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1. Tcc(3875)

Dai, Song & Oset, Evolution of genuine states to molecular ones: The Tcc(3875) case, PLB846 (2023) 138200
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Motivation

The dilemma between molecular states and
compact (genuine) quark states is the subject
of a continuous debate in hadron physics.

⇓
here we take Tcc(3875) as an example
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LHCb experiment
Nature Physics 18 (2022) 751;
Nature Communication 13 (2022) 3351

Its mass and width:
MTcc = MD∗+D0 + δmexp

Γ = 48± 2+0
−14 keV

MD∗+D0 = 3875.09 MeV
δmexp = −360± 40+4

−0 keV

T+
cc(3875) (ccūd̄)

compact (genuine) states? molecular states?
mixture?

We can see the debate ...
4 / 1



Various models for Tcc(3875)
Molecular state
PLB826(2022)136897; CTP73(2021)125201;
PRD104(2021)114015; PRD104(2021)116010;
AHEP2022(2022)9103031; EPJC82(2022)581;
PLB829(2022)137052; PRD105(2022)014024;
PLB833(2022)137290; EPJC82(2022)313;
PRD105(2022)054015; EPJC82(2022)144;
JHEP06(2022)057; EPJA58 (2022)131;
Phys Rep 1019 (2023)1;
NPB985(2022)115994;PLB833(2022)137391;
EPJC82(2022)724;PRD105(2022)034028;
PLB841(2023)137918

· · · · · ·

Compact state
PRD37(1988)744; ZPC57(1993)273;
ZPC61(1994)271; PLB393(1997)119;
PLB123(1983)449; ZPC30(1986)457;
PRD105(2022)014021; EPJA58(2022)110;

· · · · · ·

a mixture
PRD105(2022)014007;
Few Body Syst 35 (2004)175;

· · · · · ·

debate =⇒ the nature of molecular or compact or mixture?
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In the present work

•We develop the general formalism in single
channel calculation

• Application to Tcc(3875)

We start with a compact state proving that in the limit of small binding the state
becomes purely molecular.

The conclusions are general.
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develop general formalism
in single-channel calculation

Dai, Song, Oset, PLB846(2023)138200 [arXiv: 2306.01607]

• assume a hadronic state of bare mass mR (original compact state)

• simplify =⇒ consider an I = 0 state in the single-channel calculation (D∗+D0).

D

D∗

R
D

D∗

Fig. 1. DD∗ amplitude based on the genuine
resonance R.

t̃DD∗,DD∗(s) =
g̃2

s− sR
(0.1)

This amplitude is not unitarity.w�
It is rendered unitary immediately by iterating the diagram of Fig. 1 as shown in Fig. 2
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insert the DD∗ selfenergy in the propagator
D

D∗

D

D∗

+

D

D∗

+ + · · ·

Fig. 2. implementing unitarity of the DD∗ amplitude.

tDD∗,DD∗(s) =
g̃2

s− sR − g̃2GDD∗(s)
(0.2)w�

selfenergy

we choose to regularize with a sharp cutoff

GDD∗(s) =

∫
|q|<qmax

d3q
(2π)3

ω1 + ω2

2ω1 ω2

1
s− (ω1 + ω2)2 + iε

(0.3)

where ωi =
√

q2 + m2
i . The selfenergy is negative, we take sR = m2

R above the DD∗ threshold.
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The condition that a pole appears at s0 (the square of the mass of the physical state) below
the threshold

s0 − sR − g̃2GDD∗(s0) = 0 (0.4)

⇓
the value of g̃2 can be obtained

Molecular probability
PRD81(2010)014029; IJMPA28(2013)1330045

P = −g2 ∂G
∂s

∣∣
s=s0

, g̃2 = lim
s→s0

(s− s0)
g̃2

s− sR − g̃2GDD∗(s)
=

g̃2

1− g̃2 ∂G
∂s

∣∣
s=s0

,

Thus the molecular probability is

P = − g̃2 ∂G
∂s

1− g̃2 ∂G
∂s

∣∣
s=s0

(0.5)
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Several limits:
1) g̃2 → 0, P→ 0, the compact state survives
2) g̃2 →∞, P→ 1, the state becomes pure molecular
3) s0 → sth, P→ 1, the state becomes pure molecular which is

interesting

⇓
It is a consequence of unitarity and analyticity of the t and G functions.

