

6th workshop on LHCb upgrade II Barcellona 29-31 March

The micro-RWELL for R1/R2

Status & plans

E. Santovetti for the micro-RWELL LHCb group LNF, Roma2, Bari

Outline

Detector choice

- experiment requirements
- Micro-RWELL features
- FE electronic
- Summary and outlooks

LHCb upgrade II (Run5 – Run6)

LHCb muon apparatus Run5 – Run6 option detector requirements

- Rate up to **1 MHz/cm²** on detector single gap
- Rate up to 700 kHz per electronic channel
- Efficiency quadrigap >=99% within a BX (25 ns)
- Stability up to **1C/cm²** accumulated charge in 10y at M2R1, G=4000

Detector size & quantity (4 gaps/chamber - redundancy)

- R1÷R2: 576 detectors, size 30x25 to 74x31 cm², 90 m² detector (130 m² DLC)
- R3: 768 detectors, siz 120x25 to 149x31 cm², 290m² det.
- R4: 3072 detectors, size 120x25 to 149x31 cm², 1164 m² det.

Rates	$(\rm kHz/cm^2)$	M2	M3	M4	M5
	R1	749	431	158	134
	R2	74	54	23	15
	R3	10	6	4	3
	$\mathbf{R4}$	8	2	2	2
Area (m^2)		M2	M3	M4	M5
	R1	0.9	1.0	1.2	1.4
	R2	3.6	4.2	4.9	5.5
	R3	14.4	16.8	19.3	22.2
	R4	57.6	67.4	77.4	88.7

CHECKS CHECKS

The μ -RWELL

PoS(MPGD2017)019

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008

The μ -RWELL is a resistive MPGD composed of two elements:

Cathode

- µ-RWELL_PCB:
- a WELL patterned kapton foil (w/Cu-layer on top) acting as amplification stage
- → a resisitive DLC layer^(*) w/ ρ⁼ 10÷100 MΩ/cm
- ➡ a standard readout PCB with pad/strip segmentation

(*) DLC foils are currently provided by the Japan Company – BeSputter

The **"WELL"** acts as a **multiplication channel** for the ionization produced in the drift gas gap.

The resistive stage ensures the spark amplitude quenching.

Drawback: capability to operate at high particle fluxes reduced, but **largely recovered** with appropriate **grounding schemes** of the **resistive layer**

The HR layout

The **PEP** layout (Patterning – Etching – Plating) is the **state of art** of the **high rate** layout of the μ -RWELL developed **for LHCb**

- Single DLC layer
- Grounding line from top by kapton etching and plating (pitch down to 1 cm)
- No alignment problems
- High rate capability
- Scalable to large size (up to 1.2x0.5 m for the upgrade of CLAS12)

QA & QC

preliminary

The technology has been **largely improved** in the last year, thanks to the introduction of the "dry-electrical**cleaning**", a sort of a hot HV conditioning allowing a soft cleaning of the residual imperfections of the detector manufacturing.

Detector stability improved: up to 150V large plateau, estimated gain up to 2×10⁴ (to be measured).

Optical metallographic survey (in ELTOS) as well as SEM analysis (at CERN) are used to take all construction steps under control as well as checking effects for possible aging/etching (by fluorine ...).

Х

μ -RWELL – 4 stations efficiency

single gap EFFICIENCY = 0.887÷0.897

4 gaps for each station

4 stations

Option (1) – 4 gaps **OR** (e.g. **R1**)

Station efficiency, taking into account correlated hit and FEE dead time (100 ns)

M2 R1 – 0.987	
M3 R1 - 0.995	M2⊕M3⊕M4⊕M5
M4 R1 - 0.992	= 0.965
M5 R1 - 0.990	

Option (2) - **Majority** 2 of 4 (e.g. **R1**)

Station efficiency, taking into account correlated hit and FEE dead time (100 ns)

Summary – R1/R2 and gas mixtures

Ar:CO ₂ :CF ₄	Ar:CO₂:iso
45:15:40	68:30:02
$\sigma_{\rm t} = 6 n s$	$\sigma_t = 8ns$
THR=5fC	THR=5fC

	4 sta	tions		4 stations						
	OR	MAJ		OR	MAJ					
R1	0.965	0.933	R1	0.940	0.665					
R2	0.973	0.947	R2	0.951	0.684					

X

Technology spread

The **improvement of the quality and yield** is a clear **by-product of the technology spread** (in particular CLAS12 upgrade at JLAB).

