate the increased occupancy by superimposing minbias data to $J/\psi \rightarrow \mu^+\mu^-$ (muonID) or $D^0 \rightarrow K^- \pi^+$ (misID) simulated events
- Superimpose 25 minbias events from data (PU=1.5) to each simulated event (PU=2) to

 Background hit composition is inspected via lowenergy simulation

M2 FOI

Pushing current algorithms

 D^2 : spatial residuals $\chi^2_{\rm corr}$: including hit correlations & multiple scattering \rightarrow more details in the backup

• To cope with the higher misID in Run 3 wrt Run 2, we developed the χ^2_{corr} algorithm: how does it perform on U2 data? • Muon track from $J/\psi \rightarrow \mu^+\mu^-$, pion track from $D^0 \rightarrow K^-\pi^+$ MC after isMuon

<u>[JINST 15 (2020) T12005]</u>

 $\rightarrow \chi^2_{\rm corr}$ still doing its job with U2 occupancy!

MisID vs region: three working points

Ι	PID cut	I	Kinematics	I	MuonID eff 2018	I	MuonID ef
I	isMuon	I	R1	I	100.00 +- 0.00 %	I	100.00 +- 0.
Î	isMuon	ľ	R2	Ì	100.00 +- 0.00 %	Î	100.00 +- 0.
	isMuon	ľ	R3	Ì	100.00 +- 0.00 %		100.00 +- 0.
ľ	isMuon		R4	Ì	100.00 +- 0.00 %		100.00 +- 0.
I		ľ					
Ĩ	isMuon && Chi2<7	Ĩ	R1	Ĩ	98.02 +- 0.35 %		99.75 +- 0.1
ľ	isMuon && Chi2<7		R2	I	99.27 +- 0.17 %		99.54 +- 0.1
	isMuon && Chi2<7		R3		99.53 +- 0.13 %		99.70 +- 0.1
	isMuon && Chi2<7		R4	Ì	99.35 +- 0.17 %	I.	99.39 +- 0.1
ľ				Ĩ		Ĩ	
Ì	isMuon && Chi2<2	Ì	R1	Ì	89.20 +- 0.77 %	Ì	91.91 +- 0.6
Ì	isMuon && Chi2<2	Ĩ	R2	Ì	91.47 +- 0.55 %		92.50 +- 0.5
	isMuon && Chi2<2		R3		87.13 +- 0.62 %		88.08 +- 0.6
I	isMuon && Chi2<2	Ì	R4	I	85.12 +- 0.74 %	I	85.51 +- 0.7

- Can reduce the background by a factor 3-5 with negligible efficiency loss (orange), or achieve ~15x reduction with order 10% muon loss (green). Encouraging results for future algorithms!
- We're considering muon-only information: global PID will perform better
- No shielding is being considered: will \sim halve the R1-R2 rate \rightarrow this roughly means halving the misID but the physics needs to be fully simulated

MisID: fully data-driven

- MisID is also tested on U2 environment from the superposition of 2016 TurCal events
- $J/\psi \to \mu^+\mu^-$, $D^{*+} \to D^0(K^-\pi^+)\pi^+$ and $\Lambda \to p\pi^-$ data, background subtraction via sPlot
- Working point for this study:
 - p > 10 GeV (always 4 station coincidence & few decays in flight)
 - requiring crossed hits only (no more x,y strip readout at U2)
 - isMuon w 20% smaller FOI
- Result: <muon efficiency> = 93.1%, <pion misID> = 14.3 %, <proton misID> = 23.6%
- χ^2 improves the muonID similarly to what seen on MC+MinBias data, but mind the occupancy:

- Superimposing 15 events: <N>= 2800
- χ2< 2 3 6 1 36.0 64.5 78.0 83.6 86.4 88.2 89.2 89.9 90.2 Muon efficienc 0.29 0.84 1.4 2.1 2.8 3.4 4.1 4.7 Pion misID

• Superimposing 20 events: <N>= 3700

χ2<	1	2	3	4	5	6	7	8
Muon efficienc y	37.0	67.8	79.7	85.4	88.3	89.5	90.5	91.2
Pion misID	0.36	1.2	2.2	3.3	4.3	5.4	6.4	7.3

<u>Conclusions & prospects</u>

- Muon detector operated with excellent performance for 10+ years, some chambers still suitable for U2!
- In the FTDR we concentrated on U2 rate studies, now we are converging towards muonID performance determination with a μ Rwell+ MWPC detector
- This aims at finalising the detector layout, namely:
 - replace HCAL with a passive shielding
 - design additional shielding against low energy background
 - M2 removal?
- performance
- Good results from existing algorithms encourage future developments

