Comparison of molecular and compact states for the Tcc(3875) and X(3872)

Lianrong Dai

Huzhou University

QNP, July 8-12, 2024, University of Barcelona The 10th International Conference on Quarks and Nuclear Physics

- Dai, Song & Oset, Evolution of genuine states to molecular ones: The Tcc(3875) case, arXiv: 2306.01607, PLB846(2023)138200
- 2) Song, Dai & Oset , Evolution of compact states to molecular ones with coupled channels: The X(3872) case, arXiv: 2307.02382, PRD108(2023)114017

1. Tcc(3875)

Dai, Song & Oset, Evolution of genuine states to molecular ones: The Tcc(3875) case, PLB846 (2023) 138200

Motivation

The dilemma between molecular states and compact (genuine) quark states is the subject of a continuous debate in hadron physics.

here we take $T_{cc}(3875)$ as an example

LHCb experiment

Nature Physics 18 (2022) 751; Nature Communication 13 (2022) 3351

Its mass and width: $M_{T_{cc}} = M_{D^*+D^0} + \delta m_{exp}$ $\Gamma = 48 \pm 2^{+0}_{-14} \text{ keV}$ $M_{D^*+D^0} = 3875.09 \text{ MeV}$ $\delta m_{exp} = -360 \pm 40^{+0}_{-0} \text{ keV}$

$$T_{\rm cc}^+(3875) \quad (cc\bar{u}\bar{d})$$

compact (genuine) states? mixture?

We can see the debate ...

molecular states?

Various models for Tcc(3875)

Molecular state

.

PLB826(2022)136897; CTP73(2021)125201; PRD104(2021)114015; PRD104(2021)116010; AHEP2022(2022)9103031; EPJC82(2022)581; PLB829(2022)137052; PRD105(2022)014024; PLB833(2022)137290; EPJC82(2022)313; PRD105(2022)054015; EPJC82(2022)144; JHEP06(2022)057; EPJA58 (2022)131; Phys Rep 1019 (2023)1; NPB985(2022)115994;PLB833(2022)137391; EPJC82(2022)724;PRD105(2022)034028; PLB841(2023)137918

Compact state

PRD37(1988)744; ZPC57(1993)273; ZPC61(1994)271; PLB393(1997)119; PLB123(1983)449; ZPC30(1986)457; PRD105(2022)014021; EPJA58(2022)110;

a mixture

.

.

PRD105(2022)014007; Few Body Syst 35 (2004)175;

debate \implies the nature of **molecular** or **compact** or **mixture**?

In the present work

• We develop the general formalism in single channel calculation

• Application to Tcc(3875)

We start with a compact state proving that in the limit of small binding the state becomes purely molecular.

The conclusions are general.

develop general formalism

in single-channel calculation Dai, Song, Oset, PLB846(2023)138200 [arXiv: 2306.01607]

• assume a hadronic state of bare mass m_R (original compact state)

• simplify \implies consider an I = 0 state in the single-channel calculation $(D^{*+}D^0)$.

$$\tilde{t}_{DD^*,DD^*}(s) = \frac{\tilde{g}^2}{s - s_R}$$
 (0.1)

Fig. 1. DD^* amplitude based on the genuine resonance *R*.

This amplitude is not unitarity.

It is rendered unitary immediately by iterating the diagram of Fig. 1 as shown in Fig. 2

insert the DD* selfenergy in the propagator

Fig. 2. implementing unitarity of the DD^* amplitude.

we choose to regularize with a sharp cutoff

$$G_{DD^*}(s) = \int_{|\boldsymbol{q}| < \boldsymbol{q}_{\max}} \frac{d^3 q}{(2\pi)^3} \, \frac{\omega_1 + \omega_2}{2\,\omega_1\,\omega_2} \, \frac{1}{s - (\omega_1 + \omega_2)^2 + i\epsilon} \tag{0.3}$$

where $\omega_i = \sqrt{q^2 + m_i^2}$. The selfenergy is negative, we take $s_R = m_R^2$ above the DD^* threshold.

