Rates and populations of dynamically formed binary black holes

Mark Gieles

Fabio Antonini (Cardiff) Daniel Marín Pina (ICCUB)

GW modelling workshop ICCUB October 10, 2022

How do binary black hole binaries (BBHs) form?

Belczynski+ 2002; de Mink & Mandel 2016; Mandel & de Mink 2016; Marchant+ 2016; Farr+ 2017; Mapelli+ 2017; Schneider+ 2017; Gerosa+ 2018 Portegies & Zwart & McMillan 2000; Samsing+2014; Rodriguez+ 2015; Farr+ 2017; Silsbee & Tremaine 2017; Antonini+ 2018; Hong+ 2018; Rodriguez & Loeb 2018; Antonini & Gieles 2020a,b

McKernan+ 2012, 2018; Bartos+ 2017; Stone+ 2017; Samsing+ 2022

How do binary black hole binaries (BBHs) form?

Eccentric BBHs (eBBHs)

Belczynski+ 2002; de Mink & Mandel 2016; Mandel & de Mink 2016; Marchant+ 2016; Farr+ 2017; Mapelli+ 2017; Schneider+ 2017; Gerosa+ 2018 Portegies & Zwart & McMillan 2000; Samsing+2014; Rodriguez+ 2015; Farr+ 2017; Silsbee & Tremaine 2017; Antonini+ 2018; Hong+ 2018; Rodriguez & Loeb 2018; Antonini & Gieles 2020a,b

McKernan+ 2012, 2018; Bartos+ 2017; Stone+ 2017; Samsing+ 2022

Credit: Johan Samsing 2018

Formation of eBBHs in AGN discs

Samsing+ 2022

Dynamical formation of (e)BBHs in star clusters

Dynamical formation of (e)BBHs in star clusters

Globular cluster formation?

Definiton: Binding energy BBH: $E_{\rm b} \equiv Gm_{\bullet}^2/(2a)$

Definiton: Binding energy BBH: $E_b \equiv Gm_{\bullet}^2/(2a)$

1. BBH forms with $E_{\rm b}(t_0) \simeq \langle m_* v^2 \rangle$

Definiton: Binding energy BBH: $E_{\rm b} \equiv Gm_{\bullet}^2/(2a)$

- 1. BBH forms with $E_{\rm b}(t_0) \simeq \langle m_* v^2 \rangle$
- 2. In each interaction the BBH "hardens" with $\Delta E_{\rm b} \simeq 0.2 E_{\rm b}$

Definiton: Binding energy BBH: $E_{\rm b} \equiv Gm_{\bullet}^2/(2a)$

- 1. BBH forms with $E_{\rm b}(t_0) \simeq \langle m_* v^2 \rangle$
- 2. In each interaction the BBH "hardens" with $\Delta E_{\rm b} \simeq 0.2 E_{\rm b}$
- 3. Continues, untill merger or ejection when $E_{\rm b}(t_{\rm ej}) \propto m_{\bullet} |\phi_0|$

Definiton: Binding energy BBH: $E_b \equiv Gm_{\bullet}^2/(2a)$

1. BBH forms with
$$E_{\rm b}(t_0) \simeq \langle m_* v^2 \rangle$$

- 2. In each interaction the BBH "hardens" with $\Delta E_{\rm b} \simeq 0.2 E_{\rm b}$
- 3. Continues, untill merger or ejection when $E_{\rm b}(t_{\rm ej}) \propto m_{\bullet} |\phi_0|$

The (super) thermal distribution of eccentricities

f(e)de = 2ede

https://joe-antognini.github.io/astronomy/thermal-eccentricities

Fast model for dynamical BBH mergers

Population modelling and compare to GWTC

Ongoing work

Fast model for dynamical BBH mergers

Population modelling and compare to GWTC

Ongoing work

Computational effort of GC evolution

Computational effort of GC evolution

A fast model for dynamical BBH mergers

Antonini & Gieles 2020a

A fast model for dynamical BBH mergers

Antonini & Gieles 2020a

A fast model for dynamical BBH mergers

Antonini & Gieles 2020a

Cluster evolution: clusterBH

Assumptions:

- 1. No Galactic tides (for now!)
- 2. Two component clusters: stars + BHs
- 3. Homologous evolution
- 4. Energy supplied by BHBs

Cluster evolution: clusterBH

BHB evolution: BHBdynamics

Assumptions:

- 1. Active binary is BHB
- 2. There is 1 active binary at any time
- 3. Each interaction the eccentricity is sampled from the thermal distribution: f(e)de = 2ede
- 4. Power-law BH mass function
- 5. $m_1 = m_2 = m_3 = m_{max}$ (for now!)

