	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	0

Black Hole Close Hyperbolic Encounters: Part I

Gonzalo Morrás

Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain

Oct 11, 2022

Introduction	Gravitational Wave Modeling	Characterization	Conclusions
•00	00000000	0000	
Introduction			

- Keplerian 2-body problem:
 - Trajectory can be described by an ellipse (e<1), parabola (e=1) or hyperbola (e>1)
- In GR, the BH 2-body problem is modified by energy loss due to GW emission
 - Elliptic trajectories (e₀ < 1) now circularize and eventually merge
 - Hyperbolic trajectories now have two options:
 - Energy loss is sufficiently large to bind both BHs: dynamical capture
 - Kinetic energy overcomes energy loss and BHs just scatter: hyperbolic encounter
 - If hyperbolic encounters are close enough (CHEs), energy emission can be very significant. Source of GWs!

Figure 1: Schematic representation of a Hyperbolic Encounter. Credit: García-Bellido et al 2018.

Introduction	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	
Motivation I			

- Evidence that black holes are in dynamical environments might already be present in the data
 - Evidence for dynamical binary assemble with $\chi_{\rm eff} < 0$
- Some models predict dense black hole clusters in our universe
 - Models for the centers of active galactic nuclei (AGNs) and globular clusters (see Mark Gieles talk)
 - Primordial black hole models
- Black holes in these dense clusters scatter off each other in hyperbolic orbits and emit GWs.

Figure 2: Initial positions for a simulated cluster of Black Holes. Credit: Trashorras et al 2022.

Introduction	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	
Motivation II			

- Black Hole Hyperbolic encounters can have multiple phenomenological implications:
 - The GWs emitted can be directly detected as a burst-like signal in ground based and space interferometers (see Morrás et al 2021)
 - The GWs generate a stochastic GW background (see Jaraba et al 2022).
 - They will dissipate energy in the cluster
 - The BHs can acquire significant spin during the encounter (see Jaraba et al 2021)

	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	
Modeling			

- Problem: Scattering of two gravitationally interacting masses m_1 and m_2 with spins $\vec{S_1}$ and $\vec{S_2}$
- No analytical solution in General Relativity (GR)
- Two ways to approach the problem
 - Numerical Relativity. Very accurate but computationally expensive (see Santiago's talk)
 - Approximate the problem using Effective One Body (EOB) and Post-Newtonian (PN) aproximations (e.g. TEOBNResumS spoken about in the taks of Simone, Rossella and Alessandro or Morras et al 2021)

	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	
Post Newt	tonian waveforms		

- The Post Newtonian (PN) approximation is an expansion of GR in powers of $1/c^2$.
- To characterize CHEs it makes sense to use the Post Newtonian (PN) approximation because:
 - Simplest possible approach.
 - BHs do not get as close as in CBC (there is no merger).
 - Accurately following the phase for many cycles is not as critical.
- To capture main phenomenology we take up to leading order spin effects $\to {\it O}(1/c^3) \to 1.5 {\rm PN}$

Hamiltonian	Formulation of the	problem	
	00000000		
	Gravitational Wave Modeling	Characterization	Conclusions

• Hamiltonian of the system:

$$H(\vec{r}, \vec{p}, \vec{S}_1, \vec{S}_2) = H_{\rm N}(\vec{r}, \vec{p}) + H_{\rm 1PN}(\vec{r}, \vec{p}) + H_{\rm SO}(\vec{r}, \vec{p}, \vec{S}_1, \vec{S}_2) + O\left(rac{1}{c^4}
ight) \,,$$

where

$$\begin{split} H_{\rm N}(\vec{r},\vec{p}) &= \frac{p^2}{2} - \frac{1}{r} \,, \\ H_{\rm 1PN}(\vec{r},\vec{p}) &= \frac{1}{c^2} \left(\frac{1}{8} (3\eta - 1) (p^2)^2 - \frac{1}{2} \left[(3+\eta) p^2 + \eta (\hat{n} \cdot \vec{p})^2 \right] \frac{1}{r} + \frac{1}{2r^2} \right) \,, \\ H_{\rm SO}(\vec{r},\vec{p},\vec{S}_1,\vec{S}_2) &= \frac{1}{c^2 r^3} (\vec{r} \times \vec{p}) \cdot \vec{S}_{\rm eff} \,, \quad \text{where:} \, \vec{S}_{\rm eff} = \delta_1 \vec{S}_1 + \delta_2 \vec{S}_2 \,. \end{split}$$

• To get the equations of motion we use Poisson's brackets:

$$\{r_i, p_j\} = \delta_{ij},$$

 $\{S_{1i}, S_{1j}\} = \epsilon_{ijk}S_{1k},$
 $\{S_{2i}, S_{2j}\} = \epsilon_{ijk}S_{2k},$