Technology transfer and production cycle

Final detector manufacturing

*DLC Magnetron Sputtering machine co-funded by INFN- CSN1

FE Electronics

- FE electronics has a crucial role in the detector efficiency: dead time, S/N ratio and threshold ...
- The number of channels is very large (~ 150k) on quite small detector sizes → engineering very important.
- We have selected a chip (FATIC Bari INFN) which seems to be right for us even if something will have to be changed to adapt it to our needs

FATIC architecture

Features:

- Technology: TSMC 130 nm
- 32 channels
 - Programmable polarity, gain and peaking time
 - Charge and time measurement
 - TDC resolution: 100 ps
- Calibration, Bias and Monitoring
 - Charge injection calibration
 - Programmable biases (currents and voltages)
 - Monitoring ADC (12 bit SAR)
- 320 Mbps serial link, **lpGBT** compatible
- Power supply 1.2 V
- Radiation hardness: up to 100 Mrad

Channel block diagram

Preamplifier features:

- CSA operation mode
- Input signal polarity: positive and negative
- Recovery time: adjustable

CSA mode:

- Programmable Gain: 10 mV/fC ÷ 50 mV/fC
- Peaking time: 25 ns, 50 ns, 75 ns, 100 ns

Timing branch:

- Measures the arrival time of the input signal
- Time jitter: 400 ps @ 1 fC & 15 pF (Fast Timing MPGD)

Charge branch:

- Acknowledgment of the input signal
- Charge measurement: dynamic range > 50 fC, programmable charge resolution

Test setup

Front End Board - 4 x FATIC2 - 128 channels

MOSAIC DAQ board + FMC adapter - Up to 4 FEB

14

Hardware ready to read up to 4 Front-End boards (4 x 128 channels)

Measure: charge discriminator

Summary & Outlook

The advances in the **µ-RWELL technology** during the last two years lead to **large improvements** in **terms of stability** and **production yield**

- The challenge for the next two years is the **TT of resistive-MPGD** to the PCB industry (ELTOS)
- Key-point is the acquisition of the DLC magnetron sputtering machine co-funded by CERN and INFN that is going in operation in these days

Mid-term To Do List:

Integration with the electronics (FATIC) developed by the Bari group, with the goal of a better understanding of the requirements for a new dedicated ASIC

- Test-bench in Bari for chip validation
- cosmic ray stand in Frascati ongoing now
- Test beam (eff in 25 ns, OR/maj..etc vs gas mix) within summer 2023
- Optimization of the PEP layout & design of the M2R1/R2 proto-0 > 2023/24
- Global irradiation (LNF X-ray tube, GIF++ w/Gas CERN group) ► 2023/2024
- Eco-gas fast mixtures (to decide...)

L3=85,65µm

L1=83,76µm

Spare Slides

L2=88,87µm

Tentative schedule (2022-2032)

	2022 2023		2024 2025		2026 2027)27	2028		2029		2030		2031		2032		2033		2034		
	RUN3				LS3				RUN4								LS4					
new HR layout design & test (w/X-ray)																						
eco-gas searches																						
CR/test beam with HR proto																						
global irradiation test (GIF++ ?)																						
finalizing design HR layout																						
proto-0 construction & test																						
TDR																						
preparation mass production (ELTOS+ CERN)																						
DLC production w/CID																						
R1 - Production/test																						
R2-M2/M3 - production/test																						
R2-M4/M5 - production/test																						
Installation/commissioning (?)																						