When the binding energy goes to zero, the state becomes fully molecular,
the compact component has been fagocitated by the molecular component.
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3. Results scenario 1 (β = 0)
for molecular probability √

sR =
√

sth + ∆
√

sR
√

s0 ⇒ assumed value of the energy of the bound state

∆
√
sR = 102 MeV

3870 3871 3872 3873 3874 3875
0.7

0.75

0.8

0.85

0.9

0.95

1

√
s0 [MeV]

P

qmax = 450
qmax = 650

binding of Tcc

D∗+D0 threshold

Fig. 3. as a function of
√

s0 with ∆
√

sR = 102 MeV [PRL119(2017)202002]

1) when
√

s0 →
√

sth, P→ 1.
2) for qmax = 450 MeV, at sexp

0 =
√

sth − 0.36 MeV, P ∼ 0.9 V indicating that the original
compact state has evolved to become practically a molecular state.
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“scale” with ∆
√

sR = 10 MeV and ∆
√

sR = 1 MeV
⇓

blue curve for qmax = 450 MeV
It is seen that the “scale” shows up clearly.

∆
√
sR = 10 MeV

3870 3871 3872 3873 3874 3875
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binding of Tcc
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∆
√
sR = 1 MeV

3870 3871 3872 3873 3874 3875
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0.6

0.8
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√
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D∗+D0 threshold

1) when
√

s0 →
√

sth, molecular probability P→ 1, the same trend.
2) at sexp

0 : ∆
√

sR = 1 MeV, P ∼ 0.15⇒ indicating that the state remains mostly nonmolecular.
3) It can be seen that ∆

√
sR = 10 MeV, P ∼ 0.55⇒ as ∆

√
sR becomes smaller, P is decreasing.

The binding energy by itself cannot give a proof of the nature of the state.
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So what other magnitudes can really tell
us about the nature of the state?

• Scattering length

• Effective range
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For scattering length & effective range
The unitarity of the tDD∗,DD∗ amplitude

Im t−1 = Im
(

s− sR

g̃2 − GDD∗(s)
)

= −Im GDD∗(s) =
k

8π
√

s
(0.6)

with k the meson-meson on shell momentum.
The relationship with the f QM [Quantum Mechanics]

t = −8π
√

s f QM ' −8π
√

s
1

− 1
a + 1

2 r0 k2 − ik
(0.7)

It is easy to induce

−1
a

=
sth − sR

g̃2 − Re GDD∗(sth) (0.8)

r0 = 2
√

s
µ

∂

∂s

{
(−8π

√
s)
(

s− sR

g̃2 − Re GDD∗(s)
)} ∣∣

s=sth
(0.9)
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scattering length and effective range
qmax = 450 MeV at sexp

0 =
√

sth − 0.36 MeV

∆
√

sR [MeV] a [fm] r0 [fm]
0.1 0.87 -114.07
0.3 1.19 -79.33
1 2.10 -38.20
5 4.62 -9.26
10 5.74 -4.51
50 7.25 -0.47
70 7.39 -0.17

102 7.51 0.06

It can be seen that as ∆
√

sR becomes smaller (decreasing the P), a becomes smaller and smaller
and r0 grows indefinitely.

The lesson we draw is the a and r0 are very useful to determine the molecular probability
of the state.
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scenario 2 (hybrid)
assume a mixture of the compact state and the molecular one, by taking a potential

V ′ = V +
g̃2

s− sR
(0.10)

It is easy to generalize the probability

P = −
[
g̃2 + (s− sR)V

]
∂G
∂s

1− [g̃2 + (s− sR)V] ∂G
∂s − VG

∣∣
s=s0

(0.11)

The pole at s0 appears when

s0 − sR −
[
g̃2 + (s0 − sR)V

]
G(s0) = 0 (0.12)
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scenario 3 (direct interaction)
just a test for short of binding, we take a potential

1− VG(sth) = 0 , V = βVLHG (0.13)

where VLHG is the attractive potential from the local hidden gauge approach [Phys. Rep. 164, 217;
Phys. Rep. 381, 1; Phys. Rep. 161, 213; Phys. Rev. D 79, 014015]

∆
√

sR [MeV] β = 0 β = 0.74
10 0.58 0.94
20 0.73 0.97
50 0.87 0.99

There is some attractive interaction, the molecular probability increases appreciably.
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Extension to X(3872)

Song, Dai, Oset, Evolution of compact states to molecular ones with coupled channels: The case of the X(3872),

PRD108(2023)114017

18 / 1



Develop general formalism (coupled-channel)
Same as above in single-channel for Tcc(3875), we start with a bare mass mR in coupled-channel
for X(3872)

|D∗D̄, I = 0〉 =
1√
2

(D∗0D̄0 + D∗+D−) (0.14)

tD∗D̄(I = 0) =
g̃2

s− sR
(0.15)

If we decide to have a bound state at s0, once given sR, we can obtain g̃2 as

g̃2 =
s− sR

1
2 G1 + 1

2 G2

∣∣∣∣∣
s0

. (0.16)

The loop functions Gi of i = 1 for D̄0D∗0 and i = 2 for D−D∗+.
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Couplings and probabilities
g2