	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	
Constants	of motion		

- From the equations of motion: $|\vec{L}|$, $|\vec{S}_1|$, $|\vec{S}_2|$, $\vec{L} \cdot \vec{S}_{\text{eff}}$ and $\vec{J} = \vec{L} + \vec{S}_1 + \vec{S}_2$ are conserved.
- Note that \hat{L} , \hat{S}_1 and \hat{S}_2 are in general not conserved and the system precesses.
- With this Hamiltonian, the energy E = H would be conserved $(\partial_t H = 0)$, but we add radiation reaction effects, since they can give important phenomenology.
- The system doesn't have enough constants of motion to be integrable \rightarrow numerical integration is necessary.
- We do some manipulations to maximally simplify the equations that have to be integrated.

	Gravitational Wave Modeling	Characterization	Conclusions
000	0000000	0000	

Differential equations

$$\begin{split} &\frac{d\bar{\xi}}{dt} = -c^3 \frac{\bar{\xi}^{11/3} 8\eta}{5\beta^7} \left[-49\beta^2 - 32\beta^3 + 35(e_t^2 - 1)\beta - 6\beta^4 + 9e_t^2\beta^2 \right], \leftarrow \text{ Mean Motion} \\ &\frac{de_t}{dt} = -c^3 \frac{\bar{\xi}^{8/3} 8\eta(e_t^2 - 1)}{15\beta^7 e_t} \left[-49\beta^2 - 17\beta^3 + 35(e_t^2 - 1)\beta - 3\beta^4 + 9e_t^2\beta^2 \right], \leftarrow \text{ Eccentricity} \\ &\frac{d\Phi}{dt} = \frac{c^3 \bar{\xi} \sqrt{e_t^2 - 1}}{(e_t \cosh v - 1)^2} \left[1 - \bar{\xi}^{2/3} \left(\frac{\eta - 4}{e_t \cosh v - 1} - \frac{\eta - 1}{e_t^2 - 1} \right) \right] \\ &- \bar{\xi} \frac{\Sigma}{\sqrt{e_t^2 - 1}} \left(\frac{1}{e_t \cosh v - 1} + \frac{1}{e_t^2 - 1} \right) \right] - \dot{\alpha} \cos \iota, \leftarrow \text{ Phase} \\ &\frac{d\hat{s}_1}{dt} = \delta_1 \frac{c^3 \bar{\xi}^{5/3} \sqrt{e_t^2 - 1}}{(e_t \cosh v - 1)^3} \hat{k} \times \hat{s}_1, \leftarrow \text{ Primary Spin Direction} \\ &\frac{d\hat{s}_2}{dt} = \delta_2 \frac{c^3 \bar{\xi}^{5/3} \sqrt{e_t^2 - 1}}{(e_t \cosh v - 1)^3} \hat{k} \times \hat{s}_2, \leftarrow \text{ Secondary Spin Direction} \\ &\frac{d\hat{k}}{dt} = \frac{c^4 \bar{\xi}^2}{(e_t \cosh v - 1)^3} (\delta_1 S_1 \hat{s}_1 + \delta_2 S_2 \hat{s}_2) \times \hat{k} \cdot \leftarrow \text{ Orbital Angular Momentum Direction} \end{split}$$

	Gravitational Wave Modeling	Characterization	Conclusions
	000000000		
Solution to	differential equations	5	

- We have 11 independent variables that have to be integrated.
- The relation between t and v is obtained by solving Kepler's equation $(c^3\overline{\xi}t = e_t \sinh v v)$. This is done very efficiently with Mikkola's method.
- The differential equations are very well behaved and can be rapidly solved with standard methods such as Runge-Kutta.
- The whole process of integrating the equations of motion and computing the GWs takes \sim 1s for typical LIGO-Virgo waveforms.

	Gravitational Wave Modeling	Characterization	Conclusions
000	000000000	0000	
Solution for the	e orbit		

- The orbit will depend on:
 - Black hole masses m1, m2
 - Black hole initial spins \vec{S}_1 , \vec{S}_2
 - Initial eccentricity e_{t0}
 - Impact parameter b
 - Initial orbital azimutal angle Φ_0
 - Orbital inclination angle Θ

 $v_{max} = 0.36 \text{ c}$

Figure 3: Example of an orbit for maximally spinning black holes with $m_1=20M_{\odot},$ $m_2=15M_{\odot},~b=70\,Gm/c^2,~e_{t0}=1.1,~\Phi_0=0,~\theta_1^i=0.5$ rad, $\phi_1^i=0.35$ rad, $\theta_2^i=0.8$ rad, $\phi_2^i=1$ rad. The arrow represents $\vec{S}_{\rm eff}.$

