

UII Global Optimisation Framework Future VELO Scenarios

29/03/23

Dan Thompson, Dan Johnson, Nigel Watson + Tim, Laurent, Kazu & many others...

Global Optimisation Simulation Tool

<u>Aims</u>

- Create tool to evaluate global physics performance as well as individual sub-detector metrics after geometry changes in a quick and consistent way
- Use the latest and greatest simulation versions and detector models as baseline
- Use LHCb core software where possible (Gauss, Moore)

This Presentation

- Developments made within the VELO UII Simulation group applying these aims to iterate on VELO designs
- Specifically Scenario A vs B vs D(escoped)
- How this can extend beyond the VELO

See <u>Kazu's talk</u> for more info on the specifications behind these scenarios...

Adaptable Simulation Chain

Chain packaged into one repo with

installation instructions

Parameterised VELO Model

- UI Velo model adapted to allow quicker development of "Scenarios"
- Cylindrical Foil used (if not studying U1 geometry) to speed up iteration
- Geometry controlled by 5 main parameters:
 - Closest Sensor to IP (5.1 mm for UI)
 - **Pixel Pitch** (55 μ m for UI)
 - Number of ASICs
 - Cylindrical Foil thickness & clearance from closest sensor
- Individual rotation of station about z-axis also possible

Parameterised S_B Detector Branch

DEFINING PARAMETERS	
<constant <="" name="VP:ClosestPixel" td=""><td>value="12.515*mm"/></td></constant>	value="12.515*mm"/>
Pixel size	
<pre><constant <="" name="VP:PixelSize" pre=""></constant></pre>	value = "0.040*mm"/>
<pre><!-- Target Number of Chips, set to 0 fo <constant name = "VP:TargetNChips"</pre--></pre>	or auto> value = "0"/>
For the Cylindical Foil, placed here<br <constant name="VP:CylindRFFoilThickness</td><td>re for convinience>
s" value="0.020*mm"></constant>	
<pre><!-- Distance from closest pixel to foi <constant name="VP:CylindRFFoilClearance"</pre--></pre>	l> e" value="1.5*mm"/>

IP Resolution

- Scenario A & B clearly outperforming D
- Scenario B reliant on UTF (Ultra-Thin-Foil)

Properties \downarrow Scenario \rightarrow	S _A	S _B	S _D
Inner Radius (Closest pixel)	5.1 mm	12.5 mm	11.5 mm
Pixel Pitch (Hit Resolution)	55 (12) μm	40 (8) µm	60 (17) μm
Timing Resolution	50 ps	50 ps	200 ps
Foil Type	Corrugated	Cylindrical	Cylindrical
Foil Thickness	250 <i>µ</i> m	20 µm	200 <i>µ</i> m

Vertex Reconstruction Efficiency

- Retaining near-UI primary vertex efficiency reliant on timing, scenario D would lead to significant degradation.
- Flexible chain, Moore can be re-run with any (σ_{xy}, σ_t) to optimise Scenarios.

ı
n
al
ו ר ב

29/03/2023

Selection Purity, p_T^{min}

- Fix Sample Purity to 95% by cutting on p_T^{min} of D_s^{\pm} children
- Compare $\epsilon_{\text{Signal}} = N_{\text{Selec}}/N_{\text{Gen}}$

Results \downarrow Scenario \rightarrow	S _A	S _B	S _D
p_T^{min} Cut (Purity = 95%)	796 MeV	741 MeV	1176 MeV
Signal Efficiency (Purity = 95%)	14.8 ± 0.2 %	16.2 ± 0.2 %	4.53 ± 0.09 %
p_T^{min} Cut (Purity = 90%)	576 MeV	531 MeV	891 MeV
Signal Efficiency (Purity = 90%)	21.1 ± 0.2 %	21.7 ± 0.2 %	7.0 ± 0.1 %

- **Comparison between scenarios important**, absolute numbers less so
- Lose significantly more signal candidates with S_D to achieve same purity
- Plans to repeat this for other cut strategies (IP_t , $IP\chi^2_{4D}$)
- Can be evolved into a tool for a trigger rate study

Properties \downarrow Scenario $ ightarrow$	S_A	S _B	S _D
Inner Radius (Closest pixel)	5.1 mm	12.5 mm	11.5 mm
Pixel Pitch (Hit Resolution)	55 (12) μm	40 (8) µm	60 (17) μm
Timing Resolution	50 ps	50 ps	200 ps
Foil Type	Corrugated	Cylindrical	Cylindrical
Foil Thickness	250 µm	20 µm	200 µm

Geometric Acceptance

- Increased radius in $S_B \& S_D$ reduces acceptance at high η as expected

Adding Rotation

- Expect to recover some acceptance by rotation of modules and optimisation of z positions
- Individual sensors rotated by altering "VP:StationNNDeltaRot"

 More detailed studies in progress, z optimisation to be implemented soon, expect to be able to recover some acceptance

Looking Ahead : VELO

- Framework allows flexible and systematic approach to detector development
- Examples shown are changing sensor/foil configuration but material budget of ASICs and Support are major factors in performance:
 - DD4HEP and quick production of results will enable component optimisation in parallel with R&D efforts
 - New ideas can be tested and compared without significant extra work
- Plan to move forward by splitting work within VELO UII Simulation group

Looking Ahead : Global Optimisation

- Plan to transfer the stack to a **nightly slot and run periodic tests through LHCbPR**
 - Producing an array of plots and results like shown, simplifying comparison between scenarios
- Currently running with VELO stand-alone but aiming to involve other subdetectors where possible:
 - Both through full integration of prototype geometry / reconstruction algorithms
 - And through more **flexible collaboration** like VELO+CALO
 - Enables study of other key physics channels which require specific subdetectors

