

The Tomography of Nucleon:

Lattice QCD calculation of the unpolarized

transverse-momentum-dependent parton distributions

Qi-An Zhang Beihang University (BUAA) Jul. 10 @ QNP 2024

Based on PRD109, 114513 (2024)

OUTLINE

Motivation

- Lattice QCD calculation of TMDPDFs
 - Extract TMDPDFs from LaMET
 - Quasi TMDPDF matrix elements and their renormalization
 - From Quasi TMDPDF to physical TMDPDF
 - Numerical results
- Summary and Outlook

TMDPDFs: 3D tomography of the nucleon

TMD processes:

TMDPDFs: 3D tomography of the nucleon

• Low- q_T region of Drell-Yan Process:

Revealing the confined motion of partons inside the nucleon

TMDPDFs: 3D tomography of the nucleon

TMD Handbook, TMD Collaboration, 2304.03302

Progress in the study of TMDPDFs

> Theoretical analysis

• TMD factorization, evolution and resummation:

Boussarie et al., TMD handbook, 2304.03302; Collins, Foundations of perturbative QCD;

Phenomenological parametrizations and extractions

• Unpolarized:

Moos, JHEP05 (2024); Bacchetta, JHEP10 (2022); Bury, JHEP10 (2022); Scimem, JHEP06 (2020); Bacchetta, JHEP06 (2017);

• Sivers, Boer-Mulders:

Bury, PRL126 (2021), JHEP05 (2021) ; Cammarota, PRD102(2020); Zhang, PRD77 (2008), Lu, PRD81 (2010) ;

• Others: worm-gear, gluon TMDs,

u-quark unpolarized TMDPDF, 2201.07114

u-quark Sivers function, PRL126 (2021)

Lattice calculations

• Lorentz-invariant approach: ratios of Mellin moments

Hagler, EPL88(2009); Musch, PRD85(2012); Engelhardt, PRD93(2016); Yoon, 1601.05717, PRD96(2017);

- LaMET formalism:
 - ✓ I: theoretical analysis of matching kernel, soft function, Collins-Soper kernel,

Rio, PRD108(2023); Ji, JHEP08(2023), RMP93(2021), NPB955(2020), PLB811(2020); Ebert, JHEP04(2022); Deng, JHEP09(2022).....

✓ II: lattice calculation of intrinsic soft function, Collins-Soper kernel, beam function,

LPC, JHEP08(2023), PRL125(2020); Li, PRL128(2022); LPC, PRD106(2022); Shanahan, PRD104(2021); Schlemmer, JHEP08(2021);

✓ III: Nonperturbative renormalization, resummation,

Zhang, PLB884(2023); Ji, JHEP08(2023); Su, NPB991(2023); LPC, PRL129(2022); NPB991(2023).....

> IV: A real lattice calculation of TMD observable?

Extracting TMDs in LaMET formalism

Large-momentum effective theory: connecting Euclidean lattice and physical observables

• Achieved great success in the studies of PDF:

• Matching from quasi TMDs to TMDs

Equal-time correlators with staple-shaped Wilson link, directly calculable on lattice

• Hadronic matrix element reduced from equal-time correlators:

$$\begin{split} \tilde{h}_{\Gamma}^{0}\left(z,b_{\perp},P^{z}\right) &= \lim_{L \to \infty} \left\langle P^{z} \left| \bar{\psi}(b_{\perp}\hat{n}_{\perp}) \Gamma \right. \right. \\ &\times \left. U_{\Box}\left(b_{\perp}\hat{n}_{\perp} \leftarrow b_{\perp}\hat{n}_{\perp} + L\hat{n}_{z}; b_{\perp}\hat{n}_{\perp} + L\hat{n}_{z} \leftarrow L\hat{n}_{z}; L\hat{n}_{z} \leftarrow z\hat{n}_{z}\right) \right. \\ &\times \left. \psi(z\hat{n}_{z}) \left| P^{z} \right\rangle \end{split}$$

