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Main motivation of Fantômas4QCD:  
to quantify the rôle of parametrization form in global analyses. 

 
A new c++ code automates series of fits using multiple functional forms, called metamorph. 

It’s based on Bézier curves —polynomial functional forms can approximate any arbitrary PDF shape. 

Fantômas unlocks the concept of tolerance for cuts on the  shapes.χ2

Fantômas4QCD 

Kotz, AC, Nadolsky, Olness, Ponce-Chávez 
[Phys.Rev.D109] and code release very soon!

f
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Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.

Uncertainty propagates from data and methodology to the PDF determination 

I. assessment of uncertainty magnitude is key 

II. advanced statistical problem 

III. evolving topic in the era of AI/ML

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 21

Estimation of PDF 
uncertainties is a deep 
problem of multivariate 
statistics

Uncertainty quantification for PDFs
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III. evolving topic in the era of AI/ML
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Estimation of PDF 
uncertainties is a deep 
problem of multivariate 
statistics

Epistemic vs. aleatory uncertainties

Statistical uncertainty propagated from 
experiments— irreducible

Uncertainty due to lack of knowledge

—bias (may be reduced)

Uncertainty quantification for PDFs
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Data-based analyses

Monte Carlo fits, with the mean and variance in Figs. 5–7
computed as in Eqs. (18).
The comparison with the Drell-Yan cross sections

d2σDY=d
ffiffiffi
τ

p
dxF in Fig. 5 indicates that the data can be

well described by the fitted pion PDFs within the frame-
work of the perturbative QCD calculation at next-to-
leading order (NLO) in αs. The data-to-theory ratios are
shown as a function of xF in various bins of

ffiffiffi
τ

p
for both the

Fermilab E615 [5] and CERN NA10 [4] datasets, with the
latter separated into the two pion beam energies, Eπ ¼ 194
and 286 GeV. The ratios are generally consistent with
unity, within the uncertainties of the data, across the entire
range of xF and

ffiffiffi
τ

p
shown, with χ2dat values ≲1 for both

experiments. The experimental uncertainties on the NA10
data are somewhat smaller than the uncertainties on the

E615 data, although the E615 data extended to larger values
of xF. The theory uncertainty bands indicated in the ratios
reflect the uncertainties on the PDFs, which increase at the
highest values of xF.
For the comparisons with the LN data from HERA,

in Fig. 6 we show the data-to-theory ratios of the FLN
2

structure function [Eq. (8)] from H1 [6] and the ratio r
[Eq. (13)] of the leading neutron to inclusive proton cross
sections from ZEUS [7]. The ratios are shown as a function
of xπ over a large range of Q2 bins, ranging from Q2 ¼
7 GeV2 to Q2 ¼ 1000 GeV2, for two bins of momentum
fraction x̄L carried by the exchanged charged particle
(pion), restricted to x̄L < 0.1 and 0.1 < x̄L < 0.2 to ensure
pion exchange dominance [3,36]. Within the quoted
uncertainties, the H1 data can be well described by our

FIG. 5. Data-to-theory ratios for the xF dependence of the Drell-Yan cross section d2σDY=d
ffiffiffi
τ

p
dxF at fixed values of

ffiffiffi
τ

p
from the

E615 [5] (top) and NA10 [4] (bottom) experiments. The NA10 data are separated for the two pion beam energies of 194 GeV (bottom
left) and 286 GeV (bottom right), and the yellow bands represent the uncertainty on the theory calculations.

TOWARDS THE THREE-DIMENSIONAL PARTON STRUCTURE OF … PHYS. REV. D 103, 114014 (2021)

114014-9

Global analyses involve searching for extrema of a (log-)likelihood function.


(Very) simplified: 

χ2 =
Nexp

∑
i

(Di − ⟨T({x, a})⟩i)2

σ2
i

+penalty terms

discrete data point
theory prediction averaged,  

as a function of the variables {x} and free parameters {a}

[JAM21] 

The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure.

The comparison to data for various parametrizations can lead to equally good  values.χ2
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The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure.

The comparison to data for various parametrizations can lead to equally good  values.χ2

That’s fine in the data region,  
but the results may vary greatly outside 
— extrapolation region. 

Why not adopt more than one form?

[Fantômas] 
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Epistemic PDF uncertainty — a CT “signature” concept

diagram by P. Nadolsky [DIS2023] 

Tests of PDFs

Representative sampling

Acceptable functions
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Epistemic PDF uncertainty — a CT “signature” concept

diagram by P. Nadolsky [DIS2023] 

Tests of PDFs

Representative sampling

Acceptable functions

  sensitivity  

[PRD98, 100, 108]  
ePump  
[PRD98, 100]

L2

Representative sampling for PDFs  
[AC et al, PRD107] 

[AC & Nadolsky, HDSR 2023] 
Fantômas 
…

 Work in progress
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Framework to access pion PDFs available on xFitter. 

The first two global analyses of the pion data were performed by the SMRS and GRV groups 
in the early 1990s on Drell-Yan data.


Pion PDF as sandbox
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Framework to access pion PDFs available on xFitter. 

The first two global analyses of the pion data were performed by the SMRS and GRV groups 
in the early 1990s on Drell-Yan data.


Pion PDF as sandbox

as shown, the exponent is “2”, reproducing Eq. (2). This
feature removes the need to use moments of arbitrarily high
order, enabling one to focus instead on the lower-order
moments which provide information on the mid-x shape.
One remark may be valuable here. This application of the

SPM requires the coefficient of the highest active denom-
inator power in Eq. (31) to be unity. Hence, when one
uses Eq. (31) for m ¼ 0, 1, 2, 3 moments, b2 ¼ 1 and
a2 ¼ 0 ¼ b3. Referring to the lower panels of Table I, this
presents an appearance of sensitivity in the coefficients to
the number of moments employed; but that is misleading.
The relevant measure is not these coefficients, but the
similarity between the curves obtained via reconstruction.
Our result, Eq. (32), is depicted in Fig. 5. The mean
absolute relative error between its first eleven moments and
those of the separate reconstructed distributions is 4(3)%.
Given the remarks in Sec. I, it is worth reiterating that

Eq. (32) exhibits the x ≃ 1 behavior predicted by the QCD
parton model, Eq. (2); and because it is a purely valence
distribution, this same behavior is also evident on x ≃ 0.
However, in contrast to the scale-free valence-quark dis-
tribution computed in Ref. [37]:

qsfðxÞ ≈ 30x2ð1 − xÞ2; ð33Þ

obtained using parton-model-like algebraic representations
of S, Γπ, the distribution computed with realistic inputs
is a much broader function. A similar effect is observed in
the pion’s leading-twist valence-quark distribution ampli-
tude [114] and those of other mesons [108,
115–118]. The cause is the same, viz. the valence-quark
distribution function is hardened owing to DCSB, which is
a realization of the mechanism responsible for the emer-
gence of mass in the Standard Model [119]. Emergent mass
is expressed in the momentum-dependence of all QCD
Schwinger functions. It is therefore manifest in the point-
wise behavior of wave functions, elastic and transition
form factors, etc.; and as we have now displayed, also in
parton distributions. (This was to be expected, given the
connection between light-front wave functions and parton
distributions.)

