Transverse Momentum Moments

Alexey Vladimirov

Universidad Complutense de Madrid

10 July 2024

(日) (四) (王) (王) (王)

- 2

Outline

Review of **Transverse Momentum Dependent (TMD)** distributions with an emphasis on the connection with collinear observables via **Transverse Momentum Moments (TMM)**

- ▶ What are TMD distributions and how to determine them
- ▶ The latest extraction: ART23
- ▶ TMM (from 3D to 1D)

Alexey Vladimirov

		Quark Polarization					
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)			
Nucleon Polarization	υ	$f_1(x,k_T^2) \bullet$ Unpolarized		$h_1^{\perp}(x,k_T^2)$ Boer-Mulders			
	L		$g_1(x,k_T^2) \longrightarrow Helicity$	$h_{1L}^{\perp}(x,k_{T}^{2})$ \longrightarrow \cdot			
	т	$f_{1T}^{\perp}(x,k_T^2)$ \bullet - • Sivers	$g_{1T}(x,k_T^2) \underbrace{\bullet}_{Worm" gear} - \underbrace{\bullet}_{Worm" gear}$	$h_{1}(x,k_{T}^{2}) \stackrel{\bullet}{\bigoplus} - \stackrel{\bullet}{\bigoplus} \\ \frac{1}{Transversity} \\ h_{1T}^{\perp}(x,k_{T}^{2}) \stackrel{\bullet}{\bigoplus} - \stackrel{\bullet}{\bigoplus} \\ \frac{1}{Transversity} \\ Pretzelosity$			

$$F(x,k_T) = \int \frac{d\lambda d^2 b}{(2\pi)^3} e^{-ix\lambda p_+ - i(bk)_T} \langle p, s | \bar{q}(\lambda n + b) [\text{staple Wilson line}] \gamma^+ q(0) | p, s \rangle$$

Interpretation as parton densities is "naive"

- ▶ TMDs are not positive definite (not theoretically, nor practically)
- ▶ Double-scale evolution complicates a lot

TMD factorization theorem

Main scales: The invariant mass of photon: $|q^2| = Q^2$ Transverse component of photon momentum: q_T

$$Q \gg \Lambda \qquad Q \gg q_T$$

TMD factorization theorem

・ロト ・四ト ・ヨト ・ヨト

TMD factorization theorem

Double-scale evolution $\mu^2 \frac{d}{d\mu^2} \ln F = \gamma_F$ $\zeta \frac{d}{d\zeta} \ln F = -\mathcal{D}(b) = \frac{K(b)}{2}$ $\mathcal{D}=\text{Collins-Soper kernel}$ nonperturbative

Each point of cross-section is a composition of three nonperturbative elements

・ロト ・回ト ・ヨト ・ヨト

Unpolarized TMD PDF is the most studied case

Very presice test of TMD evolution

TOTAL ($N_{\rm pt} = 627$): $\chi^2 / N_{\rm pt} = 0.96^{+0.09}_{-0.01}$

・ロト ・回ト ・ヨト ・

July 9, 2024 10 / 24

・ロト ・回ト ・ヨト ・ヨト

ART23

Extra features of analyses:

- ▶ Flavor dependent NP-ansatz
 - ▶ 2 parameters per flavor
 - ▶ $u, d, \bar{u}, \bar{d}, \text{rest}$
- ▶ New parametrization for Collins-Soper kernel (3 parameters)
- ▶ Consistent inclusion of the PDF uncertainty
- \blacktriangleright artemide

Nonperturbative evolution (Collins-Soper kernel) Window to the QCD vacuum

Nonperturbative evolution (Collins-Soper kernel) Window to the QCD vacuum

Unpolarized TMDPDF

Unpolarized TMDPDF

Alexey Vladimirov

Unpolarized TMDPDF

Alexey Vladimirov

TMM

July 9, 2024 13 / 24

Alexey Vladimirov

TMM

July 9, 2024 14 / 24

TMDs are 3D

The question is how can we related them to 1D (collinear) distributions

Very Naively:

$$\int d^2k_T F(x,k_T) = f(x)$$

Collinear distribution from TMDs Naively

Collinear distribution from TMDs Properly

▶ Power corrections $q_T \sim Q$

$$F(x,b) \sim f(x) \to f(x)\delta(k_T)$$

Kinematic ranges:

- ▶ Power corrections $q_T \sim Q$
- Resummation $\Lambda \gg q_T \gg Q$

	$f(x, 0) = O(x, m(0)) \otimes f(x) + 0 \dots$					
					[Moos,AV	,2008.0174
			Twist of	Twist-2	Twist-3	Order of
	Name	Function	leading	distributions	distributions	leading power
			matching	in matching	in matching	coef.function
	unpolarized	$f_1(x, b)$	tw-2	$f_1(x)$	-	$N^{3}LO(\alpha_{s}^{3})$
	Sivers	$f_{1T}^{\perp}(x, b)$	tw-3		T(-x, 0, x)	NLO (α_s^1)
	helicity	$g_{1L}(x, b)$	tw-2	$g_1(x)$	$T_g(x)$	NLO (α_s^1)
	worm-gear T	$g_{1T}(x,b)$	tw-2/3	$g_1(x)$	$T_g(x)$	NLO (α_s)
	transversity	$h_1(x, b)$	tw-2	$h_1(x)$	$T_h(x)$	NNLO (α_s^2)
1 2 3 4	Boer-Mulders	$h_1^{\perp}(x, b)$	tw-3		$\delta T_{\epsilon}(-x, 0, x)$	NLO (α_s)
b(GeV ⁻¹)	worm-gear L	$h_{1L}^{\perp}(x, b)$	tw-2/3	$h_1(x)$	$T_h(x)$	NLO (α_s)
	pretzelosity	h_{1T}^{\perp}	tw-3/4		$\mathcal{T}_h(x)$	LO (α_*^{\cup})

