The $D^+ \rightarrow \bar{K}^0 \pi^+ \eta$ reaction and a₀(980)

Natsumi Ikeno (Tottori University)

Jorgivan M. Dais, Wei-Hong Liang, Eulogio Oset

N. Ikeno, J. M. Dias, W. H. Liang, and E. Oset, Eur. Phys. J. C 84, 469 (2024).

QNP2024 - The 10th International Conference on Quarks and Nuclear Physics, July 8- 12th 2024

The $D^+ \rightarrow K^0_s \pi^+ \eta$ reaction by BESIII Phys. Rev. Lett. 132,131903 (2024)

The a₀(980) was observed as a clear peak in $M_{\pi\eta}$ \Rightarrow The $D^+ \rightarrow K_s^0 \pi^+ \eta$ reaction is an ideal reaction to isolate the a₀(980) contribution

This is actually the $D^+ \to \overline{K}{}^0 \pi^+ \eta$ reaction since the $\overline{K}{}^0$ is observed as a K_s^0 state. Just a copy of the $D^0 \to \overline{K}{}^- \pi^+ \eta$ reaction measured by Belle!? (by changing a $\overline{d} \to \overline{u}$ quark)

The $D^0 \to K^- \pi^+ \eta$ reaction

Experiment by Belle: Phys. Rev. D 102, 012002 (2020) Theoretical study: G. Toledo, N. Ikeno and E. Oset, EPJC81, 268 (2021).

- \bar{K}^{*0} excitation comes from K⁻ π^+ <-> No \bar{K}^{*0} contribution in $D^+ \to \bar{K}^0 \pi^+ \eta$
- $a_0(980)$ is also identified in $M_{\pi\eta}$ but affected by \bar{K}^{*0}
- => The two reactions are drastically different

- We like to understand the spectrum of the $D^+ \rightarrow \bar{K}^0 \pi^+ \eta$ reaction based on the perspective of $a_0(980)$ resonance as a dynamically generated state from the interaction of the $\pi\eta$, KK channels
- The $a_0(980)$ is well described by the chiral unitary approach

• We consider the reaction mechanisms:

Our study

- external and internal emission at the quark level
- hadronization of the \overline{qq} components into two mesons
- final-state interaction between these mesons

External emission: hadronization

disregard

External emission: final-state interaction

$$t^{(ee)} = \mathcal{C} \left\{ h_{\eta\pi^+\bar{K}^0} + h_{\eta\pi^+\bar{K}^0} \left[G_{\eta\pi^+}(M_{\rm inv}(\eta\pi^+)) \cdot t_{\eta\pi^+,\,\eta\pi^+}(M_{\rm inv}(\eta\pi^+)) + G_{\bar{K}^0\pi^+}(M_{\rm inv}(\bar{K}^0\pi^+)) \cdot t_{\bar{K}^0\pi^+,\bar{K}^0\pi^+}(M_{\rm inv}(\bar{K}^0\pi^+)) \right] \right\}$$

with

(

 $h_{\eta\pi^+\bar{K}^0} = \frac{2}{\sqrt{3}}$ G_i: the loop functions of two mesons t_{ij}: the scattering matrix for the transition of channel i to channel j

C: a global constant that will be used to get the normalization of the data

Internal emission: hadronization

(a) $s\overline{d}$ pair is hadronized

Together with the π^+

Summing the two terms,

$$H' = K^{-}\pi^{+}\pi^{+} - \frac{1}{\sqrt{2}}\pi^{0}\pi^{+}\bar{K}^{0} + \frac{2}{\sqrt{3}}\eta\pi^{+}\bar{K}^{0} + K^{+}\bar{K}^{0}\bar{K}^{0}$$

$$u\bar{d} \rightarrow \sum_{i} u \,\bar{q}_{i}q_{i} \,\bar{d} = \sum_{i} \mathcal{P}_{1i} \,\mathcal{P}_{i2} = \left(\mathcal{P}^{2}\right)_{12}$$
$$= \frac{2}{\sqrt{3}} \,\eta\pi^{+} + K^{+}\bar{K}^{0},$$
Together with the $\overline{\mathsf{K}^{0}}$

Internal emission: final-state interaction

$$H' = K^{-}\pi^{+}\pi^{+} - \frac{1}{\sqrt{2}}\pi^{0}\pi^{+}\bar{K}^{0} + \frac{2}{\sqrt{3}}\eta\pi^{+}\bar{K}^{0} + K^{+}\bar{K}^{0}\bar{K}^{0}$$
 we disregarded the possible rescattering

$$K^{-}\pi^{+} \rightarrow \bar{K}^{0}\eta, \bar{K}^{0}\pi^{0} \rightarrow \bar{K}^{0}\eta, \bar{K}^{0}\eta \rightarrow \bar{K}^{0}\eta$$

