

1

Software framework options for Run 5

M. Clemencic

6th Workshop on LHCb upgrade II – March 30, 2023

CERN - LHCb

- 1. A bit of history
- 2. Lessons to be learned
- 3. Can we plan for Run 5?
- 4. How to proceed

A bit of history

2000 Gaudi

- still in the golden era of Moore's law
- every year the application was faster (just change the CPU)
- state of the art practices meant compute on demand and use pointers
- hidden in a niche, somebody introduced programmable shaders

2000 Gaudi

- still in the golden era of Moore's law
- every year the application was faster (just change the CPU)
- state of the art practices meant compute on demand and use pointers
- hidden in a niche, somebody introduced programmable shaders
- 2006 Intel Core CPU (dual-core)
 - Moore's law still valid if applied to the die
 - single core performance not improving as fast as before

2000 Gaudi

- still in the golden era of Moore's law
- \cdot every year the application was faster (just change the CPU)
- state of the art practices meant compute on demand and use pointers
- hidden in a niche, somebody introduced programmable shaders
- 2006 Intel Core CPU (dual-core)
 - Moore's law still valid if applied to the die
 - single core performance not improving as fast as before
- 2009 GPUs are used in TOP500 HPCs 2011 ARMv8 (64bits)
 - ARM chips are not anymore just toys for mobile devices
- 2020 Fugaku, the fastest HPC, uses ARM processors

2000 Gaudi

- still in the golden era of Moore's law
- \cdot every year the application was faster (just change the CPU)
- $\cdot\,$ state of the art practices meant compute on demand and use pointers
- hidden in a niche, somebody introduced programmable shaders

2006 Intel Core CPU (dual-core)

- Moore's law still valid if applied to the die
- single core performance not improving as fast as before
- 2009 GPUs are used in TOP500 HPCs 2011 ARMv8 (64bits)
 - ARM chips are not anymore just toys for mobile devices
- 2020 Fugaku, the fastest HPC, uses ARM processors
- 2022 Allen, GPU based LHCb Hlt1

- The HPC hype is still high
 - money goes into HPCs and not into old-style computing centers
 - HPCs are the new off-the-shelf resources

- The HPC hype is still high
 - money goes into HPCs and not into old-style computing centers
 - HPCs are the new off-the-shelf resources
- We transitioned from multi-core to many-core
 - latest CPUs offer 30-90 cores
 - GPUs have thousands of computing cores

- The HPC hype is still high
 - money goes into HPCs and not into old-style computing centers
 - HPCs are the new off-the-shelf resources
- We transitioned from multi-core to many-core
 - latest CPUs offer 30-90 cores
 - GPUs have thousands of computing cores
- More specialized hardware is introduced every day
 - tensor-cores added to GPUs
 - graphic cards with ray-tracing dedicated hardware
 - FPGA companies were acquired by CPU companies

- \cdot The HPC hype is still high
 - money goes into HPCs and not into old-style computing centers
 - HPCs are the new off-the-shelf resources
- We transitioned from multi-core to many-core
 - latest CPUs offer 30-90 cores
 - GPUs have thousands of computing cores
- More specialized hardware is introduced every day
 - tensor-cores added to GPUs
 - graphic cards with ray-tracing dedicated hardware
 - FPGA companies were acquired by CPU companies
- AI hype is off the roof
 - we can expect more money to go in optimizing AI workloads

Lessons to be learned

- Like it or not, the world thinks the way forward is *parallelism* ... and specialized hardware
- We have to consider hardware limitations too, for example:
 - sometime is faster to compute than access main memory
 - cache coherency between cores might limit parallelism

- Gaudi design was not wrong
 - SMP was already used, but nobody expected the change of paradigm
 - nobody could imagine that making games look cooler could lead to GPUs
- Could we have done better?

- Gaudi design was not wrong
 - SMP was already used, but nobody expected the change of paradigm
 - nobody could imagine that making games look cooler could lead to GPUs
- Could we have done better? probably not
 - \cdot nothing was hinting to what we have seen
- Can we still use Gaudi?

- Gaudi design was not wrong
 - SMP was already used, but nobody expected the change of paradigm
 - nobody could imagine that making games look cooler could lead to GPUs
- Could we have done better? probably not
 - \cdot nothing was hinting to what we have seen
- Can we still use Gaudi? probably not
 - \cdot the world will continue on this road or find something new
 - either way, Gaudi design cannot scale

Can we plan for Run 5?

Staring hard at a crystal ball...

- We will continue on the current path for a while, e.g.
 - more powerful GPUs
 - more CPU cores with larger vector units
 - dedicated hardware (e.g. using embedded FPGAs)
 - variety of architectures
- Something new and unexpected will come
 - sooner or later, but sure it will come
 - can it be commodity quantum processors?
 - positronic brains?

We can try to imagine what a framework will have to address in 10 years time

- High scalability
 - \cdot the work must be split and distributed as much as possible
 - $\cdot\,$ it's not enough to process events one by one
- Arbitrary architectures
 - support for x86_64, armv8, different flavours of GPUs, ...
- Flexibility
 - \cdot easy for users (like with functors)
 - $\cdot\,$ one code to run everywhere
 - allow specific optimizations

However we are going to do it, a few points must be taken into account

use cases

- \cdot Online computation / RTA
 - run Hlt1 and Hlt2 applications
 - monitoring and alignment tasks
- \cdot Offline analysis / DPA
 - Sprucing
 - analysis productions
- \cdot Simulation
 - full and fast simulations

resources

- Online farm
 - Event Builder farm
 - Hlt2 farm
- Offline resources
 - Grid Computing Elements (?)
 - HPCs
 - clouds

How to proceed

- Gaudi and Allen proved themselves valuable tools
- We will probably need something more to meet Run 5 needs
- Shift focus
 - from loop over *events* to (e.g.) stream processing
- We should join forces
 - combine Gaudi and Allen experiences
 - \cdot other communities are interested
 - LHCb can be the driving force

Time scale

In LS4 we will have to install the new detector.

We may use LS3 to concentrate on the commissioning of a new framework.

M. Clemencic - Software framework for Run 5

There's no need to decide anything yet, but looking around does not harm

• Intel oneAPI

a common developer experience across accelerator architectures

• SYCL

abstractions to enable heterogeneous device programming

We can think about an HEP set of abstractions over existing technologies

- C++/DPC++/SYCL "algorithms"
- \cdot a functor based Domain Specific Language
- Gaudi-like services

Summary

- It's hard to imagine what's going to happen in 10 years
- $\cdot\,$ I'm not sure we have the right tools yet
- \cdot We can definitely profit from a larger collaboration
 - \cdot we have to make sure LHCb has enough weight
- \cdot A workshop towards the end of the year will be good
 - \cdot bootstrap the project
 - \cdot define the terms of the collaboration