 $b = 70 \ GM/c^2$

	Gravitational Wave Modeling	Characterization	Conclusions
000	000000000	0000	
GWs derive	d from the orbit		

- GWs can computed from the orbit.
- Use formula with up to leading order spin effects:

$$\begin{split} h_{\times} &= 4 \frac{Gm\eta}{\epsilon R^2} \bigg[-(p\cdot n)(q\cdot n)z + (p\cdot v)(q\cdot v) - \frac{\delta}{c} [(\{[3(N\cdot n)\dot{r} - (N\cdot v)](q\cdot n) - 3(N\cdot n)(q\cdot v)](p\cdot n) - 3(N\cdot n)(q\cdot n)(p\cdot v))z \\ &+ 2(p\cdot v)(q\cdot v)(N\cdot v)] + \frac{1}{6c^2} [(5(1-3\eta)(N\cdot v)^2(p\cdot v)(q\cdot v) + ([(6\eta-2)(N\cdot v)^2(q\cdot n) + (48\eta-16)(N\cdot v)(N\cdot n)(q\cdot v)])z \\ &\times (p\cdot n) + (48\eta-16)(N\cdot v)(N\cdot n)(p\cdot v)(q\cdot n) + ((-14+42\eta)(N\cdot n)^2 - 4+6\eta)(q\cdot v)(p\cdot v))z + (-9\eta+3)(q\cdot v) \\ &\times (p\cdot n)v^2 + (29+(7-21\eta)(N\cdot n)^2)(q\cdot n)(p\cdot n)z^2 + ((-9\eta+3)(N\cdot n)^2 - 10-3\eta)(q\cdot n)(p\cdot n)z^2 + ((-36\eta+12)) \\ &\times (N\cdot v)(N\cdot n)(q\cdot n) + ((15-45\eta)(N\cdot n)^2 + 10+6\eta)(q\cdot v)](p\cdot n) + [(15-45\eta)(N\cdot n)^2 + 10+6\eta](p\cdot v)(q\cdot n))iz \\ &+ ((45\eta-15)(N\cdot n)^2 - 9\eta+3)(q\cdot n)(p\cdot n)z^2] + \frac{c^2(q\cdot n)}{2} [2_{2,2,2}(p\cdot (s_2 \times N)) - X_{1,1}(p\cdot (s_1 \times N))] \bigg], \\ h_+ &= 2\frac{Gm\eta}{\epsilon^2 R^2} \bigg[((q\cdot n)^2 - (p\cdot n)^2)z + (p\cdot v)^2 - (q\cdot v)^2] - \frac{\delta}{2} [((N\cdot n)\dot{r} - (N\cdot v))z(p\cdot n)^2 - 6z(N\cdot n)(p\cdot n)(p\cdot v) + (-3(N\cdot n)\dot{r} + (N\cdot v))z(q\cdot n)^2 + 6z(N\cdot n)(q\cdot n)(q\cdot v) + 2(p\cdot v)^2 - (q\cdot v)^2)(N\cdot v)] + \frac{1}{6c^2} [6(N\cdot v)^2((p\cdot v)^2 - (q\cdot v)^2)(1-3\eta) \\ &+ ((5\eta-2)(N\cdot v)^2(p\cdot n)^2 + (6\eta-32)(N\cdot v)(N\cdot n)(p\cdot v)(p\cdot n) + (-6\eta+2)(N\cdot v)^2(q\cdot n)^2 + (-9\eta+32)(N\cdot v) \\ &\times (N\cdot n)(q\cdot v)(q\cdot n) + [(-14+42\eta)(N\cdot n)^2 - 4+6\eta](p\cdot v)^2 + [(-42\eta+14)(N\cdot n)^2 + 4-6\eta](q\cdot v)^2)z \\ &+ ((-9\eta+3)(p\cdot v)^2 + (-3+9\eta)q(q\cdot v)^2)v^2 + ((-29+\eta-\eta)(N\cdot n)^2][p\cdot n)^2 + [-29+(21\eta-7)(N\cdot n)^2](q\cdot n)^2)z^2 \\ &+ (((-9\eta+3)(N\cdot n)^2 - 10-3\eta)q(p\cdot n)^2 + ((-31\eta+\eta)(N\cdot n)^2 + 10+3\eta)(q\cdot n)^2)z^2 + ((-36\eta+12)(N\cdot v)(N\cdot n)) z \\ &\times (p\cdot n)^2 + ((-30\eta+30)(N\cdot n)^2 + 10+2\eta)(p\cdot n)(n\cdot n) + (10+236\eta)(N\cdot v)(N\cdot n)(q\cdot n)^2 + (10+3\eta)(q\cdot n)^2)z^2 \\ &+ ((-9\eta+3)(N\cdot n)^2 - 10+3\eta)(N\cdot n)^2 + 10+3\eta)(q\cdot n)^2 + (29+(7-21\eta)(N\cdot n)^2 - 3+9\eta)(q\cdot n)^2)z^2] \\ &+ (2\eta-2\eta+3)(N\cdot n)^2 + ([45\eta-15)(N\cdot n)^2 - 9\eta+3](p\cdot n)^2 + ((15-45\eta)(N\cdot n)^2 - 3+9\eta)(q\cdot n)^2)z^2] \\ &+ (2\eta-2\eta+30)(N\cdot n)^2 + (2\eta+12\eta)(p\cdot v)(p\cdot n) + (2\eta+36\eta)(N\cdot n)^2 - 3+9\eta)(q\cdot n)^2)z^2] \\ &+ (2\eta-2\eta+30)(N\cdot n)^2 + (2\eta+12\eta)(p\cdot n)^2 + (3\eta+3\eta)(N\cdot n)^2 + 3\eta)(q\cdot n)^2 - 3+9\eta)(q\cdot n)^2)z^2] \\ &+ (2\eta-2\eta+30)(N\cdot n)^2 + (2\eta+12\eta)(P\cdot n)^2 + (10+3\eta)(N\cdot n)^2 - 3+9\eta)(q\cdot n)^2)z^2] \\ &+ (2\eta-2\eta+30)(N\cdot n)^2 + (2\eta+12\eta)(N\cdot$$