• Subtracted quasi TMDPDFs:

$$\tilde{f}_{\Gamma}\left(x,b_{\perp},P^{z},\mu\right) \equiv \lim_{\substack{a\to0\\L\to\infty}} \int \frac{dz}{2\pi} e^{-iz(xP^{z})} \frac{\tilde{h}_{\Gamma}^{0}\left(z,b_{\perp},P^{z},a,L\right)}{\sqrt{Z_{E}\left(2L+z,b_{\perp},a\right)}Z_{O}\left(1/a,\mu,\Gamma\right)}$$

9

Equal-time correlators, directly calculable on lattice

Space-like correlators, NO effective method for directly calculation

External states)

Collins–Soper kernel and intrinsic soft function

• Collins-Soper kernel

From quasi beam function:

Shanahan, PRD104(2021), PRD102(2020); Schlemmer, JHEP08(2021);

From quasi TMDWF:

Chu, JHEP08(2023), PRD106(2022); Zhang, PRL125(2020); Li, PRL128(2022);

Collins–Soper kernel and intrinsic soft function

• Intrinsic/reduced soft function

....

From quasi TMDWF + 4-quark matrix element:

Chu, PRD109(2024); Ji, NPB955(2020); Zhang, PRL125(2020); Li, PRL128(2022);

Matching kernel and RG resummation

$$\tilde{f}_{\Gamma}(x,b_{\perp},\zeta_{z},\mu)\sqrt{S_{I}(b_{\perp},\mu)} = H_{\Gamma}\left(\frac{\zeta_{z}}{\mu^{2}}\right) e^{\frac{1}{2}\ln\left(\frac{\zeta_{z}}{\zeta}\right)K(b_{\perp},\mu)} f(x,b_{\perp},\mu,\zeta) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{\zeta_{z}},\frac{M^{2}}{(P^{z})^{2}},\frac{1}{b_{\perp}^{2}\zeta_{z}}\right)$$

$$\underline{\text{Matching kernel}}$$

- NLO: *Ji*, *PLB811(2020); RMP93(2021)*
- NNLO: *Río*, *PRD108(2023)*; *Ji*, *JHEP08(2023)*
- > Fixed order: $\mu = 2$ GeV;
- **>** RGR: RG evolution from lattice scale

 $\zeta_z = 2xP^z$ to $\overline{\text{MS}}$ scale $\mu = 2$ GeV.

Lattice calculation of physical TMDPDF?

Simulating quasi TMDPDF on a Euclidean lattice:

- MILC configuration: $48^3 \times 64$, a = 0.12fm;
- Pion mass: $m_{\pi}^{sea} = 130 \text{MeV}, m_{\pi}^{val} = \{310, 220\} \text{MeV} \Rightarrow \text{extrapolate to physical mass}$
- Large momentum: $P^{z} = \{1.72, 2.15, 2.58\}$ GeV \Rightarrow extrapolate to infinity
- Saturated length of Wilson link L = 0.72 fm;
- $z_{\text{max}} = 1.44 \text{fm}, b_{\perp \text{max}} = 0.6 \text{fm}.$

Bare quasi TMDPDF matrix element

 $\tilde{h}_{\Gamma}^{0}(z,b_{\perp},P^{z}) = \lim_{L \to \infty} \left\langle P^{z} \left| \bar{\psi}(b_{\perp}\hat{n}_{\perp})\Gamma \right| U_{\Box}\left(b_{\perp}\hat{n}_{\perp} \leftarrow b_{\perp}\hat{n}_{\perp} + L\hat{n}_{z}; b_{\perp}\hat{n}_{\perp} + L\hat{n}_{z}; L\hat{n}_{z} \leftarrow L\hat{n}_{z}; L\hat{n}_{z} \leftarrow z\hat{n}_{z} \right) \left| \psi(z\hat{n}_{z}) \right| P^{z} \right\rangle$