Definitions:

- 1. Binary semi-major axis: *a*
- 2. Energy of binary: $E_{\text{bin}} = -Gm_1m_2/(2a)$

BHB evolution: BHBdynamics

Assumptions:

- 1. Active binary is BHB
- 2. There is 1 active binary at any time
- 3. Each interaction the eccentricity is sampled from the thermal distribution: f(e)de = 2ede
- 4. Power-law BH mass function
- 5. $m_1 = m_2 = m_3 = m_{max}$ (for now!)

Definitions:

- 1. Binary semi-major axis: a
- 2. Energy of binary: $E_{\rm bin} = -Gm_1m_2/(2a)$

BHB evolution: BHBdynamics

Assumptions:

- 1. Active binary is BHB
- 2. There is 1 active binary at any time
- 3. Each interaction the eccentricity is sampled from the thermal distribution: f(e) de = 2ede
- 4. Power-law BH mass function
- 5. $m_1 = m_2 = m_3 = m_{max}$ (for now!)

- **Definitions:**
- 1. Binary semi-major axis: a
- 2. Energy of binary: $E_{\rm bin} = -Gm_1m_2/(2a)$

Three types of mergers

- 1. In-cluster mergers
- 2. Ejected mergers
- 3. GW captures

Three types of mergers

Definitions: 1. Interaction timescale:
$$\tau_3 = 0.2E_{\text{bin}}/E_{\text{bin}}$$

2. GW inspiral timescale: $\tau_{\rm GW} = - a/\dot{a}_{\rm GW}$ (Peters 1964)

3. Dimensionless angular momentum: $l^2 = 1 - e^2$

1. In-cluster mergers:

$$p_{\rm GW}(a) = l_{\rm GW}^2 : \text{ probability that } \tau_{\rm GW} < \tau_3$$

$$P_{\rm GW}(a_{\rm m}) = \int_{a_{\rm h}}^{a_{\rm m}} p_{\rm GW}(a) da, \quad a_{\rm m} = \max(a_{\rm ej}, a_{\rm GW})$$

$$\underline{2. \text{ GW captures:}}$$

$$p_{\rm cap}(a) = N_{\rm IS} l_{\rm cap}^2, \quad l_{\rm cap}^2 \simeq \left(R_{\rm S}/a\right)^{5/7} \text{ Samsing 2014}$$

$$P_{\rm cap}(a_{\rm m}) = \int_{a_{\rm h}}^{a_{\rm m}} p_{\rm GW}(a) dN_3$$

3. Ejected mergers:

 $p_{\text{ex}}(a_{\text{ej}}) = l_{\text{H}}^2(a_{\text{ej}})$: probabity that ejected binary mergers before present $P_{\text{ex}}(a_{\text{m}}, a_{\text{ej}}) = \left[1 - P_{\text{GW}}(a_{\text{m}}) - P_{\text{cap}}(a_{\text{m}})\right] p_{\text{ex}}(a_{\text{ej}})$

Three types of mergers

Definitions: 1. Interaction timescale:
$$\tau_3 = 0.2E_{bin}/\dot{E}_{bin}$$

2. GW inspiral timescale: $\tau_{GW} = -a/\dot{a}_{GW}$ (Peters 1964)
3. Dimensionless angular momentum: $l^2 = 1 - e^2$

1. In-cluster mergers:

$$p_{\rm GW}(a) = l_{\rm GW}^2 : \text{ probability that } \tau_{\rm GW} < \tau_3$$

$$P_{\rm GW}(a_{\rm m}) = \int_{a_{\rm h}}^{a_{\rm m}} p_{\rm GW}(a) da, \quad a_{\rm m} = \max(a_{\rm ej}, a_{\rm GW}) \qquad e \sim 10^{-4}$$

$$\underline{2. \text{ GW captures:}}$$

$$p_{\rm cap}(a) = N_{\rm IS} l_{\rm cap}^2, \quad l_{\rm cap}^2 \simeq \left(R_{\rm S}/a\right)^{5/7} \text{ Samsing 2014}$$

$$P_{\rm cap}(a_{\rm m}) = \int_{a_{\rm h}}^{a_{\rm m}} p_{\rm GW}(a) dN_3$$

3. Ejected mergers:

 $p_{\text{ex}}(a_{\text{ej}}) = l_{\text{H}}^2(a_{\text{ej}})$: probabity that ejected binary mergers before present $P_{\text{ex}}(a_{\text{m}}, a_{\text{ej}}) = \left[1 - P_{\text{GW}}(a_{\text{m}}) - P_{\text{cap}}(a_{\text{m}})\right] p_{\text{ex}}(a_{\text{ej}}) \quad \mathcal{C} \sim 10^{-6}$
clusterBHBdynamics (cBHBd) Orders of magnitude faster, acceptable loss of accuracy

clusterBHBdynamics (cBHBd) Orders of magnitude faster, acceptable loss of accuracy

clusterBHBdynamics (cBHBd) Orders of magnitude faster, acceptable loss of accuracy