V. EVOLUTION OF PION DISTRIBUTION
FUNCTIONS

The pion valence-quark distribution in Eq. (32) is
computed at ζH ¼ mα, Eq. (24). On the other hand, existing
lQCD calculations of low-order moments [33–36] and
phenomenological fits to pion parton distributions are
typically quoted at ζ ≈ ζ2 ¼ 2 GeV [120–122]; and the
scale relevant to the E615 data is ζ5 ¼ 5.2 GeV [9,13].
We therefore employ the effective charge in Eq. (23) to
integrate the one-loop DGLAP equations, therewith evolv-
ing qπðx; ζH ¼ mαÞ to obtain results for qπðx; ζ2Þ and
qπðx; ζ5Þ. This procedure ensures that saturation of the
effective charge is expressed, e.g., αPIðζHÞ=ð2πÞ ¼ 0.20,
½αPIðζHÞ=ð2πÞ%2 ¼ 0.04, stabilizing our evolved results on
ζ > ζH. Notably, given that ζH ¼ mα is fixed by our
analysis, all results are predictions. We checked that with
fixed ζH, varying mα → ð1& 0.1Þmα does not measurably
affect the evolved distributions. We therefore report results
with mα fixed and an uncertainty determined by vary-
ing ζH → ð1& 0.1ÞζH.

A. ζH → ζ2
Our prediction for qπðx; ζ2Þ is depicted in Fig. 6. The

solid curve and surrounding bands are described by the
following function, a generalization of Eq. (32):

qπðxÞ ¼ nqπxαð1 − xÞβ

× ½1þ ρxα=4ð1 − xÞβ=4 þ γxα=2ð1 − xÞβ=2%; ð34Þ

where nqπ ensures Eq. (9) and the powers and coefficients
are listed in Table II. Evidently, the large-x exponent is

βðζ2Þ ¼ 2.38ð9Þ: ð35Þ

FIG. 5. Solid (black) curve: pion valence-quark distribution
function at the hadronic scale, ζH , Eq. (32). Dashed (blue) curve:
scale-free distribution, Eq. (33).

FIG. 6. Pion valence-quark momentum distribution function,
xpπðx; ζÞ, p ¼ q, evolved ζH → ζ2 ¼ 2 GeV—solid (blue) curve
embedded in shaded band; and long-dashed (black) curve—ζ2
result from Ref. [12]. Equations (39), (40): gluon momentum
distribution in pion, xgπðx; ζ2Þ—dashed (green) curve within
shaded band; and sea-quark momentum distribution,
xSπðx; ζ2Þ—dot-dashed (red) curve within shaded band. In all
cases, the shaded band indicates the effect of ζH → ζHð1& 0.1Þ.

SYMMETRY, SYMMETRY BREAKING, AND PION PARTON … PHYS. REV. D 101, 054014 (2020)

054014-9
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NJL

DSE

Model estimates for the pion 
valence PDF at a low hadronic 
scale

QCD dynamics in the non-perturbative regime: 

Physics interests are related to the  sym. breaking predicts that the pion PDF is broader than what 
expected from a bound-state smearing.

χ
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experimentally:  
⇒ pion beams or pion production in DIS experiments. 

⇒ COMPASS++, future EIC 

 
 
 

 

lattice QCD: 
⇒ reconstruction from moments of PDFs 

⇒ quasi/pseudo-PDFs & related can be evaluated

2020’s and the revival of pion structure studies

[X. Gao et al, Phys.Rev.D106] 

corrections for the middle range of x. In the upper panel of
Fig. 23, we show the PDF obtained from matching with
Pz ∈ ½0.76; 1.78" GeV. We see a significant dependence of
the valence pion PDF on Pz. However, as Pz increases, this
dependence diminishes, and for the largest three Pz, the
resulting valence pion PDFs agree within the estimated
errors. The value of qv for x ≃ 1 also decreases with
increasing Pz.
Finally, we show Pz ¼ 1.78 GeV (blue) for the mπ ¼

140 MeV lattice and Pz ¼ 1.72 GeV (orange) and
2.42 GeV (red) for the mπ ¼ 300 MeV lattices from
Ref. [63] in Fig. 23, with the darker bands being the
statistical errors and the lighter bands being the systematic
errors from scale variation. It can be seen that the
systematic errors estimated from scale variation are small,
even though m̄0ðμÞ shows sizable μ dependence. That is
because the renormalon effect, which depends on z,
contributes less for larger momentum and is supposed to
disappear for infinite momentum. The results from similar
momentum, such as 1.78 and 1.72 GeV, basically overlap
with each other within the statistical errors, implying both
the lattice spacing and mass dependence are small (more
details can be found in Appendix C), but differ from the one
with larger momentum Pz ¼ 2.42 GeV. The the best
determination from the DNN in the continuum limit and
the JAM21nlo [97] results are also shown for comparison.
Though all three LaMET results show some agreement
with JAM21nlo in the middle-x region, the one with the
highest momentum (Pz ¼ 2.42 GeV) overlaps the best.

X. CONCLUSION

We presented lattice calculations of the pion bilocal
matrix elements for physical quark masses and a lattice
spacing of a ¼ 0.076 fm. These results were combined
with our previous results formπ ¼ 300 MeV, but with very
fine lattice spacing of a ¼ 0.06 fm and a ¼ 0.04 fm. This
allowed us to obtain continuum-extrapolated results for
pion valance PDF at the physical point. We used the NNLO
short-distance factorization of RGI invariant matrix ele-
ments to determine up to sixth-order Mellin moments of the
pion valance PDF. The inclusion of the NNLO corrections
to the perturbative matching did not result in significant
changes to the numerical values of the moments, which
indicates the convergence of leading-twist approximation
with fixed-order perturbation theory. The NNLO correction
also played a significant role in our test of the validity of the
short-distance factorization as discussed in Appendix B.
The pion mass dependence of the moments were found to
be very mild. As summarized in Fig. 24, our results for the
Mellin moments of the pion valance PDF are in excellent
agreement with that from the different phenomenological
global fits to experimental data. By fitting model functional
forms of the PDF to the zPz dependence of RGI matrix
elements, we inferred its x dependence. Further, we
reconstructed the x dependence of the PDF from the

RGI matrix elements using a DNN. We found that the
model fits and the DNN-based reconstruction of the PDF
are in very good agreement among themselves, as well as
with the phenomenological global fits of experimental data;
see Fig. 25. Next, we obtained the x-dependent quasi-PDF
from the matrix elements, renormalized in a hybrid scheme.
From this quasi-PDF, we determined the x dependence of
the PDF using NNLO perturbative matching. As illustrated
in Fig. 23, we found the pion mass dependence of the PDF
to be small for pion momenta ≳1.5 GeV and that the x

FIG. 24. hxni with n ¼ 2, 4, 6 from the mass-independent
continuum estimate using NNLO matching at μ ¼ 2 GeV are
shown in the first row. The statistical errors are in the first
brackets, while the systematic errors are in the second brackets,
which are estimated by varying zmax ∈ ½0.48; 0.72" fm for the fits.
For comparison, we also show the moments evaluated
from global analyses of xFITTER [107], JAM21NLO, and
JAM21NLONLL DOUBLE-MELLIN [97].

FIG. 25. We show our DNN-based PDF determination in the
continuum limit, together with the four-parameter fit results
Model-4p, and the global analyses of the experimental data with
NLO fixed-order perturbation theory from xFITTER [107] and
JAM21NLO [97] as well as the results considering threshold
resummation using the double-Mellin method (JAM21NLONLL).

XIANG GAO et al. PHYS. REV. D 106, 114510 (2022)

114510-18

[MSULat, 2310.12034]
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2020’s and the revival of pion structure studies

theoretically:  
⇒ improvements in continuum approaches (DSE). 

⇒ more complexed objects have been studies, including ML/AI tools


⇒ mixed models

phenomenologically 
⇒ 2018, first fit including DIS on the pion (leading-neutron detection) 

 
 
⇒ 2023, first fit accounting for the parametrization uncertainty

[JAM, Phys.Rev.L121] 

[Fantômas, 2311.08447] 

14

the allowed sea and gluon momentum fractions. The
long hxSi-hxgi correlation ellipse for the final Fantômas

combination in Fig. 9 supports this assessment, which is
somewhat in a contradiction with the JAM analyses [8]
– see Sec. VI.