• Extracted from 3- and 2-point functions

Quasi TMDPDF matrix element and renormalization

1. Divergences in bare quasi TMDPDF

Quasi TMDPDF matrix element and renormalization

1. Divergences in bare quasi TMDPDF

2. Renormalization

Ji, *PRL120(2018)*, *NPB964(2021)*, *PLB257(1991)*; *Zhang*, *PRD95(2017)*, *NPB939(2019)*; *Ishikawa*, *PRD96(2017)*; *Green*, *PRL121(2018)*; *Huo*, *NPB969(2021)*; *Chen*, *NPB915(2017)*; *Musch*, *PRD83(2011)*;

Quasi TMDPDF matrix element and renormalization

• Wilson loop

• Logarithmic divergences factor

$$Z_O(1/a,\mu,\Gamma) = \lim_{L o \infty} rac{ ilde{h}^0_{\Gamma}\left(z,b_{\perp},0,a,L
ight)}{\sqrt{Z_E\left(2L+z,b_{\perp},a
ight)} ilde{h}^{\overline{ ext{MS}}}_{\Gamma}\left(z,b_{\perp},\mu
ight)}$$

Quasi TMDPDF matrix element and λ extrapolation

Quasi TMDPDF matrix element and λ extrapolation

From Quasi TMDPDF to TMDPDF

21

Physical TMDPDF

Chiral and large- P^z joint extrapolation:

$$d_0(m_\pi^2 - m_{\pi,\text{phy}}^2) + \frac{d_1}{(P^z)^2}$$

Error estimation

All errors:

- Statistical error;
- (1) From difference of γ^t and γ^z
- (2) From physical extrapolation
- (3) From λ -extrapolation
- (4) From soft function
- (5) From Collins-Soper kernel

Final results and discussion

Compare the b_{\perp} -dependence of lattice and phenomenological results:

We present the lattice QCD calculation of TMDPDF at first attempt:

- ✓ The state-of-the-art techniques in renormalization and extrapolation on the lattice;
- ✓ The latest perturbative kernel up to 2-loop with RG evolution;
- ✓ Physical extrapolation include chiral-continuum and infinity momentum;
- ✓ Comparable results with phenomenological global fits.

Summary and Outlook

While there is still much room for further improvement:

- **Better control of uncertainties;**
- Continuum extrapolation: more lattice spacings;
- \bigcirc Larger b_{\perp} (up to nucleon radius?) to obtain a converge distribution in coordinate space;
- ^(j) Theoretical improvements:

Power correction (small-x region), higher twist effects (operator mixing),

Thank you for your attention!

Backup slides

$$E = \sqrt{m^2 + c_1 (P^z)^2 + c_2 (P^z)^4 a^2}$$

 $c_1 = 1.014(95), c_2 = -0.014(17)$

 $c_1 = 1.066(80), c_2 = -0.015(14)$

29

Details of correlated joint fits

Fit quality:

- Utilizing bootstrap resampling to establish correlations among all datasets;
- Employing fully-correlated Bayesian constrained fits to extract ground-state matrix elements.

• Stability of the joint fits: t_{\min} dependence of the fit result, which fit range is $[t_{\min}, t_{\max}]$.

L-dependence

Saturation length of Wilson link:

33

λ -extrapolation

Factorization of *z* and b_{\perp} ?

The power-law behavior and correlation length for each b_{\perp} should be similar,

but the joint fit will give a strict limit for large- b_{\perp} cases:

$b_{\perp}~(a)$	1	2	3	4	5	Joint
n_1	0.909(39)	0.943(61)	0.89(10)	0.801(78)	0.84(16)	0.887(28)
n_2	1.31(34)	2.37(68)	1.71(31)	1.55(38)	1.22(44)	1.65(12)
λ	2.63(38)	3.20(80)	2.42(85)	4.3(1.6)	4.4(2.8)	2.53(28)
χ^2 /d.o.f.	1.0	1.1	1.3	0.75	0.57	1.2

λ -extrapolation

Systematic uncertainty from fit region $[\lambda_L: \lambda_{max}]$

$$\tilde{h}_{\text{extra}}(\lambda) = \left[rac{c_1}{(-i\lambda)^{n_1}} + e^{i\lambda}rac{c_2}{(i\lambda)^{n_2}}
ight] e^{-\lambda/\lambda_0}$$