• Substituting the orbit of the example of Fig. 3, we obtain:

Figure 4: Gravitational waves emitted by the system shown in Fig. 3 assuming it happens at a distance R = 20Mpc and with an inclination of the orbit $\Theta = 45^{\circ}$. t = 0 represents the time of closest approach.

- Quadrupolar nature of the GWs $ightarrow f_{GW} = 2 f_{
 m orbit}$
- \bullet CHE perform "half" of an orbit \rightarrow GWs from CHE perform one oscillation.

Example of projected CW/s					
000	00000000	0000	0		
Introduction	Gravitational Wave Modeling	Characterization	Conclusions		

Example of projected GWs

- Detectors measure $h \equiv \frac{\delta L}{L} = F_+(\theta, \phi, \psi)h_+ + F_{\times}(\theta, \phi, \psi)h_{\times} \equiv h$.
- CHEs look like a common transient source of noise called blip glitch.
- The difference with glitches is that GWs are seen simultaneously in all detectors

Figure 5: Result of projecting the GWs of Fig. 4 into the GW detectors, assuming that they come from $\delta = 1.0$ rad, $\alpha = 3.7$ rad, with $\psi = 0.2$ rad and arrive at Earth at 17:29:18UTC of 2017-08-19.

Introduction	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	0
CUEs in +	ha fraguanay damain		
	ne frequency domain		

- CHEs are typically low frequency signals, with a characteristic frequency $f_c \sim \frac{2}{\Delta t} \sim \frac{2v_c}{d_c} \sim 20 \text{Hz} \left(\frac{v_c}{0.1c}\right) \left(\frac{1000R_{S\odot}}{d_c}\right)$,
- Δt is the duration of the encounter and v_c and d_c are the characteristic speeds and distances.

Figure 6: Fourier transform of the GW in Fig. 5. Black lines at 20 and 800Hz show the LIGO band.

000	00000000	0000	0		
Introduction	Gravitational Wave Modeling	Characterization	Conclusions		

CHEs in real detector data

- Inject example CHE in the detector data: $s(t) = s_{exp}(t) + h_{CHE}(t)$
- Represent it in the time-frequency domain with the Q transform.

Figure 7: Square root of the normalized energy obtained by Q transforming the example CHE injected in the detector data. The signal has an optimum SNR of 20.1 in Livingston, 11.1 in Hanford and 6.7 in Virgo, for a total SNR of 23.9

Con	7210	140	crác
GOIL	zaio	10101	I d S
0011	Laio	10101	1 9 2

Introduction	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	0
CHEs in re	eal detector data		

- CHEs are best searched with burst pipelines
 - Since the GWs have only one orbit, matched-filtering presents little advantage
 - The main source of noise comes from blip glitches
 - Ability to reject these glitches is most important
- The LVK colaboration does unmodelled short-duration searches (Abbott et al. 2021) and have found no CHE candidates
- Independent more targeted searches using machine learning (see Morras et al 2021) have found no confident CHE candidates either

	Gravitational Wave Modeling	Characterization	Conclusions
000	00000000	0000	•
Conclusions			

- Hyperbolic encounters are an interesting source of GWs to study.
- They can be produced in dynamical and dense black hole environments.
- They can be modeled using PN approximations of General Relativity.
- The signal is typically low frequency and morphologically very similar to a blip glitch.