The condition that a pole appears at s_0 (the square of the mass of the physical state) below the threshold

Molecular probability

PRD81(2010)014029; IJMPA28(2013)1330045

$$P = -g^2 \frac{\partial G}{\partial s}\Big|_{s=s_0}, \qquad \widetilde{g}^2 = \lim_{s \to s_0} (s-s_0) \frac{\widetilde{g}^2}{s-s_R - \widetilde{g}^2 G_{DD^*}(s)} = \frac{\widetilde{g}^2}{1 - \widetilde{g}^2 \frac{\partial G}{\partial s}}\Big|_{s=s_0},$$

Thus the molecular probability is

$$P = -\frac{\widetilde{g}^2 \frac{\partial G}{\partial s}}{1 - \widetilde{g}^2 \frac{\partial G}{\partial s}}\Big|_{s=s_0} \tag{0.5}$$

Several limits:

1)
$$\tilde{g}^2 \rightarrow 0, P \rightarrow 0$$
, the compact state survives

2) $\tilde{g}^2 \to \infty, P \to 1$, the state becomes pure molecular

3) $s_0 \rightarrow s_{\text{th}}, P \rightarrow 1$, the state becomes pure molecular which is interesting

 \downarrow

It is a consequence of unitarity and analyticity of the t and G functions.

When the binding energy goes to zero, the state becomes fully molecular, the compact component has been fagocitated by the molecular component.

3. Results scenario 1 ($\beta = 0$ **)** for molecular probability $\sqrt{s_R} = \sqrt{s_{th}} + \Delta \sqrt{s_R}$

Fig. 3. as a function of $\sqrt{s_0}$ with $\Delta \sqrt{s_R} = 102$ MeV [PRL119(2017)202002]

1) when $\sqrt{s_0} \rightarrow \sqrt{s_{\text{th}}}$, $P \rightarrow 1$. 2) for $q_{\text{max}} = 450$ MeV, at $s_0^{\text{exp}} = \sqrt{s_{\text{th}}} - 0.36$ MeV, $P \sim 0.9 \Rightarrow$ indicating that the original compact state has evolved to become practically a molecular state.

1) when $\sqrt{s_0} \rightarrow \sqrt{s_{\text{th}}}$, molecular probability $P \rightarrow 1$, the same trend. 2) at s_0^{\exp} : $\Delta\sqrt{s_R} = 1 \text{ MeV}$, $P \sim 0.15 \Rightarrow$ indicating that the state remains mostly nonmolecular. 3) It can be seen that $\Delta\sqrt{s_R} = 10 \text{ MeV}$, $P \sim 0.55 \Rightarrow \text{as } \Delta\sqrt{s_R}$ becomes smaller, *P* is decreasing. **The binding energy by itself cannot give a proof of the nature of the state.** So what other magnitudes can really tell us about the nature of the state?

• Scattering length

• Effective range

For scattering length & **effective range**

The unitarity of the t_{DD^*,DD^*} amplitude

$$\operatorname{Im} t^{-1} = \operatorname{Im} \left(\frac{s - s_R}{\tilde{g}^2} - G_{DD^*}(s) \right) = -\operatorname{Im} G_{DD^*}(s) = \frac{k}{8\pi\sqrt{s}}$$
(0.6)

with *k* the meson-meson on shell momentum. The relationship with the f^{QM} [Quantum Mechanics]

$$t = -8\pi\sqrt{s}f^{\text{QM}} \simeq -8\pi\sqrt{s}\frac{1}{-\frac{1}{a} + \frac{1}{2}r_0k^2 - ik}$$
(0.7)

It is easy to induce

$$-\frac{1}{a} = \frac{s_{\text{th}} - s_R}{\tilde{g}^2} - \operatorname{Re} G_{DD^*}(s_{\text{th}})$$

$$r_0 = 2\frac{\sqrt{s}}{\mu} \frac{\partial}{\partial s} \left\{ \left(-8\pi\sqrt{s}\right) \left(\frac{s - s_R}{\tilde{g}^2} - \operatorname{Re} G_{DD^*}(s)\right) \right\} \Big|_{s = s_{\text{th}}}$$

$$(0.8)$$

$$(0.9)$$

scattering length and effective range

$\Delta\sqrt{s_R}$ [MeV]	<i>a</i> [fm]	<u>r</u> 0 [fm]	
0.1	0.87	-114.07	
0.3	1.19	-79.33	
1	2.10	-38.20	
5	4.62	-9.26	
10	5.74	-4.51	
50	7.25	-0.47	
70	7.39	-0.17	
102	7.51	0.06	

$$q_{\text{max}} = 450 \text{ MeV}$$
 at $s_0^{\text{exp}} = \sqrt{s_{\text{th}}} - 0.36 \text{ MeV}$

It can be seen that as $\Delta \sqrt{s_R}$ becomes smaller (decreasing the *P*), *a* becomes smaller and smaller and r_0 grows indefinitely.