Perturbative matching kernel and RG resummation

• Fixed-order perturbative results up to the 2-loop level:

$$h^{(1)}\left(\frac{\zeta_z}{\mu^2}\right) = \frac{\alpha_s C_F}{2\pi} \left(-2 + \frac{\pi^2}{12} + \ln\frac{\zeta_z}{\mu^2} - \frac{1}{2}\ln^2\frac{\zeta_z}{\mu^2}\right),$$

$$h^{(2)}\left(\frac{\zeta_{z}}{\mu^{2}}\right) = \alpha_{s}^{2} \left[c_{2} - \frac{1}{2}\left(\gamma_{C}^{(2)} - \beta_{0}c_{1}\right)\ln\frac{\zeta_{z}}{\mu^{2}} - \frac{1}{4}\left(\Gamma_{\text{cusp}}^{(2)} - \frac{\beta_{0}C_{F}}{2\pi}\right)\ln^{2}\frac{\zeta_{z}}{\mu^{2}} - \frac{\beta_{0}C_{F}}{24\pi}\ln^{3}\frac{\zeta_{z}}{\mu^{2}}\right]$$

• RG equation of the matching kernel:

$$\mu^2 rac{d}{d\mu^2} \ln H\left(rac{\zeta_z}{\mu^2}
ight) = rac{1}{2} \Gamma_{ ext{cusp}} \;\left(lpha_s
ight) \ln rac{\zeta_z}{\mu^2} + rac{\gamma_C\left(lpha_s
ight)}{2},$$

and its solution:

$$\begin{split} H\left(\zeta_{z}/\mu^{2}\right) &= H\left(\zeta_{z}/\mu_{0}^{2}\right) \exp\left[\int_{\mu_{0}}^{\mu} \frac{d\mu}{\mu} \left(\Gamma_{\mathrm{cusp}}^{(1)} \ln \frac{\zeta_{z}}{\mu^{2}} \alpha_{s}(\mu) + \gamma_{C}^{(1)} \alpha_{s}(\mu) + \Gamma_{\mathrm{cusp}}^{(2)} \ln \frac{\zeta_{z}}{\mu^{2}} \alpha_{s}^{2}(\mu) \right. \\ &+ \gamma_{C}^{(2)} \alpha_{s}^{2}(\mu) + \Gamma_{\mathrm{cusp}}^{(3)} \ln \frac{\zeta_{z}}{\mu^{2}} \alpha_{s}^{3}(\mu) + \gamma_{C}^{(3)} \alpha_{s}^{3}(\mu) + \Gamma_{\mathrm{cusp}}^{(4)} \ln \frac{\zeta_{z}}{\mu^{2}} \alpha_{s}^{4}(\mu)\right) \bigg] \,. \end{split}$$

Physical TMDPDF

Chiral and large- P^z joint extrapolation:

$$d_0(m_\pi^2 - m_{\pi,\text{phy}}^2) + \frac{d_1}{(P^z)^2}$$

Systematic from chiral extrapolation (strategy I):

$$d_0(m_\pi^2 - m_{\pi,\text{phy}}^2)^2 + \frac{d_1}{(P^z)^2}$$

from large- P^z extrapolation (strategy II):

$$d_0(m_\pi^2 - m_{\pi,\text{phy}}^2) + \frac{d_1}{(P^z)^2} + \frac{d_2}{P^z}$$

37

Power correction

- Ratios denote the deviations from light-like correlator with specific P^z;
- \succ Ratio becomes smaller with P^z increasing.

Final results and discussion

Solution The unpolarized TMDPDFs seem not converge in b_{\perp} -space?

Of course not! Perhaps there will be abrupt change at the edge of nucleon

 \Rightarrow Need larger b_{\perp} and more statistics!

Lattice discretization and finite-volume systematics are still absent in this preliminary work...

- It is a challenging work for calculating the TMDPDF at small lattice spacing
- From the previous experience of PDF (*Lin, 2011.14971*), we can roughly estimate that:

Finite-volume effect is less than 1%;

Discretization effects overall within <u>2 standard deviations</u>.