La costruzione segue i seguenti step(*):

- CERN , produzione DLC con macchina sputtering CID
- Eltos 🗖 PCB, DLC patterning & gluing
- CERN _ finalizzazione rivelatore con etching kapton (RUI)
- CERN assemblaggio con frame e catodi e procedura di conditioning (RUI)
- CERN test finale rivelatori e integrazione elettronica (personale INFN)

(*) tempi e modalità di produzione definite con Rui & Eltos e considerando un solo «integration group»

Cosmic ray setup @ LNF

Several **test facilities** in Frascati (LNF/ENEA), CERN (H8C) and PSI (PiM1) are exploited for detectors characterization. **Synergies** with external groups (Ferrara, Bologna, RM2-CLAS12) gave an important boost to the technology. For sure the involvement of other LHCb-Muon groups would be desirable in the near future, in particular in view of the phase of major commitment for the integration tests.

Technology transfer (II)

 $Step \ 0 \ \text{-} \ Detector \ PCB \ design \ @ \ LNF$

Step 1 - CERN_INFN DLC sputtering machine @ CERN

- Installed and commissioned beginning of Nov 2022
- Operated by CERN + LNF (& INFN) staff
- **Step 2** Producing readout PCB by **ELTOS**
 - pad/strip readout
- Step 3 DLC patterning by ELTOS
 - photo-resist = patterning with BRUSHING-machine
- Step ${\bf 4}$ DLC foil gluing on PCB by ${\bf ELTOS}$
 - double 106-prepreg [∞] 2x50[∟] m thick
 - PCB planarizing w/ screen printed epoxy = single 106-prepreg
- Step 5 Top copper patterning by CERN (in future by ELTOS)
 - Holes image and HV connections by Cu etching
- **Step 6** Amplification stage patterning by $\ensuremath{\textbf{CERN}}$
 - PI etching = plating = ampl-holes

Step 7 - Final electrical cleaning and detector closing @ CERN

High-rate layouts performance w/m.i.p.

CID: the CERN-INFN DLC machine

- Flexible substrates, coating areas up to 1.7 m
 × 0.6 m
- Rigid substrates, coating areas up to 0.2 m × 0.6 m
- Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters
- Sputtering & co-sputtering different materials, in order to create a coating layer by layer or an adjustable gradient in the coating

Measure: CSA noise vs input capacitance

Measurement conditions: fast-branch, LG, positive polarity

Measure: fast discriminator

Non gaussian noise

This noise should not present in a system effected only by gaussian noise (electronic noise)

Stucked channels

In this scan: 4 channels stucked before scan

A know bug in the channel FSM is triggered by the noise. When channel is stucked, the only way to recover is an hard reset.

Firmware and software

Firmware is based on the MOSAIC architecture

- Data transfer @320 Mbps from each FATIC2 chips
- Data filter to emulate triggered acquisition
- Board memory buffer 1 GB
- Ethernet sustained data transfer 120 MBps (~1 Gbps)

Current software is able to perform all hardware related tasks:

- DAQ Board + FATIC2 chips configuration
- Equalize channel discriminator thresholds
- Charge scan => S-curves, Hit-maps, Effective thresholds, Noise
- Data acquisition

To do

- INFN-Bari:
 - Enable MOSAIC firmware to read 4 Front-end boards
 - Wire bonding of 6 additional FEBs and test
 - Implement multi-board synchronization, configuration and readout
- Test @ INFN-Frascati:
 - 10 x 10 cm2 u-rwell + FATIC2_FEB, FATIC2 test board
 - Measurement with cosmic muons
 - Test target:
 - Timing measurements (with FATIC2_FEB)
 - Charge measurements (with FATIC2_FEB): statistic on the u-Rwell charge

rast-branch. tinning

measurements

FATIC2: toa e jitter vs peaking time

Measurement conditions: fast-branch, LG, positive polarity, 100 pF input capacitance, threshold 4.5 fC

measurement

30/3/2023

measurement

Scan with only gaussian hoise

Operating condition: Cin = 100 pF Theshold = ~5 fC ENC = ~0.75 fC

30/3/2023