The lesson we draw is the *a* and r_0 are very **useful** to determine the molecular probability of the state.

scenario 2 (hybrid)

assume a mixture of the compact state and the molecular one, by taking a potential

$$V' = V + \frac{\tilde{g}^2}{s - s_R} \tag{0.10}$$

It is easy to generalize the probability

$$P = -\frac{\left[\widetilde{g}^2 + (s - s_R)\mathbf{V}\right]\frac{\partial G}{\partial s}}{1 - \left[\widetilde{g}^2 + (s - s_R)\mathbf{V}\right]\frac{\partial G}{\partial s} - \mathbf{V}G}\Big|_{s=s_0}$$
(0.11)

The pole at s_0 appears when

$$s_0 - s_R - \left[\tilde{g}^2 + (s_0 - s_R)V\right]G(s_0) = 0$$
(0.12)

scenario 3 (direct interaction)

just a test for short of binding, we take a potential

$$1 - VG(s_{\rm th}) = 0, \qquad V = \beta V_{\rm LHG}$$
 (0.13)

where V_{LHG} is the attractive potential from the local hidden gauge approach [Phys. Rep. 164, 217; Phys. Rep. 381, 1; Phys. Rep. 161, 213; Phys. Rev. D 79, 014015]

$\overline{\Delta\sqrt{s_R} \text{ [MeV]}}$	eta=0	$\beta = 0.74$
10	0.58	0.94
20	0.73	0.97
50	0.87	0.99

There is some attractive interaction, the molecular probability increases appreciably.

Extension to X(3872)

Song, Dai, Oset, Evolution of compact states to molecular ones with coupled channels: The case of the X(3872), PRD108(2023)114017

Develop general formalism (coupled-channel)

Same as above in single-channel for Tcc(3875), we start with a bare mass m_R in coupled-channel for X(3872)

$$|D^*\bar{D}, I = 0\rangle = \frac{1}{\sqrt{2}} (D^{*0}\bar{D}^0 + D^{*+}D^{-})$$
(0.14)
$$t_{D^*\bar{D}}(I = 0) = \frac{\tilde{g}^2}{s - s_R}$$
(0.15)

If we decide to have a bound state at s_0 , once given s_R , we can obtain \tilde{g}^2 as

$$\tilde{g}^2 = \frac{s - s_R}{\frac{1}{2}G_1 + \frac{1}{2}G_2} \bigg|_{s_0}.$$
(0.16)

The loop functions G_i of i = 1 for $\overline{D}^0 D^{*0}$ and i = 2 for $D^- D^{*+}$.

Couplings and probabilities

$$g_1^2 = \lim(s - s_0)T_{11}; \qquad g_2^2 = \lim(s - s_0)T_{22}$$

$$g_2 = g_1 \lim(s - s_0)\frac{T_{21}}{T_{11}}$$
(0.17)

By using L'Hospital's rule we easily find

$$g_1^2 = \frac{\frac{1}{2}\tilde{g}^2}{1 - \frac{1}{2}\tilde{g}^2\frac{\partial}{\partial s}(G_1 + G_2)}\bigg|_{s_0}; \qquad g_2 = g_1$$
(0.18)

$$P_1 = -g_1^2 \frac{\partial G_1}{\partial s} \Big|_{s_0} = -\frac{\frac{1}{2} \tilde{g}^2 \frac{\partial G_1}{\partial s}}{1 - \frac{1}{2} \tilde{g}^2 \frac{\partial}{\partial s} (G_1 + G_2)} \Big|_{s_0}$$

$$P_2 = -g_2^2 \frac{\partial G_2}{\partial s} \Big|_{s_0} = -\frac{\frac{1}{2} \tilde{g}^2 \frac{\partial G_2}{\partial s}}{1 - \frac{1}{2} \tilde{g}^2 \frac{\partial}{\partial s} (G_1 + G_2)} \Big|_{s_0}$$

(0.19)

The X(3872) is closer to the $D^{*0}\overline{D}^0$ (*i* = 1), we find

1) when $\tilde{g}^2 \to 0$, $P_1 \to 0$, $P_2 \to 0$, compact state.