FIG. 11. The e↵ective (1� x) exponent of the valence PDF
in the FantoPDF ensemble – the definition is given in [48]. In
green, the e↵ective exponent at Q0 =

p
1.9 GeV and, in blue,

at
p
10 GeV. The plot is cut at x = 0.94 for grid-extrapolation

reasons. We have verified analytically that the highlighted
Bézier curves of Fig. 7 converge to Ceff

V = 1 at most for x ! 1
at Q0.

While we allow marginally negative fits, the final
results produce positive momentum fractions for all
components at Q0. Table II (upper row) summarizes
the results for the momentum fractions at Q0. The q+ q̄
and gluon momentum fractions are given at Q = 2 GeV
in Table III (upper row).

We conclude this section by reviewing our findings
for the pion valence PDF in the limit x ! 1. Recent
debates on manifestations of nonperturbative dynamics
in high-energy data made the large-x behavior of the
pion quark PDF a go-to topic [1, 4, 11, 41]. The
quark-counting rules – an early prediction reflecting the
kinematic constraints in the quasielastic region – suggest
a (1�x)�=2 fall-o↵ of the pion quark PDFs when x ! 1.
This expectation does not account for many dynamic
contributions at either low or large momentum fractions
that a↵ect interpretation of realistic measurements [48].
In this regard, the present phenomenological analysis
does not qualitatively di↵er from the previous recent
ones: the fall-o↵ of the valence PDF at large x is
compatible with � = Ceff

V = 1 at Q0 =
p
1.9 GeV (see

Fig. 11), in spite of the multiple functional forms that
have been considered (Fig. 7).
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xV (x,Q) at Q=1.4 GeV, 68% c.l. (band)

FantoPDF�(MC)
xFitter��QR�VFDOH�YDULDWLRQ�
JAM21

FIG. 12. The valence PDF of the final Fantômas ensemble
compared to JAM21 and xFitter results, at Q = 1.4 GeV.
For the FantoPDF set, the 68% CL of the MC output is
shown. xFitter’s results are plotted without accounting for the
uncertainty coming from the scale variation. The inner frame
shows the ratio to the central value of each set – symmetric
uncertainties are used for all three sets.

VI. COMPARISON WITH OTHER GLOBAL
ANALYSES

Now that we have established the power of the
metamorph parametrization in the Fantômas formalism,
we proceed to further comparisons of our results to
previous extractions of the pion PDFs at NLO. The
fitted data sets vary among the fitting groups. While
the Fantômas analysis augments the full DY and prompt
photon data set of xFitter with 29 LN DIS data points,
JAM authors choose to fit DY data only for invariant
masses lower than the ⌥ mass (noticeable around µ2 =
100 GeV2 in Fig. 3) and a larger pool of LN DIS
data. The latter choice of data stems in turn from a
combined study of the E866 proton d̄� ū and the HERA
(H1 and ZEUS) LN DIS in the context of a pion-cloud
approximation [65]. Our analyses di↵er hence in the
precision with which the LN data are treated.

JAM’18 [8] reports a best fit of
�2/Npts=0.98 (244.8/250), with this number being
obtained with a specific prescription for the pion flux
in Eq. (17). JAM’21 [11] adds large-x resummation
corrections in cross sections for the DY data; however,
their baseline fit achieves �2/Npts = 0.81. The double
Mellin method for the resummation marginally improves
this result, while other resummation methods worsen
it. JAM’s low �2 value might result from the specific
selection of cuts and models for the data. [The objective
of the Fantômas analysis was not to explore the model
dependence within the LN data]. On the other hand, the
xFitter pion fit has achieved �2/Npts = 1.17 (444/379),
or 1.19 with respect to the number of degrees of freedom
quoted in [9].
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combination in Fig. 9 supports this assessment, which is
somewhat in a contradiction with the JAM analyses [8]
– see Sec. VI.

FIG. 11. The e↵ective (1� x) exponent of the valence PDF
in the FantoPDF ensemble – the definition is given in [48]. In
green, the e↵ective exponent at Q0 =

p
1.9 GeV and, in blue,

at
p
10 GeV. The plot is cut at x = 0.94 for grid-extrapolation

reasons. We have verified analytically that the highlighted
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VI. COMPARISON WITH OTHER GLOBAL
ANALYSES

Now that we have established the power of the
metamorph parametrization in the Fantômas formalism,
we proceed to further comparisons of our results to
previous extractions of the pion PDFs at NLO. The
fitted data sets vary among the fitting groups. While
the Fantômas analysis augments the full DY and prompt
photon data set of xFitter with 29 LN DIS data points,
JAM authors choose to fit DY data only for invariant
masses lower than the ⌥ mass (noticeable around µ2 =
100 GeV2 in Fig. 3) and a larger pool of LN DIS
data. The latter choice of data stems in turn from a
combined study of the E866 proton d̄� ū and the HERA
(H1 and ZEUS) LN DIS in the context of a pion-cloud
approximation [65]. Our analyses di↵er hence in the
precision with which the LN data are treated.

JAM’18 [8] reports a best fit of
�2/Npts=0.98 (244.8/250), with this number being
obtained with a specific prescription for the pion flux
in Eq. (17). JAM’21 [11] adds large-x resummation
corrections in cross sections for the DY data; however,
their baseline fit achieves �2/Npts = 0.81. The double
Mellin method for the resummation marginally improves
this result, while other resummation methods worsen
it. JAM’s low �2 value might result from the specific
selection of cuts and models for the data. [The objective
of the Fantômas analysis was not to explore the model
dependence within the LN data]. On the other hand, the
xFitter pion fit has achieved �2/Npts = 1.17 (444/379),
or 1.19 with respect to the number of degrees of freedom
quoted in [9].

Fantômas4QCD
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Bézier curve
Bézier curves are convenient for interpolating discrete data

The interpolation through Bézier curves is unique if the polynomial degree= (# points-1), there’s a closed-
form solution to the problem,

The Bézier curve can be expressed as a product of matrices:

•  is the vector of 
•  is the matrix of binomial coefficients

•  is the vector of  Bézier coefficient, , to be determined

T xl

M
C cl

8

III. TESTING LARGE-x PDFS IN EXPERIMENTAL MEASUREMENTS

A. Bézier curves as polynomial interpolations of discrete data

Models of the hadron structure make concrete predictions for the x dependence of the structure functions and
PDFs. One can straightforwardly check the agreement of a given model with an experimental observation within
the uncertainties. A stronger assertion, that the experiment demands the 1� x dependence of the PDFs to follow a
specific power law, is di�cult to demonstrate since the functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant structures that disagree with the global trend. Even when the
PDF functional forms are restricted to be polynomial, the discrete experimental data can be compatible with multiple
functional forms.

To illustrate why, consider an idealized example, in which we seek a polynomial function f
(n)(x) of degree n to

interpolate k + 1 data points {x0, p0}, {x1, p1},..., {xk, pk} that have no uncertainty. Our points satisfy 0  xi  1.
From mathematics, we know that the existence and number of the interpolating solutions depend on the degree n of
the polynomial.