$$\overset{\bar{K}^{0}}{\overset{\pi^{+}}{}} + \overset{\bar{K}^{0}}{\overset{\pi^{+}}{}} + \overset{\bar{K}^{0}}{\overset{\bar{K}^{0}}{}} + \overset{\bar{K}^{0}}{\overset{\bar{K}^{0}}{} + \overset{\bar{K}^{0}}{\overset{\bar{K}^{0}}{}} + \overset{\bar{K}^{0}}{\overset{\bar{K}^{0}}{} + \overset{\bar{K}^{0}}{\overset{\bar{K}^{0}}{}} + \overset{\bar{K}^{0}}{\overset{\bar{K}^{0}}{} + \overset{\bar{K}^{0}}{\overset{\bar{K}^{0}}$$

$$+ G_{\pi^+ \bar{K}^0} (M_{\text{inv}}(\pi^+ \bar{K}^0)) \cdot t_{\pi^+ \bar{K}^0, \pi^+ \bar{K}^0} (M_{\text{inv}}(\pi^+ \bar{K}^0))]$$

+2 $\bar{h}_{K^+ \bar{K}^0 \bar{K}^0} G_{K^+ \bar{K}^0} (M_{\text{inv}}(\pi^+ \eta)) \cdot t_{K^+ \bar{K}^0, \pi^+ \eta} (M_{\text{inv}}(\pi^+ \eta)) \}$

with

 $\bar{h}_{\eta\pi^+\bar{K}^0} = \frac{2}{\sqrt{3}}$ $\bar{h}_{K^+\bar{K}^0\bar{K}^0} = 1$

 β is the relative weight of the internal to external emission and is expected to be the order of 1/Nc

K₀*(1430) contribution

In Exp., the scalar $K_0^*(1430) [I(J^P) = \frac{1}{2}(0^+)]$ contribution showed up in $M_{K\eta}$ We take into account the $K_0^*(1430)$ contribution phenomenologically

The final amplitude:
$$t = t^{(ee)} + t^{(ie)} + t^*$$

Mass distribution: $\frac{d^2\Gamma}{ds_{12} ds_{23}} = \frac{1}{(2\pi)^3} \frac{1}{32 M_D^3} |t|^2$. $\bar{K}^0(1), \pi^+(2), \eta(3)$

We can integrate over the limits of the PDG formula to get d/ds12 integrating over s23

Scattering amplitudes $t_{\eta\pi^+, \eta\pi^+}$, $t_{\bar{K}^0\pi^+, \bar{K}^0\pi^+}$, $t_{\bar{K}^0K^+, \pi^+\eta}$

By evaluating the coupled channels, T matrix

 $T = [1 - VG]^{-1}V$

- Scattering amplitude in $K^+K^-(1), K^0ar{K}^0(2), \pi^0\eta(3)$

J.X. Lin, J.T. Li, S.J. Jiang, W.H. Liang, E. Oset, Eur. Phys. J. C 81, 1017 (2021)

$$t_{\eta\pi^+, \eta\pi^+} = t_{\eta\pi^0, \eta\pi^0} = x_0(980) \text{ is dynamically generated}$$

$$t_{\bar{K}^0K^+, \pi^+\eta} = \sqrt{2} t_{K^+K^-, \pi^0\eta} \qquad \qquad \text{from the channels}$$

- Scattering amplitude in $\pi^- K^+(1), \pi^0 K^0(2), \eta K^0(3)$

G. Toledo, N. Ikeno, E. Oset, Eur. Phys. J. C 81, 268 (2021)

$$t_{\bar{K}^0\pi^+, \bar{K}^0\pi^+} = \frac{2}{3}T_{22} + \frac{1}{3}T_{11} + \frac{2\sqrt{2}}{3}T_{12}$$

Numerical results

Four parameters in our model

=> we perform a best fit to the three mass distributions

Parameters	
С	486.90
\mathcal{D}	63.94
β	0.70
ϕ	-2.16 radians

- C: global normalization
- D: $\overline{K_0}^*$ (1430) contribution
- β : relative weight of the internal to external emission

- Phase exp(i ϕ): interference between the K₀*(1430) and others

Our theoretical calculations closely reproduce the experimental data.

Calculated $\pi^+\eta$ mass distribution

We can see a clear peak around 1.0 GeV, corresponding to the $a_0(980)$ resonance

K₀*(1430) contribution: relatively small

We can claim that the peak observed in the experiment can be identified as the $a_0(980)$ state.

Note that the lineshape of the $a_0(980)$ is broader than those observed in other reactions <= Due to interference with other contributions, particularly with the tree level

Calculated $\overline{K}^0\eta$, $\overline{K}^0\pi^+$ mass distributions

- We reproduce a double hump structure: the interference between the $K_0^*(1430)$ and $a_0(980)$

- No distinct peak structure.

- $\overline{K}^0\pi^+$ spectrum has a discontinuity at 1.05 GeV because of the cut-off mass

Effect of the cut mass M_{cut}

We use the prescription in high-energies because of the limit of chiral Unitary approach $Gt(M_{inv}) = Gt(M_{cut}) e^{-\alpha(M_{inv}-M_{cut})}$ for $M_{inv} > M_{cut}$,

• Results for the considered distributions with M_{cut} fixed at 1150 MeV.