2) when $\tilde{g}^2 \to \infty$, $P_1 + P_2 = 1$, completely molecular.

3) when $s_0 \to s_{\text{th1}}$, $P_1 \to 1$, $P_2 \to 0$, completely molecular state dominated by the $D^{*0}\bar{D}^0$ (i=1) component.

We should stress that even if $P_1 \rightarrow 1$, $P_2 \rightarrow 0$, in strong interaction of zero range what matters is the wave function at the origin and the $D^{*0}\overline{D}^0$ and $D^{*+}D^-$ components become equally important [PRD80(2009)014003; PRD81(2009)014029]

Inclusion of direct interaction

In the local hidden gauge approach the interaction comes from the exchange of vector mesons [Phys. Rept. 164 (1988) 217; Phys. Rept. 381 (2003)1; Phys. Rept. 61 (1988) 213; PRD79(2009)014015]

$$\frac{1}{2}V = -g^{\prime 2} \frac{4 m_{D^{*0}} m_{D^0}}{m_V^2}.$$
(0.20)

with $g' = \frac{m_v}{2f_{\pi}}$, $m_v = 800$ MeV, $f_{\pi} = 93$ MeV.

$$\frac{\tilde{g}^2}{s-s_R} \to \frac{\tilde{g}^2}{s-s_R} + \beta V \tag{0.21}$$

Scattering length and effective range

At first threshold

$$-\frac{1}{a_1} = (-8\pi\sqrt{s}) \left[\frac{s - s_R}{\frac{1}{2} [\tilde{g}^2 + \beta V(s - s_R)]} - \operatorname{Re}G_1 - G_2 \right] \bigg|_{s_{\text{thl}}}, \qquad (0.22)$$

$$r_{0,1} = 2\frac{\sqrt{s}}{\mu_1}\frac{\partial}{\partial s}\left\{ \left(-8\pi\sqrt{s}\right) \left[\frac{s-s_R}{\frac{1}{2}[\tilde{g}^2 + \beta V(s-s_R)]} - \operatorname{Re}G_1 - G_2\right] \right\} \bigg|_{s_{\text{th}1}}, \quad (0.23)$$

At second threshold

$$-\frac{1}{a_2} = (-8\pi\sqrt{s}) \left[\frac{s - s_R}{\frac{1}{2} [\tilde{g}^2 + \beta V(s - s_R)]} - \operatorname{Re}G_2 - G_1 \right] \bigg|_{\mathbf{s}_{\text{th}2}}, \qquad (0.24)$$

$$r_{0,2} = 2\frac{\sqrt{s}}{\mu_2}\frac{\partial}{\partial s}\left\{ \left(-8\pi\sqrt{s}\right) \left[\frac{s-s_R}{\frac{1}{2}[\tilde{g}^2 + \beta V(s-s_R)]} - \operatorname{Re}G_2 - G_1\right] \right\} \bigg|_{s_{\text{th}2}}, \quad (0.25)$$

with μ_i the reduced mass of the channel.

$\Delta \sqrt{s_R} = 100$ MeV, Molecular probability of P_1 and P_2 SCENARIO 1 ($\beta = 0$) [red lines: D^0D^{*0} threshold]

Fig. 4. as a function of $\sqrt{s_0}$.

1) when $\sqrt{s_0} \to s_{\text{th}1}$, $P_1 \to 1$, $P_2 \to 0$, $P_1 + P_2 \to 1$ 2) at the energy of X(3872), the probability $P_1 \sim 0.9$ and $P_2 \sim 0.05$, $P_1 + P_2 \sim 0.95$

It is also seen that the "scale" shows up clearly.

For $\Delta \sqrt{s_R} = 0.1$ MeV, we see that the $P_1 + P_2$ is around 0.02, indicating that the induced molecular component is negligible.

The conclusion: The binding energy by itself does not give us the molecular probability. It is possible to have a very small binding and still have a negligible molecular component.

The presence of a reasonable direct meson-meson interaction has as a consequence a drastic increase in the molecular probability of the state.