If n = k, the unisolvence theorem guarantees that there exists a unique interpolating polynomial going through
all points: f

(n)(xi) = pi. Two equivalent closed-form solutions for the interpolating polynomial are given by the
Lagrange polynomial,

L
(n)(x) ⌘

kX

i=0

pi

kY

m=1
m 6=i

x� xm

xi � xm
for n = k, (14)

and by a Bézier curve of degree n,

B
(n)(x) =

nX

l=0

cl Bn,l(x), (15)

constructed from Bernstein basis polynomials

Bn,l(x) ⌘

✓
l

n

◆
x
l(1� x)n�l

. (16)

Denote the vector B(n)(xi) as B. This vector can be written in a matrix form [50, 51],

B = T ·M · C, (17)

where C ⌘ kclk;

M ⌘ kmlpk with mlp =

8
><

>:
(�1)p�l

 
l

n

! 
n� p

n� l

!
, l  p

0, l > p

; (18)

and T ⌘ ktipk with tip = x
p
i . Here i runs from 0 to k, and l, p run from 0 to n.

Given the matrix P ⌘ kpik of data values, the matrix C for the Bézier curve B
(n)(x) going through all points

satisfies [51]

C = M
�1

· T
�1

· P for n = k. (19)

This equation shows that k+1 data points uniquely determine the polynomial of order n = k, assuming no experimental
errors.

If n < k, an interpolating solution that goes through all points may not exist. Rather, there is a Bézier curve that
minimizes the total squared distance to pi,

�
2(P,B) =

kX

i=0

⇣
B
(n)(xi)� pi

⌘2
= (P � T ·M · C)T · (P � T ·M · C). (20)

The matrix of the coe�cients of this Bézier curve is

C = M
�1

· (TT
T )�1

· T
T
· P for n < k. (21)
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with the Bernstein pol. 

We can evaluate the Bézier curve at chosen control points, to get a vector of 

 is now a matrix of  expressed at the control points.

ℬ → P

T xl
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Behaviour on top of asymptotics is embedded into a Bézier curve 
⇨ asymptotics usually ensured by a carrier function

⇨ sum rules imposed through normalization

Bézier-curve methodology for global analyses
The reconstructed function may depend on the position 
and number of control points.

Global analyses can exploit this property to generate 
many functional forms. 

                    ⇒ polynomial mimicry
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f(x)=213. (1-x)2 x2 ×
(1-2.9 1 - x x +2.2 (1-x) x)

Fantômas4QCD program  

⇨   can modulate the PDFs in flexible ways at intermediate  using a set of free and fixed control pointsℬ x

x q(x,Q2
0) = A0

q x
Bq (1� x)Cq ⇥

⇣
1 + B(Nm)(x↵x , Q2

0; v)
⌘

<latexit sha1_base64="/6rCdF+4u5MpuJS8jPucjvQ5FPw="></latexit>

for PDF type  
(flavor, combination or gluon)

q =
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Classical fit: determines the vector 

metamorph fit: determines the variations in vector

Bézier-curve methodology for global analyses — toy model
Fantômas4QCD program  

⇨   can modulate the PDFs in flexible ways at intermediate  using a set of free and fixed control 
points through

ℬ x

5

�
�
�
���
�

����
�
�
�
�
��������

Truth

� Pseudodata

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

x

x1
.5
f π
(x
)

FIG. 1. Illustration of the metamorph routine. Upper plot:
set-up – a truth (solid ocher curve) can be extracted from a
distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
[NOTE: FO] To think about: Fig.1+2 send a strong message,
but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.

points, such that

Pi = B(xi) ! P 0
i = B(xi) + �B(xi)

! P 0 = (B0(x1) + �D,B0(x2) + �E, · · · ) ,
(13)

with i running from 1 to the length of the vector P for

FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
product of the updated carrier function (short-dashed red

with  

x q(x,Q2
0) = A0

q x
Bq (1� x)Cq ⇥

⇣
1 + B(Nm)(x↵x , Q2

0; v)
⌘

<latexit sha1_base64="/6rCdF+4u5MpuJS8jPucjvQ5FPw="></latexit>

v = {C,P}
<latexit sha1_base64="AEeJJ1152Lhhq16M6gn6pxPBMV0=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwISWpgm6EYjcuK9gHNKFMJpN26GQSZiaFEvIXbvwVNy4Ucas7/8ZJm0VtvTBw7jn3cOceL2ZUKsv6MUpr6xubW+Xtys7u3v6BeXjUkVEiMGnjiEWi5yFJGOWkrahipBcLgkKPka43buZ6d0KEpBF/VNOYuCEachpQjJSmBmbNSbhPRG5PJ9mtky70zexioWtlTgYHZtWqWbOCq8AuQBUU1RqY344f4SQkXGGGpOzbVqzcFAlFMSNZxUkkiREeoyHpa8hRSKSbzu7K4JlmfBhEQj+u4IxddKQolHIaenoyRGokl7Wc/E/rJyq4cVPK40QRjueLgoRBFcE8JOhTQbBiUw0QFlT/FeIREggrHWVFh2Avn7wKOvWafVmrP1xVG3dFHGVwAk7BObDBNWiAe9ACbYDBE3gBb+DdeDZejQ/jcz5aMgrPMfhTxtcv/g2hCw==</latexit>

We parametrize the Bézier coefficients as the shifts of the position of the control points:
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FIG. 1. Illustration of the metamorph routine. Upper plot:
set-up – a truth (solid ocher curve) can be extracted from a
distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
[NOTE: FO] To think about: Fig.1+2 send a strong message,
but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.
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FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
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a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
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freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
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↵x. Additionally, two modalities for the variation of the
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Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
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with = # CPs-1 for a square-matrices system. Nm
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Bézier-curve methodology for global analyses — toy model
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curve) and a Bézier curve of degree Nm obtained through390

Eq. (12) with the control points as in Eq. (13), minimiz-
ing an objective function by pulling the control points.
The latter can enhance the potential of the Fantômas

method further by distinguishing two categories: CPs
that are fixed to stay on the carrier function (blue crosses395

in Fig. 1) and CPs that are free to depart from the
updated carrier (yellow arrows).
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FIG. 3. The Fantômas technique illustrated by applying the
bootstrap (or importance) sampling on the data (upper plot)
or the Fântomas methodology, that consists in sampling over
representative choices for the CPs and the scaling factor ↵x

(lower plot). The resulting uncertainties are displayed in cyan
(bootstrap) and green (parameter-space sampling).

The ultimate purpose for designing the metamorph
methodology concerns the quantification of uncertainty.
Once a central fit has been determined, say, the long-400

dashed cyan curve of Fig. 1, its full statistical meaning

is obtained through the propagation of the two classes
of uncertainties, namely the aleatory and epistemic un-
certainties REF. The aleatory class consists of statistical
uncertainties that propagate the experimental errors. In405

Fig. 3, we illustrate them using the bootstrap method,
one of the possible error propagation technique. Also
called resampling or importance sampling, it consists in
generating N replicas of the data set according to a
probability distribution. Each set of fluctuated data is410

fitted through metamorph (light cyan curves in the upper
plot of Fig. 3); their (unweighted) average is illustrated
here in green. The curves obtained after bootstrapping
all correspond to the same metamorph settings (here
(Nm = 4,↵x = 0.45), unvaried CPs). To account for the415

epistemic uncertainties, it is necessary to sample over
the space of solutions, which in the case of Fantômas

means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
how the input in matrix T impacts the sensitivity of
the output coe�cient vector C, the condition number is
computed along with the fits, following the Frobenius430

matrix norm. Users should seek to minimize this metric
by setting up a well behaved T matrix. This is achieved
by taking advantage of the metamorph parameters, e.g.
power stretching (↵x). [NOTE: FO] OK??? (↵x).