08.01744 Order of

・ロト ・回ト ・ヨト ・ヨ

0.6

0.5

0.4

0.3 0.2

0.1

Kinematic ranges:

- ▶ Power corrections $q_T \sim Q$
- ▶ Resummation $\Lambda \gg q_T \gg Q$
- ▶ Nonperturbative $q_T \lesssim \Lambda \sim 2 4 \text{GeV}$

$$F(x,b) = C(x,\ln(b)) \otimes f(x)f_{\rm NP}(b)$$

 $f_{\rm NP}$ to fit

Most part of high-energy data is "collinear"

Most part of low-energy data is "non-perturbative TMD"

・ロト ・日下・ ・ ヨト・

We know how to insert "collinear" into TMD but how extract "collinear" from TMD?

Why would on need it?

- ▶ Only unpolarized PDF is well-known, many other PDFs are less-known or unreachable
- ▶ TMD can set further constraints on PDF (joined TMD+PDF fits ?)
- ▶ How to determine higher moments?

The main problem is the evolution.
TMD distribution obeys CSS-evolution

$$\frac{d}{d \ln \mu} F(x, b; \mu, \zeta) = \gamma_F(\mu, \zeta) F(x, b; \mu, \zeta), \qquad \frac{d}{d \ln \zeta} F(x, b; \mu, \zeta) = \mathcal{D}(b, \mu) F(x, b; \mu, \zeta)$$
PDF obeys DGLAP-evolution

$$\frac{d}{d \ln \mu} f(x, \mu) = \int_x^1 \frac{dy}{y} P(y, \mu) f(\frac{x}{y}, \mu)$$

æ

・ロト ・回ト ・ヨト ・ヨト

$$\int_{-\infty}^{\infty} d^2 \mathbf{k}_T F(x, \mathbf{k}_T; \mu, \zeta) = \mathbf{UV} \text{ divergent}$$

$$\mathbf{k}_T \cdot \mathbf{k}_T$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ―目

Collinear distribution from TMDs

$$\int^{\mu} d^2 \mathbf{k}_T f_1(x, \mathbf{k}_T; \mu, \mu^2) \simeq q(x, \mu)$$

[Ebert, et al 2201.07237] [Conzalez-Hernandez, et al, 2205.05750]

One can restore (tw2) collinear PDF up to few %. Can we do better?

・ロト ・回ト ・ヨト

Alexey Vladimirov

July 9, 2024 20 / 24

・ロト ・四ト ・モト ・モン

New theoretically rigorous method to extract twist-3 distributions.

$$0$$
'th TMM \Rightarrow twist-2
 1 'th TMM \Rightarrow twist-3
 2 'th TMM \Rightarrow twist-4
 $\int^{\mu} d^{2}\mathbf{k}_{T}\mathbf{k}_{T}^{2}f_{1}(x,\mathbf{k}_{T};\mu,\mu^{2}) \simeq \int e^{-ix\lambda p_{+}} d\lambda \langle p,s|\bar{q}[\lambda n,\infty n]\overleftrightarrow{\mathcal{D}}^{2}\gamma^{+}[\infty n,0]q(0)|p,s\rangle$

$$\int^{\mu} d^2 \mathbf{k}_T \mathbf{k}_T^2 f_1(x, \mathbf{k}_T; \mu, \mu^2) \simeq \text{power divergent}$$

$$egin{aligned} \mathbf{0'th} \ \mathbf{TMM} &\Rightarrow \mathbf{twist-2} \ \mathbf{1'th} \ \mathbf{TMM} &\Rightarrow \mathbf{twist-3} \ \mathbf{2'th} \ \mathbf{TMM} &\Rightarrow \mathbf{twist-3} \ \mathbf{2'th} \ \mathbf{TMM} &\Rightarrow \mathbf{twist-4} \ &\int^{\mu} d^2 \mathbf{k}_T \mathbf{k}_T^2 f_1(x, \mathbf{k}_T; \mu, \mu^2) \simeq \int e^{-ix\lambda p_+} d\lambda \langle p, s | \bar{q} [\lambda n, \infty n] \overleftrightarrow{\mathcal{D}}^2 \gamma^+ [\infty n, 0] q(0) | p, s
angle \end{aligned}$$

$$\int^{\mu} d^2 \mathbf{k}_T \mathbf{k}_T^2 f_1(x, \mathbf{k}_T; \mu, \mu^2) - \underbrace{\mu^2 \text{subtraction term}}_{\text{analytic}} = \langle \bar{q} D^2 q \rangle_{\overline{\text{MS}}}$$

・ロト ・四ト ・ヨト ・ヨト