What happens for scattering length and effective range

Table 1: $q_{\text{max}} = 450 \text{ MeV} (\beta = 0)$

$\Delta \sqrt{s_R}$	a_1 [fm]	$r_{0,1}[fm]$	a_2 [fm]	$r_{0,2}[fm]$
0.1	1.42	-663.61	0.0073 - i 0.00003	$-664.79 - i \ 1.56$
0.3	3.16	-273.51	0.0176 - i 0.00020	$-273.04 - i \ 1.56$
1	7.48	-89.71	0.0530 - i 0.00180	$-88.46 - i \ 1.56$
10	18.45	-9.68	0.3957 - i 0.10756	$-8.10 - i \ 1.56$
50	21.35	-2.29	0.7558 - i 0.58190	$-0.68 - i \ 1.56$
100	21.78	-1.37	$0.7818 - i \ 0.78157$	$0.25 - i \ 1.56$

1) $r_{0,1} = -5.34$ fm LHCb data in PRD102(2020)092005

 $-2.78 \text{ fm} < r_{0,1} < 1 \text{ fm}, a_1 \approx 28 \text{ fm}$ in PLB833(2022)137290

2) Δ√s_R = 0.1 MeV, a₁, a₂ become small, and most important, r_{0,1}, r_{0,2} become extremely large, where we had a negligible molecular component. ⇒ enough to discard this scenario.
 3) Δ√s_R = 100 MeV, would be basically acceptable, but P → 1.

scenario 2 (hybrid)

Table 2: $q_{\text{max}} = 450 \text{ MeV} \ (\beta \neq 0)$

$\overline{\Delta\sqrt{s_R}}$	a_1 [fm]	$r_{0,1}$ [fm]	$a_2[\mathrm{fm}]$	<i>r</i> _{0,2} [fm]
0.1	15.60	-24.97	0.7068 - i 1.116	$1.17 - i \ 1.56$
0.3	19.65	-7.13	$0.7060 - i \ 1.118$	$1.16 - i \ 1.56$
1	21.38	-2.30	$0.7024 - i \ 1.125$	$1.14 - i \ 1.56$
10	22.13	-0.63	0.7818 - i 0.780	-3.62 - i 1.56
100	22.21	-0.47	$0.7385 - i \ 1.038$	1.15 <i>- i</i> 1.56
	$r_{0,1} = -5.34 \text{ fm}$ LHCb data in PRD102(2020)092005			
	$-2.78 \text{ fm} < r_{0.1}$	< 1 fm. $a_1 \approx 28$ fm	in PLB833(2022)137290	

1) $\Delta \sqrt{s_R} = 0.1$ MeV, a_1 and $r_{0,1}$ are still unacceptable.

2) $\Delta \sqrt{s_R} = 1$ MeV, acceptable with the current uncertainty in the experimental values \implies This scenario with $P_1 + P_2 \sim 0.95$ can not be discarded.

scenario 3

Table 3: $\tilde{g}^2 = 0$ and $\Delta \sqrt{s_R} = 1$ MeV at threshold in different q_{max}

$q_{\max}[MeV]$	a_1 [fm]	$r_{0,1}[fm]$	$a_2[\mathrm{fm}]$	$r_{0,2}[fm]$
450	22.22	-0.449	$0.736 - i \ 1.04$	$1.17 - i \ 1.56$
650	22.07	-0.763	$0.765 - i \ 0.94$	$0.82 - i \ 1.56$

- 1) the $r_{0,1}$ (-0.449 fm) is appreciably different here versus -2.30 fm in Table 2. \implies It is thus clear that an improvement in the measured value of $r_{0,1}$ can shed further light on the issue.
- 2) There is extra information from a_2 and $r_{0,2}$, which are **drastically different** from those in Table 1 (only the compact state)

All this is telling us that the precise values of a_1 , $r_{0,1}$ and a_2 , $r_{0,2}$ are crucial to pin down the precise nature of the X(3872).

Summary

We develop the general formalisms in single-channel and coupled-channel calculations.

As an application, we make the comparison of molecular and compact states for the Tcc(3875) and X(3872) in three different scenarios.

main conclusion:

The binding energy itself does not determine the compositeness of a state, but the additional information of the scattering length and effective range can provide an answer.

Thank you (谢谢)