435

The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
tions included in xFitter, the metamorph functions can be440

used for any flavor of choice by including the metamorph
parameterization in pdfparams.
The metamorph parameterization requires several pa-

rameters to be used. Unlike other parameterization, the
parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
guess for the carrier parameters need to be provided.455

2 https://www.xfitter.org/xFitter/
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dashed cyan curve of Fig. 1, its full statistical meaning

is obtained through the propagation of the two classes
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uncertainties that propagate the experimental errors. In405

Fig. 3, we illustrate them using the bootstrap method,
one of the possible error propagation technique. Also
called resampling or importance sampling, it consists in
generating N replicas of the data set according to a
probability distribution. Each set of fluctuated data is410

fitted through metamorph (light cyan curves in the upper
plot of Fig. 3); their (unweighted) average is illustrated
here in green. The curves obtained after bootstrapping
all correspond to the same metamorph settings (here
(Nm = 4,↵x = 0.45), unvaried CPs). To account for the415

epistemic uncertainties, it is necessary to sample over
the space of solutions, which in the case of Fantômas

means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
how the input in matrix T impacts the sensitivity of
the output coe�cient vector C, the condition number is
computed along with the fits, following the Frobenius430

matrix norm. Users should seek to minimize this metric
by setting up a well behaved T matrix. This is achieved
by taking advantage of the metamorph parameters, e.g.
power stretching (↵x). [NOTE: FO] OK??? (↵x).
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The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
tions included in xFitter, the metamorph functions can be440

used for any flavor of choice by including the metamorph
parameterization in pdfparams.
The metamorph parameterization requires several pa-

rameters to be used. Unlike other parameterization, the
parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
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if bootstrapped

if sampled over metamorph settings

sampling on the distribution of data 
uncertainties

sampling over parametrizations

Both samplings can be done in the same analysis, 
they are not mutually exclusive.
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Abstract

The determination of the proton patron distribution functions is a complex endeavor involving
several physics processes. The main process is deep-inelastic scattering and the central data set
covering most of the proton structure phase space is provided at the HERA ep collider. Further
processes (fixed target DIS, ppbar collisions etc.) provide further constraints for particular aspects:
flavor separation, very high Bjorken-x etc. In particular, the precise measurements obtained or to
come from LHC will continue to improve the knowledge of the PDF. The xFitter project aim at
providing a framework for QCD analyses related to proton structure in the context of multi-processes
and multi-experiments. The framework includes modules or interfaces enabling a large number of
theoretical and methodological options, as well as a large number of relevant data sets from HERA,
Tevatron and LHC. This manual explains the theoretical input used in the QCD analysis, the fit
methodology and the installation procedure of the program. More information and the package
downloads can be found on the web site http://xfitter.org.

1 Introduction

This manual provides a short description of the xFitter program which can be used to determine un-
polarised proton parton distribution functions (PDFs). The parton distribution functions are needed to
calculate cross sections for ep, pp, and pp colliders and thus they are required for interpretation of the
data collected at the LHC and future colliders.

A schematic structure of the xFitter is illustrated in Fig. 1 which encapsulates all the current
functionality of the platform.

Initialisation

Data
– Collider, Fixed Target:

ep, µ p
– Collider: pp, pp̄

Theory
– PDF Parametrisation
– QCD Evolution:

DGLAP (QCDNUM),
non-DGLAP (CCFM, dipole)

– Cross Section Calculation

QCD Analysis
– Treatment of the Uncertainties
– Fast c2 Computation
– Minimisation (MINUIT)

Results
– PDFs, LHAPDF, TMDlib Grids
– as, mC , . . .
– Data vs. Predictions
– c2, Pulls, Shifts

Figure 1: Schematic structure of the xFitter program.

This manual is structured such that it first describes briefly the theoretical input (section 2), followed
by a description of the PDF parameterisation (section 3.1) and various �2 functions used in the minimisa-
tion (section 3.2). The minimisation is based on the standard MINUIT program [1] which is not discussed
here. Section 5 is dedicated to program installation instructions for di↵erent fit scenarios (section 5.1)
and provides a description of the program steering cards, with the output options given in section 5.2.

2 Theoretical Input

The main features of QCD theory are confinement (at short ranges the quarks are strongly bound inside
protons) and asymptotic freedom (at large scales the coupling constant of the strong force decreases and
quarks become quasi-free partons). The factorisation theorem exploits these features by separating short
and long distances processes, such that structure functions can be written as a convolution between calcu-
lable parts (hard scattering coe�cients) and non-calculable parts (parton distribution functions (PDFs)),
which are therefore parametrised and determined from data.

4

metamorph routine — PhD thesis of L. Kotz (SMU)

metamorph requires inputs from the user:


•  — degree of polynomial


•  of control points


• fixed or free control points

• stretching parameter

Nm

{x, fin(x)}
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First application of Fantômas: pion PDF
Previous (modern) pion analyses:


xFitter [PRD102]

JAM    [PRL121, PRD103, PRL127]


We use the xFitter framework for pion PDFs.

We also extend the xFitter data by adding leading neutron (Sullivan process) data  
                                 — minimal small-  coverage [model-dependence in describing the pion as a target].x

Diagrams from P. Barry

NA10

WA70

E615

HERA F2
π

10-410-3 0.010.02 0.05 0.1 0.2 0.5 0.7 1
5

10

50
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xπ

μ2
[G
eV

2 ]

Fantômas pion PDF coverage
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The Fantômas pion PDFs
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xd=xu=xs=xs
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First physics use of the Fantômas framework: 


⇨ We generated  fits corresponding to  sets for .


⇨ Well-behaved (convergence + soft constraints) fits are kept.


⇨ Fits within  are kept.

N ∼ 100 N {Nm, P, αx}

χ2 + δχ2 = χ2 + 2(Npts − Npar)

⇨ The final bundle is generated from the 5 most 
diverse shapes at .


⇨ Bundled uncertainty using METAPDF (mcgen) 
                                                     [Gao & Nadolsky, JHEP07]

Q0
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Hessian-error bands

evaluated with the default 

 criterion Δχ2 = 1

For   PDFs, 
, 

  

π+

q = V = 2(u − ū)
q = S = 6s̄
q = g
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Uncertainties in global analyses  
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PDF functional form using the METAPDF method.
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The Fantômas pion PDFs
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The impact of each of the datasets used in our analysis on
the extraction of the pion PDFs is indicated in Fig. 10 at a
scale μ2 ¼ 10 GeV2. In particular, Monte Carlo sampling
has been carried out for three data selections: (i) pT-
integrated Drell-Yan only; (ii) pT-integrated Drell-Yan and
LN data; and (iii) pT-integrated and pT-differential Drell-
Yan along with LN data. The effects on the PDFs and their
1σ uncertainties of adding each new dataset sequentially is
shown, together with the relative errors with respect to the
mean values of each data selection fit, as ratios of the square
roots of the variances divided by the expectation values,ffiffiffiffiffiffiffiffiffiffiffi
V½fπi #

p
=E½fπi #. While data selection in scenario (i) allows

reasonably tight constraints on the valence quark PDF qπv,
the sea quark qπs and gluon gπ PDFs have very large
uncertainties. Clearly the biggest overall impact on the
PDFs uncertainties is scenario (ii), in which the addition of
the HERA LN data constrains significantly the small-x

region for the gluon and the sea distributions, with modest
effect on the valence distribution. This is consistent with
what was previously observed in Ref. [3].
The novel addition of the pT-dependent Drell-Yan data

in scenario (iii), has a modest impact on the shapes of the
pion PDFs and their uncertainties. The strongest impact is
on the gluon distribution at large values of x, x≳ 0.3. This
may be expected, given the sensitivity of the pT-differential
cross section on the pion’s gluon PDF at lowest order in αs.
However, since the cross section at large x is still mostly
dominated by contributions from valence quarks, the
overall impact on the glue is not overwhelming. In other
kinematic regions, the reduction in the PDF uncertainties
after inclusion of the pT-dependent Drell-Yan data is also
relatively small, which reflects the larger errors of these
data in Fig. 7 than for the pT-integrated Drell-Yan and LN
data in Figs. 5 and 6, respectively.