Fig. 13 The mass distributions of $\pi^+\eta$ (left), $\bar{K}^0\eta$ (middle), and $\bar{K}^0\pi^+$ (right) with fixed $M_{\text{cut}} = 1150$ MeV. The parameters C = 532.04, D = 90.28, $\beta = 0.70$, and $\phi = -2.07$ radians are used

The dip in the $\overline{K^0}\pi^+$ spectrum has shifted to 1150 MeV \leftarrow directly influenced by M_{cut} \Rightarrow we can conclude that the dip in our model is not physical, and we have a smooth curve in that region.

Effect of the parameter $\boldsymbol{\beta}$

 β : the relative weight of the internal emission mechanism to the external emission, and is expected the order of 1/Nc we restrict the value of the β within [-0.33:0.33]

• Results with $\beta = 0.33$

Fig. 14 The mass distributions of $\pi^+\eta$ (left), $\bar{K}^0\eta$ (middle), and $\bar{K}^0\pi^+$ (right) with fixed $M_{\text{cut}} = 1050$ MeV. The parameters C = 691.80, D = 71.29, $\beta = 0.33$, and $\phi = -2.29$ radians are used

we see that the changes are not that big.

Effect of the K₀*(1430) mass

Fig. 15 The mass distributions of $\pi^+\eta$ (left), $\bar{K}^0\eta$ (middle), and $\bar{K}^0\pi^+$ (right) with fixed $M_{K_0^*} = 1385$ MeV and fixed $M_{cut} = 1050$ MeV. The parameters C = 473.34, D = 57.27, $\beta = 0.70$, and $\phi = -2.39$ radians are used

The resulting calculation of the $\overline{K^0}\eta$ mass distribution is in better agreement with the data because the peak position of $K_0^*(1430)$ has moved a bit to the left from before.

In conclusion, we can see the clear peak of the $a_0(980)$ contribution even considering the uncertainties.

- We have studied the $D^+ \rightarrow \bar{K}^0 \pi^+ \eta$ reaction based on the picture of $a_0(980)$ resonance as a dynamically generated state from the interaction of the $\pi\eta$, \overline{KK} channels
- We showed that this reaction is drastically different from the apparently analogous one $D^0\to K^-\pi^+\eta$
 - $D^+ \to \bar{K}^0 \pi^+ \eta$ reaction: absence of \bar{K}^{*0} contribution
 - $D^0 \rightarrow K^- \pi^+ \eta$ reaction: \bar{K}^{*0} contribution is the driving term
- => The absence of \bar{K}^{*0} contribution leads to a much cleaner signal of the $a_0(980)$ excitation as seen in the experiment
- We obtained a fair reproduction of the three mass distributions. While the $a_0(980)$ production is the dominant term, we also find other terms in the reaction that interfere with this production mode.

Other reactions

 $\chi_{c1} \to \eta \pi^+ \pi^-$

W. H. Liang, J. J. Xie and E. Oset, Eur. Phys. J. C 76, 700 (2016)

$$\eta_c
ightarrow \eta \pi^+ \pi^-$$

V. R. Debastiani, W. H. Liang, J. J. Xie and E. Oset, Phys. Lett. B 766, 59-64 (2017)

FIG. 6: $\pi\eta$ invariant mass distribution for the $\chi_{c1} \to \eta\pi^+\pi^-$ decay. Preliminary BESIII data from Ref. [3].

Fig. 2. (Color online.) Results for the $\pi\eta$ mass distribution in the $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$ reaction. Data from Ref. [23]. Solid curve: results from Ref. [24] using Trace($\phi\phi\phi$). Dashed line: results using Trace(ϕ)Trace($\phi\phi$) normalized to the peak of the distribution.

However, there is a subtlety here concerning the $K^+\bar{K}^0$ production (see discussion in page 3 of Ref. [12]) because for dynamical reasons the $WK^+\bar{K}^0$ vertex goes as the difference of energies of $K^+\bar{K}^0$ which vanishes in the average. However, due to the different masses of $\eta\pi^+$ this cancellation does not occur, and consequently we keep the $\eta\pi^+$ term and disregard the $K^+\bar{K}^0$ one.

Fig. 3a, c. The effective WPP (*P* pseudoscalar meson) vertex can be evaluated with effective chiral Lagrangians $W^{\mu}\langle [P, \partial_{\mu}P]T_{-}\rangle$ with W^{μ} the *W* field and T_{-} a matrix related to the Cabibbo–Kobayashi–Maskawa elements [28, 29]. If we wish to get the two pseudoscalar mesons in *s*-wave, which we need to produce the scalar resonances, we get such a contribution with this Lagrangian with $\mu = 0$, which produces a vertex proportional to $p^{0} - p'^{0}$ in the rest frame of *W*, and hence vanishes for particles with equal mass. This is

The $D^0 \rightarrow K^0_s \pi^+ \pi^-$, $\bar{K}^0_s \pi^0 \eta$

J.J. Xie, L.R. Dai, E. Oset, Phys. Lett. B 742, 363–369 (2015)

They studied prior to the experiments, paying attention to the π + π - and π 0 η mass distributions, predicting that a clear signal of the a0(980) should be seen in these experiments