• Promising results are emerging, but full simulation is required to optimise the shielding & maximise muonID

backup

MuonID operators in Run 3

- The sum of squares of the spatial residuals (D^2) neglects hit correlations between muon stations:

$$D^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\frac{x_{\text{closest}}^{i} - x_{\text{track}}^{i}}{\text{pad}_{x}^{i}} \right)^{2} + \left(\frac{y_{\text{closest}}^{i} - y_{\text{track}}^{i}}{\text{pad}_{y}^{i}} \right)^{2} \right]$$

• The χ^2_{corr} accounts for correlations via a covariance matrix V $\chi^2_{\text{CORR}} = \delta \overrightarrow{x}^T \mathbf{V}_x^{-1} \delta \overrightarrow{x} + \delta \overrightarrow{y}^T \mathbf{V}_u^{-1} \delta \overrightarrow{y}$

which is made by the sum of the spatial residuals (on the diagonal)

$$V_{jj}^{\text{RES}} = \sigma_{\text{RES},j}^2 \quad \sigma_{\text{RES},j} = \text{pad}_{x,y}^j / \sqrt{12}$$

and the matrix of MS deviations experienced in the absorbers:

$$\mathbf{V}_{jk}^{\mathrm{MS}} = \sum_{z_i < z_j, z_k} (z_j - z_i) (z_k - z_i) \sigma_{\mathrm{MS}, i}^2 \qquad \sigma_{\mathrm{MS}, i} = \frac{13.6 \mathrm{MeV}}{\beta c p}$$

- $\bullet \chi^2_{corr}$ gives much better performance on high-multiplicity data on top of the isMuon selection across the whole momentum spectrum
- Even better performance is achieved with Catboost MVA using MUON features

[JINST 15 (2020) T12005]

• In Run 3, x2 increased rate of misID background is expected wrt Run 2, so we developed two new operators:

MuonID: physics channels

		$B_s^0 \to \mu^+ \mu^-$		$D^0 \to \mu^+ \mu^-$		K_s^0 -	$\rightarrow \mu^+ \mu^-$	$B_s^0 \to J/\psi(\mu^+\mu^-) \ \phi(K^+$	
Scenario	Momentum (GeV)	1-ε (MWPC)	1-ε (μRwell)	1-ε (MWPC)	1-ε (μRwell)	1-ε (MWPC)	1-ε (μRwell)	1-ε (MWPC)	1- (μRw
	3 <p<6< th=""><th>0.1 %</th><th>0.07 %</th><th>0.2 %</th><th>0.1 %</th><th>3.1 %</th><th>2.9 %</th><th>0.4 %</th><th>0.3</th></p<6<>	0.1 %	0.07 %	0.2 %	0.1 %	3.1 %	2.9 %	0.4 %	0.3
	6 <p<10< th=""><th>0.4 %</th><th>0.3 %</th><th>0.9 %</th><th>0.7 %</th><th>4.3 %</th><th>2.4 %</th><th>1.1 %</th><th>0.8</th></p<10<>	0.4 %	0.3 %	0.9 %	0.7 %	4.3 %	2.4 %	1.1 %	0.8
ΠርΑΓ	p>10	24.3 %	9.9 %	24.9 %	8.7 %	12.9 %	3.1 %	23.6 %	8.5
	<u>TOTAL</u>	<u>24.7 %</u>	<u>10.3 %</u>	<u>25.9 %</u>	<u>9.4 %</u>	<u>20.0 %</u>	<u>8.4 %</u>	<u>24.9 %</u>	<u>9.5</u>
	3 <p<6< th=""><th>0.1 %</th><th>0.06 %</th><th>0.1 %</th><th>0.1 %</th><th>2.6 %</th><th>2.5 %</th><th>0.3 %</th><th>0.2</th></p<6<>	0.1 %	0.06 %	0.1 %	0.1 %	2.6 %	2.5 %	0.3 %	0.2
	6 <p<10< th=""><th>0.3 %</th><th>0.3 %</th><th>0.7 %</th><th>0.5 %</th><th>2.4 %</th><th>1.5 %</th><th>0.8 %</th><th>0.7</th></p<10<>	0.3 %	0.3 %	0.7 %	0.5 %	2.4 %	1.5 %	0.8 %	0.7
SUIELD	p>10	18.6 %	8.2 %	18.6 %	7.0 %	9.1 %	2.4 %	17.7 %	6.9
	<u>TOTAL</u>	<u>19.0 %</u>	<u>8.6 %</u>	<u>19.4 %</u>	<u>7.6 %</u>	<u>13.9 %</u>	<u>6.3 %</u>	<u>18.7 %</u>	7.8
	3 <p<6< th=""><th>0.02 %</th><th>0.01 %</th><th>0.03 %</th><th>0.02 %</th><th>0.8 %</th><th>0.8 %</th><th>0.1 %</th><th>0.1</th></p<6<>	0.02 %	0.01 %	0.03 %	0.02 %	0.8 %	0.8 %	0.1 %	0.1
10 0 M2	6 <p<10< th=""><th>0.1 %</th><th>0.1 %</th><th>0.2 %</th><th>0.1 %</th><th>0.9 %</th><th>0.5 %</th><th>0.2 %</th><th>0.1</th></p<10<>	0.1 %	0.1 %	0.2 %	0.1 %	0.9 %	0.5 %	0.2 %	0.1
NO MZ	p>10	13.3 %	5.9 %	13.5 %	5.1 %	6.7 %	1.8 %	12.8 %	5.1
	<u>TOTAL</u>	<u>13.4 %</u>	<u>6.0 %</u>	<u>13.7 %</u>	<u>5.3 %</u>	<u>8.3 %</u>	<u>3.2 %</u>	<u>13.1 %</u>	5.3