FIG. 9. Comparison of the pion valence quark qπv, sea quark qπs , and gluon gπ (scaled by 1=10) PDFs from the current JAM analysis
(red bands) at μ2 ¼ 10 GeV2 with the xFitter results [14] (yellow bands) and the GRV parametrization [11] (blue lines). The uncertainty
bands represent 1σ CL.

FIG. 10. Impact of datasets on pion valence quark (left), sea quark (middle) and gluon (right) PDFs at μ2 ¼ 10 GeV2. (Top) Reduction
of PDF xfπi uncertainty bands from fitting only pT-integrated Drell-Yan data (green), Drell-Yan and LN (blue), and pT-integrated and
pT-dependent Drell-Yan and LN data (red). (Bottom) Corresponding relative 1σ uncertainties, as ratios of the square roots of the
variances divided by the expectation values

ffiffiffiffi
V

p
=E for each PDF flavor fπi , for each of the datasets fitted.

CAO, BARRY, SATO, and MELNITCHOUK PHYS. REV. D 103, 114014 (2021)

114014-12

Comparison of methodologies:

bootstrap+ IMC vs. metamorph parametrization in xFitter 
 
Addition of leading-neutron data does not reduce the uncertainties for Fantômas
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Distribution of the pion momentum
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Highlight on the separation of sea and gluon distributions. 

The addition of leading-neutron data does not dramatically change 
the momentum fractions once the uncertainty appropriately include 
representative sampling. 
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Distribution of the pion momentum
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The addition of leading-neutron data does not dramatically change 
the momentum fractions once the uncertainty appropriately include 
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[Gao et al., PRD102]

[Meyer et al., PRD77]

[MSU, 2310.12034]

[Shanahan et al., PRD99]

[Martinelli et al., PLB196]

Lattice provides complementary access to momentum 
fractions— only the recent ETM coll. results have 
both.

All lattice results are work with different ensemble settings.
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Pion PDF compared with lattice QCD results

Gluon shape averaged to momentum fraction given by 

[Fan & Lin, PLB 823 (2021)]

Valence pion PDF compared to lattice results from

[X. Gao, PRL128 & PRD106]
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Lattice PDFs come from solving inverse problems, too

Valence pion PDF compared to lattice results from

[X. Gao, PRL128 & PRD106]
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Evolution of nonperturbative manifestations

as shown, the exponent is “2”, reproducing Eq. (2). This
feature removes the need to use moments of arbitrarily high
order, enabling one to focus instead on the lower-order
moments which provide information on the mid-x shape.
One remark may be valuable here. This application of the

SPM requires the coefficient of the highest active denom-
inator power in Eq. (31) to be unity. Hence, when one
uses Eq. (31) for m ¼ 0, 1, 2, 3 moments, b2 ¼ 1 and
a2 ¼ 0 ¼ b3. Referring to the lower panels of Table I, this
presents an appearance of sensitivity in the coefficients to
the number of moments employed; but that is misleading.
The relevant measure is not these coefficients, but the
similarity between the curves obtained via reconstruction.
Our result, Eq. (32), is depicted in Fig. 5. The mean
absolute relative error between its first eleven moments and
those of the separate reconstructed distributions is 4(3)%.
Given the remarks in Sec. I, it is worth reiterating that

Eq. (32) exhibits the x ≃ 1 behavior predicted by the QCD
parton model, Eq. (2); and because it is a purely valence
distribution, this same behavior is also evident on x ≃ 0.
However, in contrast to the scale-free valence-quark dis-
tribution computed in Ref. [37]:

qsfðxÞ ≈ 30x2ð1 − xÞ2; ð33Þ

obtained using parton-model-like algebraic representations
of S, Γπ, the distribution computed with realistic inputs
is a much broader function. A similar effect is observed in
the pion’s leading-twist valence-quark distribution ampli-
tude [114] and those of other mesons [108,
115–118]. The cause is the same, viz. the valence-quark
distribution function is hardened owing to DCSB, which is
a realization of the mechanism responsible for the emer-
gence of mass in the Standard Model [119]. Emergent mass
is expressed in the momentum-dependence of all QCD
Schwinger functions. It is therefore manifest in the point-
wise behavior of wave functions, elastic and transition
form factors, etc.; and as we have now displayed, also in
parton distributions. (This was to be expected, given the
connection between light-front wave functions and parton
distributions.)

V. EVOLUTION OF PION DISTRIBUTION
FUNCTIONS

The pion valence-quark distribution in Eq. (32) is
computed at ζH ¼ mα, Eq. (24). On the other hand, existing
lQCD calculations of low-order moments [33–36] and
phenomenological fits to pion parton distributions are
typically quoted at ζ ≈ ζ2 ¼ 2 GeV [120–122]; and the
scale relevant to the E615 data is ζ5 ¼ 5.2 GeV [9,13].
We therefore employ the effective charge in Eq. (23) to
integrate the one-loop DGLAP equations, therewith evolv-
ing qπðx; ζH ¼ mαÞ to obtain results for qπðx; ζ2Þ and
qπðx; ζ5Þ. This procedure ensures that saturation of the
effective charge is expressed, e.g., αPIðζHÞ=ð2πÞ ¼ 0.20,
½αPIðζHÞ=ð2πÞ%2 ¼ 0.04, stabilizing our evolved results on
ζ > ζH. Notably, given that ζH ¼ mα is fixed by our
analysis, all results are predictions. We checked that with
fixed ζH, varying mα → ð1& 0.1Þmα does not measurably
affect the evolved distributions. We therefore report results
with mα fixed and an uncertainty determined by vary-
ing ζH → ð1& 0.1ÞζH.

A. ζH → ζ2
Our prediction for qπðx; ζ2Þ is depicted in Fig. 6. The

solid curve and surrounding bands are described by the
following function, a generalization of Eq. (32):

qπðxÞ ¼ nqπxαð1 − xÞβ

× ½1þ ρxα=4ð1 − xÞβ=4 þ γxα=2ð1 − xÞβ=2%; ð34Þ

where nqπ ensures Eq. (9) and the powers and coefficients
are listed in Table II. Evidently, the large-x exponent is

βðζ2Þ ¼ 2.38ð9Þ: ð35Þ

FIG. 5. Solid (black) curve: pion valence-quark distribution
function at the hadronic scale, ζH , Eq. (32). Dashed (blue) curve:
scale-free distribution, Eq. (33).

FIG. 6. Pion valence-quark momentum distribution function,
xpπðx; ζÞ, p ¼ q, evolved ζH → ζ2 ¼ 2 GeV—solid (blue) curve
embedded in shaded band; and long-dashed (black) curve—ζ2
result from Ref. [12]. Equations (39), (40): gluon momentum
distribution in pion, xgπðx; ζ2Þ—dashed (green) curve within
shaded band; and sea-quark momentum distribution,
xSπðx; ζ2Þ—dot-dashed (red) curve within shaded band. In all
cases, the shaded band indicates the effect of ζH → ζHð1& 0.1Þ.

SYMMETRY, SYMMETRY BREAKING, AND PION PARTON … PHYS. REV. D 101, 054014 (2020)

054014-9
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Comparing shapes, by evolving models from 
dangerously small scales.