Fast model for dynamical BHB mergers

Population modelling and compare to GWTCs

Ongoing work

Population synthesis

1. present-day GC density in Universe $ho_{\rm GC} \propto
ho_{\rm DM}$ Harris+ 2013, 2015, 2017 $= (7.3 \pm 2.6) \times 10^{14} M_{\odot} \, {\rm Gpc}^{-3}$

Population synthesis

1. present-day GC density in Universe $ho_{\rm GC} \propto
ho_{\rm DM}$ Harris+ 2013, 2015, 2017 $= (7.3 \pm 2.6) \times 10^{14} M_{\odot} \, {\rm Gpc}^{-3}$

2. account for cluster mass loss $\rho_{\rm GC,0}\simeq 33\rho_{\rm GC}$

Population synthesis

1. present-day GC density in Universe $ho_{\rm GC} \propto
ho_{\rm DM}$ Harris+ 2013, 2015, 2017 $= (7.3 \pm 2.6) \times 10^{14} M_{\odot} \, {\rm Gpc}^{-3}$

2. account for cluster mass loss $\rho_{\rm GC,0}\simeq 33\rho_{\rm GC}$

3. initial density individual clusters $ho_0 = 10^{4\pm 1} M_\odot \,\mathrm{pc}^{-3}$

Comparison to GWTC-2

Antonini & Gieles 2020b, PRD

Mass-dependent rate

Mass-dependent rate

Antonini & Gieles 2020b, PRD

In-cluster / ejected / GW captures

In-cluster / ejected / GW captures

eBBHs

model predictions

Globular clusters:

$$\mathcal{R}(e > 0.1) \simeq 0.4 \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1}$$

5-10% of all mergers

Antonini & Gieles 2021b, Zevin+ 2019

Young massive clusters:

$\mathcal{R}(e > 0.1) \simeq 5 \text{ Gpc}^{-3} \text{yr}^{-1}$

Banerjee 2021

observations

After O1+O2:

 $\mathcal{R}(e > 0.1) < 100 \text{ Gpc}^{-3} \text{yr}^{-1}$

Abbott+ 2019

GW190521

Abbott+ 2020; Gayathri+ 2020; Calderón Bustillo+ 2021

Romero Shaw+ 2019, 2022

eBBHs

observations

model predictions

Small fraction of eBBH detectable, all BBH dynamical?

Romero Shaw+ 2022

Fast model for dynamical BHB mergers

Population modelling and compare to GWTCs

Ongoing work

Recent improvements: 1. Hierarchical mergers

Merger retained if $v_{esc} > v_{GW,kick}$ (Rezzolla+ 2008)

Gerosa & Berti 2017

Recent improvements: 2. Sample *m*₁, *q*, *m*₃

Use: 1. BH mass function : $p(m) \propto m^{\alpha}$

2. Heggie's 3-body formation rate: $\Gamma_{3b}(m_1, m_2, m_3)$

3. Cross section for masses of interacting single BHs

Hierarchical mergers and *m*_{BH} sampling

Antonini, Gieles+ 2022, arXiv:2208.01081

Cluster density

Antonini, Gieles+ 2022, arXiv:2208.01081

BH spin

Antonini, Gieles+ 2022, arXiv:2208.01081

Hierarchical eBBHs?

Testing model assumptions: Single binary?

N-body model: efficient binary disruption \rightarrow binary-binary encounters \rightarrow eccentric mergers _{Zevin+ 2019}

Dynamics can explain mergers $m_1\gtrsim 20\,{ m M}_\odot$

5-10% of dynamical BBHs are eccentric ($e \gtrsim 0.05$)

Interpretation of detected eBBHs challenging: most eBBHs likely missed

(Accreting) stellar-mass BHs in GCs

More BHs in GCs: 3 detached binaries with $M_{\bullet} > 4 \text{ M}_{\odot}$

Giesers+ 2018, 2019

A semi-detached binary in 100 Myr cluster: $M_{\bullet} \simeq 11 \ M_{\odot}$

Saracino+ 2021 But see: El-Badry & Burdge 2022, but wait for Saracino+ in prep

How many BHs can we expect?

10⁵ M⊙ BH population in Omega Centauri (*ω* Cen) 5% of total mass!

BHs needed to explain radius and tidal tails of Pal 5

R_{eff} and tidal tails as a proxy for BHs

N-body model Pal 5: 20% of mass in BHs

Mass modelling

Dickson+ in prep

Zevin+ 2019

Hyades: radius proxy of (tiny!) BH population