21/18

MisID vs momentum: three working points

	PID cut	Kinematics	MuonID eff 2018	MuonID eff U2	Pion misID 2018	Pion misID
	isMuon isMuon isMuon isMuon isMuon	3 <p<6< td=""> GeV PT<1 GeV 3<p<6< td=""> GeV PT>1 GeV 6<p<10< td=""> GeV PT<1 GeV 6<p<10< td=""> GeV PT>1 GeV P>10 GeV PT<1 GeV</p<10<></p<10<></p<6<></p<6<>	100.00 +- 0.00 % 100.00 +- 0.00 %	100.00 +- 0.00 % 100.00 +- 0.00 % 100.00 +- 0.00 % 100.00 +- 0.00 % 100.00 +- 0.00 %	9.74 +- 0.93 % 6.07 +- 1.52 % 7.88 +- 0.88 % 3.74 +- 0.71 % 1.83 +- 0.32 %	56.59 +- 1.55 49.80 +- 3.18 76.04 +- 1.39 36.34 +- 1.79 64.12 +- 1.13
	isMuon isMuon && Chi2<7 isMuon && Chi2<7 isMuon && Chi2<7 isMuon && Chi2<7 isMuon && Chi2<7 isMuon && Chi2<7	P>10 GeV PT>1 GeV 3 <p<6< td=""> GeV PT<1</p<6<>	100.00 +- 0.00 % 96.14 +- 1.05 % 98.64 +- 0.78 % 98.15 +- 0.69 % 98.88 +- 0.37 % 99.02 +- 0.35 % 99.42 +- 0.09 %	100.00 +- 0.00 % 97.92 +- 0.78 % 99.09 +- 0.64 % 98.68 +- 0.59 % 98.88 +- 0.37 % 99.39 +- 0.27 % 99.84 +- 0.05 %	1.06 +- 0.15 % 3.25 +- 0.56 % 3.24 +- 1.13 % 2.77 +- 0.54 % 1.94 +- 0.51 % 1.16 +- 0.25 % 0.95 +- 0.15 %	34.34 +- 0.71
	isMuon && Chi2<2 isMuon && Chi2<2 isMuon && Chi2<2 isMuon && Chi2<2 isMuon && Chi2<2 isMuon && Chi2<2	3 <p<6< td=""> GeV PT<1</p<6<>	64.09 +- 2.61 % 74.55 +- 2.94 % 80.16 +- 2.05 % 84.39 +- 1.28 % 89.93 +- 1.05 % 90.47 +- 0.35 %	68.55 +- 2.53 % 76.82 +- 2.85 % 80.69 +- 2.03 % 83.52 +- 1.31 % 91.15 +- 1.00 % 91.66 +- 0.33 %	1.67 +- 0.40 % 2.02 +- 0.90 % 2.13 +- 0.47 % 1.66 +- 0.48 % 0.94 +- 0.23 % 0.72 +- 0.13 %	8.56 +- 0.88 4.45 +- 1.31 5.43 +- 0.74 2.64 +- 0.60 4.05 +- 0.46 2.05 +- 0.21

• Largest misID increase at U2 is concentrated at low momentum \rightarrow the impact is channel-dependent

22/18