Hints of the mechanism that drives the pion structure 

When testing polynomial shapes predicted from models, polynomial mimicry affects any interpretation. 
No if and only conditions are possible given the state-of-the-art.  [A.C. & Nadolsky, PRD103]

Contact-like kernel (NJL) and momentum-dependent 
kernel @ all order (DSE) calculations prescribe 
different initial conditions (  & shape), that evolve to 

different predictions at the scale of the data. 
Light-front quark model with data-inferred parameters 
finds a similar large-  behavior. 
 
[Ruiz-Arriola; Ding et al, PRD101]

[Pasquini et al, PRD107]
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Conclusions

The pion structure is currently being studied (again) on various (improved) fronts — lattice, experiments, theory. 

⇨ Rôle of the parametrization in the sampling accuracy: we make use of Bézier-curve methodology

Fantômas4QCD framework 
metamorph can be used to study many functions 

Reliable uncertainty on the PDF analysis (to NLO)
re: larger where no data constrains 

⇨  Uncertainties come from various sources in global analyses. 
 Extension to sampling accuracy, here sampling occurs over parametrization forms.

⇨ Sea-gluon separation requires more data — a very interesting sector!
⇨ End-point behavior appears to play an important rôle. 

qπ(x, Q2)

Towards epistemic PDF uncertainties with Fantômas4QCD. 
 

Towards augmenting the aleatory  uncertainties with the uncertainty due to 
parametrization.
Δχ2 = 1
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Back up
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A META combination of parton distributions 

A technique to compare and combine PDF ensembles from various groups

Relies on the Hessian→MC→Hessian conversion using multi-dimensional  sampling 
and PCA from 150 to 30-40 PDF parameters

Combines CT, MSHT, NNPDF sets in the PDF4LHC 2015 and 2021 combinations 

 [Gao & Nadolsky, JHEP07]

 Update on the mp4lhc and mcgen codes in the context of Fantômas [Kotz et al, in progress]

 [2203.0550]
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Sea and gluon behavior
Data sets vary between JAM and Fantômas: higher number of NA10 data points for us.


We explored small gluon and small sea scenarios:  
zero-gluon solutions are allowed; zero-sea ones are unfavored. 
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Rôle of the control points 
5

FIG. 1. Illustration of the metamorph routine. Upper plot:
set-up – a truth (solid ocher curve) can be extracted from a
distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
[NOTE: FO] To think about: Fig.1+2 send a strong message,
but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.

points, such that

Pi = B(xi) ! P 0
i = B(xi) + �B(xi)

! P 0 = (B0(x1) + �D,B0(x2) + �E, · · · ) ,
(13)

with i running from 1 to the length of the vector P for

�

�
�
���
�

����

�
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�
�
��������

X

X

X

↕

↕

� Pseudodata

Truth

Carrier

Metamorph

0.0 0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

x

x1
.5
f(x

) X, ↕: Control points

Nm = 4, αx = 0.45

FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
product of the updated carrier function (short-dashed red
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The fixed CPs are the intersection points between the carrier and the final metamorph.

The fixed CPs set the shape of the curve ; the free CPs act through the minimization procedure. 
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Testing quark counting rules
⇨ Hypothesis testing for functional behavior constraints — do PDFs fall off like ?(1 − x)β

fqv/P (x) ���!x!1
(1� x)3, fqv/⇡(x) ���!x!1

(1� x)2
<latexit sha1_base64="qSs/Q1R6rR3MTKqa7J/9gQqJiEU="></latexit>

Quark-counting rules:

Early-QCD predicted behavior for structure functions 
when one quark carries almost all the momentum fraction
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0.6

0.8

1.0

1.2

1.4

1.6

x

Cv
eff(Q)

Q=Q0

Q= 10 GeV

 for Fantômas valence pion PDFβeffAt NLO (MSbar), the valence PDF is well determined at large 


⇨ doesn’t fall very much like  


⇨ very similar to JAM and xFitter at large 


This result can be understood through non-perturbative QCD 
corrections as well as polynomial mimicry. 

 [A.C. & Nadolsky, PRD103]

x

(1 − x)2

x
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phenomenologically — early QCD predictions on the shape of form factors and  structure functions 


70’-80’ [Brodsky, Lepage, Farrar, Soper,…]


theoretically — quark models, EFTs with pion or quark degrees of freedom, Dyson-Schwinger eqs.… 
that, ideally, incorporate the physics of  sym. breaking and pion as a bound-state,     
                                          e.g., Nambu—Jona-Lasinio model, chiral-quark soliton model, continuum…  
                       — systematics and representations of non-perturbative functions.


90’-00’ [Ruiz-Arriola, Polyakov, …]


taking care of many relevant analytical aspects of the pion structure. 

experimentally:

exclusive processes — that give access to form factors 

                                                                                                   70’-20’ [DESY, SPS, Belle, BaBar, JLab…]


inclusive processes — the deeply inelastic ones 

                                                                               70’-30’ [SPS, Fermilab, HERA (DESY), future: JLab+EIC]

χ

Pion structure — amazing pioneer work 

Pion’s quark and gluon structure can be, and has been, studied in 
connection with its fundamental properties:
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Shape of pion PDFs
Quantities that characterize the distribution of quarks inside hadrons  
⇨ Parton Distribution Functions (PDFs) 

What is the fraction of longitudinal momentum carried by a struck parton from the hadron? 

⇒ variable , with 


How does that momentum fraction change with the increase of the virtuality of the probe, Q2?

⇒  where the Q2 dependence is known precisely in perturbative QCD 

x x ∈ [0,1]

f1(x) → f1(x, Q2)
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Shape of pion PDFs
Quantities that characterize the distribution of quarks inside hadrons  
⇨ Parton Distribution Functions (PDFs) 

What is the fraction of longitudinal momentum carried by a struck parton from the hadron? 

⇒ variable , with 


How does that momentum fraction change with the increase of the virtuality of the probe, Q2?

⇒  where the Q2 dependence is known precisely in perturbative QCD 

x x ∈ [0,1]

f1(x) → f1(x, Q2)

⇨ Is one or more of those pictures correct in Nature? If yes, at which resolution scale?

Expectations from

 
elastic limit             quark model       bound quarks                 + QCD radiations|π⟩ = |qq̄⟩

from Minghui Ding



A. Courtoy—IFUNAM________________Fantômas4QCD____________________QNP2024

Hints about the low-energy QCD mechanisms 
From the many theoretical studies on the pion, we expect manifestations of non-perturbative dynamics 
to be encapsulated in PDFs and related objects.

as shown, the exponent is “2”, reproducing Eq. (2). This
feature removes the need to use moments of arbitrarily high
order, enabling one to focus instead on the lower-order
moments which provide information on the mid-x shape.
One remark may be valuable here. This application of the

SPM requires the coefficient of the highest active denom-
inator power in Eq. (31) to be unity. Hence, when one
uses Eq. (31) for m ¼ 0, 1, 2, 3 moments, b2 ¼ 1 and
a2 ¼ 0 ¼ b3. Referring to the lower panels of Table I, this
presents an appearance of sensitivity in the coefficients to
the number of moments employed; but that is misleading.
The relevant measure is not these coefficients, but the
similarity between the curves obtained via reconstruction.
Our result, Eq. (32), is depicted in Fig. 5. The mean
absolute relative error between its first eleven moments and
those of the separate reconstructed distributions is 4(3)%.
Given the remarks in Sec. I, it is worth reiterating that

Eq. (32) exhibits the x ≃ 1 behavior predicted by the QCD
parton model, Eq. (2); and because it is a purely valence
distribution, this same behavior is also evident on x ≃ 0.
However, in contrast to the scale-free valence-quark dis-
tribution computed in Ref. [37]:

qsfðxÞ ≈ 30x2ð1 − xÞ2; ð33Þ

obtained using parton-model-like algebraic representations
of S, Γπ, the distribution computed with realistic inputs
is a much broader function. A similar effect is observed in
the pion’s leading-twist valence-quark distribution ampli-
tude [114] and those of other mesons [108,
115–118]. The cause is the same, viz. the valence-quark
distribution function is hardened owing to DCSB, which is
a realization of the mechanism responsible for the emer-
gence of mass in the Standard Model [119]. Emergent mass
is expressed in the momentum-dependence of all QCD
Schwinger functions. It is therefore manifest in the point-
wise behavior of wave functions, elastic and transition
form factors, etc.; and as we have now displayed, also in
parton distributions. (This was to be expected, given the
connection between light-front wave functions and parton
distributions.)

