Binary black holes: from formation to coalesence Mark Gieles ICCUB Winter Meeting 2023

ICCUB Virgo group (Barcelona) Fabio Antonini (LIGO, Cardiff) Daniel Marín (Barcelona) Denis Erkal (Surrey) Vincent Hénault-Brunet (Halifax) Stefano Torniamenti (Padova) Oleg Gnedin (Michigan)

EXCELENCI MARÍA

DE MAEZTI

2020-2022

LIGO Hanford

LIGO Livingston

LIGO India

KAGRA

Gravitational Wave Observatories

GEO600

Updated 2023-01-23	— 01	O 2	— O3	bu	— 04	— O5
LIGO	80 Mpc	100 Мрс	100-140 Мрс	meeti	160-190 Mpc	240-325 Mpc
Virgo		30 Мрс	40-50 Мрс	winter	80-115 Mpc	150-260 Mpc
KAGRA			0.7 Mpc	CCUB	-3 ≃10 ≳10 1pc Mpc Mpc	25-128 Mpc
	 2015 2016	 2017 2018 2	 019 2020 2021	2022 202	3 2024 2025 20	26 2027 2028 2029

Proyectos de Generación de Conocimiento 2021

"Gravitational-wave astrophysics from upcoming Advanced Virgo observing runs" (GWAnext)

G1. Modelling of Astrophysical Sources of GW:

- G1.1. Eccentricity distribution of dynamically formed BBH mergers
- G1.2. GW templates for eccentric and hyperbolic BBH encounters
- G1.3. BNS mergers and post-merger HMNS remnants
- G1.4. PNS oscillations and asteroseismology
- G1.5. Multimessenger aspects of NS crustal fracture and magnetars

ICCUB

- G1.6. ECO and BH miscellanea
- G1.7. NR Formulation and methods

G2. GW data analysis:

- G2.1. Gravitational lensing of GW
- G2.2. GW denoising and waveform reconstruction
- G2.3. GW polarization studies
- G2.4. ML for GW data analysis
- G2.5. EM follow-up of GW sources
- G3. Contributions to Advanced Virgo:
 - G3.1. Computing and software engineering
 - G3.2. Commissioning of Advanced Virgo + in preparation for O4
 - G3.3. Development of new pipelines in preparation for O4
 - G3.4. Development of new waveform models
 - G3.5. Participation in GW searches during O4
 - G3.6. Participations in Advanced Virgo committees and service tasks

Isabel Cordero Toni Font

In coordination with

University of Valencia

SGR-Cat 2021 Grup de recerca emergents (GRE)

"Gravitational Wave Astrophysics" (GWA)

SGR-Cat 2021

- G1. Modelling of Astrophysical Sources of GW:
 - G1.1. Eccentricity distribution of dynamically formed BBH mergers
 - G1.2. GW templates for eccentric and hyperbolic BBH encounters
 - G1.3. BNS mergers and post-merger HMNS remnants
 - G1.4. PNS oscillations and asteroseismology
 - G1.5. Multimessenger aspects of NS crustal fracture and magnetars
 - G1.6. ECO and BH miscellanea
 - G1.7. NR Formulation and methods
- G2. GW data analysis:
 - G2.1. Gravitational lensing of GW
 - G2.2. GW denoising and waveform reconstruction
 - G2.3. GW polarization studies
 - G2.4. ML for GW data analysis
 - G2.5. EM follow-up of GW sources
- G3. Contributions to Advanced Virgo:
 - G3.1. Computing and software engineering
 - G3.2. Commissioning of Advanced Virgo + in preparation for O4
 - G3.3. Development of new pipelines in preparation for O4
 - G3.4. Development of new waveform models
 - G3.5. Participation in GW searches during O4
 - G3.6. Participations in Advanced Virgo committees and service tasks

EM follow-up

Nadia Blagorodnova

Gravitational waves: an exploding field!

2015-2020 LVK O1-3: 90 detections!

2023 May 18 LVK O4: several 100 detections expected ~2028 LVK O5 \gtrsim 1000 detections expected ~2035 Einstein Telescope: all BBH mergers up to $z \sim 20$

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

How do binary black holes (BBHs) form?

Belczynski+ 2002; de Mink & Mandel 2016; Mandel & de Mink 2016; Marchant+ 2016; Farr+ 2017; Mapelli+ 2017; Schneider+ 2017; Gerosa+ 2018; Broekgaarden+ 2022; Mandel & Broekgaarden 2022

Portegies & Zwart & McMillan 2000; Samsing+2014; Rodriguez+ 2015; Antonini+ 2018; Hong+ 2018; Rodriguez & Loeb 2018; Antonini & Gieles 2020a,b

McKernan+ 2012, 2018; Bartos+ 2017; Stone+ 2017; Samsing+ 2022 primordial

Carr & Hawking 1974; Carr+ 2010; Bird+ 2016; Clesse & García-Bellido 2017

How do binary black holes (BBHs) form?

2017; Schneider+ 2017; Gerosa+ 2018; Broekgaarden+ 2022; Mandel & Broekgaarden 2022 Hong+ 2018; Rodriguez & Loeb 2018; Antonini & Gieles 2020a,b

McKernan+ 2012, 2018; Bartos+ 2017; Stone+ 2017; Samsing+ 2022

primordial

Carr & Hawking 1974; Carr+ 2010; Bird+ 2016; Clesse & García-Bellido 2017

Mass-dependent BBH merger rates

The LVK Collaboration 2021, arXiv:2111.03634

The isolated binary channel

Results from population synthesis models

Broekgaarden+ 2022

Chirp mass:

$$\mathcal{M}_{c} = \frac{(m_{1}m_{2})^{3/5}}{(m_{1}+m_{2})^{1/5}}$$
$$\dot{f} \propto \mathcal{M}_{c}^{5/3} f^{11/3}$$

Fast model for cluster evolution

... to follow how all those stars in a globular cluster move is quite beyond our ability. It is complicated in its actions, but the basic pattern or the system beneath the whole thing is simple." Richard Feynman, 1964

Fast model for cluster evolution

... to follow how all those stars in a globular cluster move is quite beyond our ability. It is complicated in its actions, but the basic pattern or the system beneath the whole thing is simple." Richard Feynman, 1964

$$\dot{E}_{\rm BBH} = - \dot{E}_{\rm cluster}$$

Hénon 1961, 1965, 1975

Dynamical BBH coalesence, the idea

Dynamical BBH coalesence, the idea

~100 Myr

Dynamical BBH coalesence, the idea

A fast forward model for dynamical BBH mergers clusterBHBdynamics (cBHBd)

BBH mergers in 1 globular cluster model

Antonini & Gieles 2020a

Population synthesis of the dynamical channel

Antonini & Gieles 2020b, PRD

Mass-dependent merger rate

Hierarchical mergers

Gerosa & Berti 2017

Population model with hierarchical mergers

Antonini, Gieles+ 2023, arXiv:2208.01081

Population model with hierarchical mergers

Antonini, Gieles+ 2023, arXiv:2208.01081

Additional constraints: BHs in open clusters

Torniamenti+ 2023, to be submitted

Additional constraints: BHs in open clusters

The closest black hole(s) to the Sun !?

Low-mass clusters form BH binaries, triples, quadruples, etc. \rightarrow GW capture Marín & Gieles 2023, to be submitted

Torniamenti+ 2023, to be submitted

~50% of BBH mergers ($m_1\gtrsim 20\,{\rm M}_\odot$) originate from globular clusters

Ongoing:

charting BH demographics in globular and open clusters

(Near) future: O4 (18 May 2023), O5 (~2028), Einstein Telecope (~2035)