V. EVOLUTION OF PION DISTRIBUTION
FUNCTIONS

The pion valence-quark distribution in Eq. (32) is
computed at ζH ¼ mα, Eq. (24). On the other hand, existing
lQCD calculations of low-order moments [33–36] and
phenomenological fits to pion parton distributions are
typically quoted at ζ ≈ ζ2 ¼ 2 GeV [120–122]; and the
scale relevant to the E615 data is ζ5 ¼ 5.2 GeV [9,13].
We therefore employ the effective charge in Eq. (23) to
integrate the one-loop DGLAP equations, therewith evolv-
ing qπðx; ζH ¼ mαÞ to obtain results for qπðx; ζ2Þ and
qπðx; ζ5Þ. This procedure ensures that saturation of the
effective charge is expressed, e.g., αPIðζHÞ=ð2πÞ ¼ 0.20,
½αPIðζHÞ=ð2πÞ%2 ¼ 0.04, stabilizing our evolved results on
ζ > ζH. Notably, given that ζH ¼ mα is fixed by our
analysis, all results are predictions. We checked that with
fixed ζH, varying mα → ð1& 0.1Þmα does not measurably
affect the evolved distributions. We therefore report results
with mα fixed and an uncertainty determined by vary-
ing ζH → ð1& 0.1ÞζH.

A. ζH → ζ2
Our prediction for qπðx; ζ2Þ is depicted in Fig. 6. The

solid curve and surrounding bands are described by the
following function, a generalization of Eq. (32):

qπðxÞ ¼ nqπxαð1 − xÞβ

× ½1þ ρxα=4ð1 − xÞβ=4 þ γxα=2ð1 − xÞβ=2%; ð34Þ

where nqπ ensures Eq. (9) and the powers and coefficients
are listed in Table II. Evidently, the large-x exponent is

βðζ2Þ ¼ 2.38ð9Þ: ð35Þ

FIG. 5. Solid (black) curve: pion valence-quark distribution
function at the hadronic scale, ζH , Eq. (32). Dashed (blue) curve:
scale-free distribution, Eq. (33).

FIG. 6. Pion valence-quark momentum distribution function,
xpπðx; ζÞ, p ¼ q, evolved ζH → ζ2 ¼ 2 GeV—solid (blue) curve
embedded in shaded band; and long-dashed (black) curve—ζ2
result from Ref. [12]. Equations (39), (40): gluon momentum
distribution in pion, xgπðx; ζ2Þ—dashed (green) curve within
shaded band; and sea-quark momentum distribution,
xSπðx; ζ2Þ—dot-dashed (red) curve within shaded band. In all
cases, the shaded band indicates the effect of ζH → ζHð1& 0.1Þ.

SYMMETRY, SYMMETRY BREAKING, AND PION PARTON … PHYS. REV. D 101, 054014 (2020)

054014-9
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�π(�)

 sym. breaking predicts that the pion PDF is broader than what 
expected from a bound-state smearing.


in contact-like interaction models, it is exactly 


in mmt-dependent kernel models, it is broad, and 0 at the end-points


no approach that incorporates  sym. finds a peak at 

χ

f π
1 (x, Q2

0) = 1

χ x = 0.5

⇨ The shape of the valence pion PDF is intrisically related to the emergence of hadronic mass. 

Proton and pion have very different dynamical contributions to their mass, the origin of this difference is also 
manifest through the respective shape of their PDFs.

NJL

DSE

π+

K
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Rôle of parametrization in previous analyses
CT18 PDF (unpolarized proton PDF) 


Hessian-based methodology

Inclusive of sampling bias/lack of knowledge


Tolerance criterion leads to cyan band 

[Hou et al., Phys.Rev.D103]

Pavia transversity PDF

Hessian-based (with bootstrap) methodology


Variation on functional form (in early 
analyses)


J
H
E
P
0
3
(
2
0
1
3
)
1
1
9

Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q

2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].

of the Collins e↵ect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very di↵erent procedures. Note that if the So↵er bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain

– 15 –

[Bacchetta, AC & Radici, JHEP03 (2013)] 

����� ����� ����� ����� ����� ����� �
����

����

����

����

����

����

����

����

�

�	
��
	�� ���������

Figure 3: Bernstein polynomials Bk,ni (g(x)) used in the functional form for the valence up
transversity (left) and the valence down transversity (right). The degree of the polynomials is,
respectively, n = {10, 20, 30, 40} in red with dot-dashed contours, purple/dashed, yellow/full
and green/dotted. See text for explanation.

need to insure a smooth fall-o↵ of the transversity in the limit x ! 1 that cannot be achieved
exclusively from the choice of functional form. In most cases, a second step will be required to
constrain the functional form in an allowed region. When the objective function is subject to
m constraints of the form Cj({p0}) = 0, the later are imposed through the Lagrangian

L({p0}, {�}) = �
2({p0}) +

mX

j

�jCj({p0}) , (16)

to which a stationary point of L is found minimizing with respect to the parameters {p0} and
the Lagrange parameters {�}.

Once the convergence of the first step guaranteed and given the linearity of our functional
form in terms of the parameter vectors, it is su�cient to define our new objective function as
follows

�
2
i

�
{pII}

�
=

h
pq I
i,k � pq II

i,k

i|
V

�1
h
pq I
i,k � pq II

i,k

i
. (17)

The vector of parameters pq I
i,k, of length nu,i + nd,i

, corresponds to {p}, the set of best fit
parameters obtained through the main minimization, and the covariance matrix V also comes
from step I. The chisquare function depends on the new set of best fit parameters, {pII}, which
consists in the set made of pq IIi,k .

In previous –unpolarized and longitudinally polarized– PDF determinations, the method
of the Lagrange multipliers has been made popular for error estimation [31]. In the present
approach, this method is used to impose limits on the fit parameters. In particular, we use
the more general inequality constraints through scipy.optimize.minimize in Python,which is
based on the Lagrange multipliers method above described [32]. We guide the large-x behavior
of the down parameterization only using the following Nc = 6 constraints

C
dV
i,j

�
p
d II
i,k

�
= h

qV
1,i

�
xj; p

d II
i,k

�
< ✏j for j = 1, · · · , Nc/2 ,

C
dV
i,j

�
p
d II
i,k

�
= h

qV
1,i

�
xj; p

d II
i,k

�
> �✏j for j = Nc/2 + 1, · · · , Nc , (18)

with xj = {0.3, 0.55, 0.75} and ✏j = {0.2, 0.5/3, 0.1}. In other words, we add 6 degrees of
freedom to our problem. The values for ✏j have been set considering the steepness of the
functional form, the trend of f1(x,Q2) and g1(x,Q2) through which is emulated the shift to
small values of x induced by DGLAP.

8

Mexico transversity PDF

Variation of Bernstein polynomials 
to span the  rangex

[Benel, AC & Ferro, EPJC 80 (2020)] 