1 = lim(s− s0)T11; g2
2 = lim(s− s0)T22 (0.17)

g2 = g1 lim(s− s0)
T21

T11

By using L’Hospital’s rule we easily find

g2
1 =

1
2 g̃2

1− 1
2 g̃2 ∂

∂s(G1 + G2)

∣∣∣∣∣
s0

; g2 = g1 (0.18)

P1 = −g2
1
∂G1

∂s
|s0 = −

1
2 g̃2 ∂G1

∂s

1− 1
2 g̃2 ∂

∂s(G1 + G2)

∣∣∣∣∣
s0

(0.19)

P2 = −g2
2
∂G2

∂s
|s0 = −

1
2 g̃2 ∂G2

∂s

1− 1
2 g̃2 ∂

∂s(G1 + G2)

∣∣∣∣∣
s0
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The X(3872) is closer to the D∗0D̄0 (i = 1), we find

1) when g̃2 → 0, P1 → 0, P2 → 0, compact state.

2) when g̃2 →∞, P1 + P2 = 1, completely molecular.

3) when s0 → sth1, P1 → 1, P2 → 0, completely molecular state dominated by the D∗0D̄0

(i=1) component.

⇑
interesting case

We should stress that even if P1 → 1, P2 → 0, in strong interaction of zero range what matters is
the wave function at the origin and the D∗0D̄0 and D∗+D− components become equally important
[PRD80(2009)014003; PRD81(2009)014029]
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Inclusion of direct interaction
In the local hidden gauge approach the interaction comes from the exchange of vector mesons
[Phys. Rept. 164 (1988) 217; Phys. Rept. 381 (2003)1; Phys. Rept. 61 (1988) 213; PRD79(2009)014015]

1
2

V = −g′2
4 mD∗0 mD0

m2
V

. (0.20)

with g′ = mv
2fπ

, mv = 800 MeV, fπ = 93 MeV.

g̃2

s− sR
→ g̃2

s− sR
+ βV (0.21)
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Scattering length and effective range
At first threshold

− 1
a1

= (−8π
√

s)

[
s− sR

1
2 [g̃2 + βV(s− sR)]

− ReG1 − G2

]∣∣∣∣∣
sth1

, (0.22)

r0,1 = 2
√

s
µ1

∂

∂s

{
(−8π

√
s)

[
s− sR

1
2 [g̃2 + βV(s− sR)]

− ReG1 − G2

]}∣∣∣∣∣
sth1

, (0.23)

At second threshold

− 1
a2

= (−8π
√

s)

[
s− sR

1
2 [g̃2 + βV(s− sR)]

− ReG2 − G1

]∣∣∣∣∣
sth2

, (0.24)

r0,2 = 2
√

s
µ2

∂

∂s

{
(−8π

√
s)

[
s− sR

1
2 [g̃2 + βV(s− sR)]

− ReG2 − G1

]}∣∣∣∣∣
sth2

, (0.25)

with µi the reduced mass of the channel.
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∆
√

sR = 100 MeV, Molecular probability of P1 and P2

scenario 1 (β = 0) [red lines: D0D∗0 threshold]
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P 1(P
2) 
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0 

M
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]

s0 [MeV]
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P2

3871.00 3871.25 3871.50 3871.75 3872.00
0.80

0.85
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0 
M
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]

s0 [MeV]

Fig. 4. as a function of√s0.

1) when
√

s0 → sth1, P1 → 1, P2 → 0, P1 + P2 → 1
2) at the energy of X(3872), the probability P1 ∼ 0.9 and P2 ∼ 0.05, P1 + P2 ∼ 0.95
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It is also seen that the “scale” shows up clearly.
∆
√

sR = 0.1 MeV (β = 0)

3871.00 3871.25 3871.50 3871.75 3872.00
0.0

0.2

0.4

0.6

0.8

1.0

  qmax = 450 MeV
  qmax = 650 MeV
  X(3872)
 sth1 = mD0+mD*0 P1

P 1(P
2) 
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1 
M

eV
]

s0 [MeV]

For ∆
√

sR = 0.1 MeV, we see that the P1 + P2 is around 0.02, indicating that the induced
molecular component is negligible.

The conclusion: The binding energy by itself does not give us the molecular probability.
It is possible to have a very small binding and still have a negligible molecular component.
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∆
√

sR = 1 MeV (β = 0)
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sR = 1 MeV and β 6= 0 (mixture)⇐= by adding the direct interaction
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s0 [MeV]The presence of a reasonable direct meson-meson interaction has as a consequence a drastic

increase in the molecular probability of the state.
26 / 1



What happens for scattering length and effective range
Table 1: qmax = 450 MeV (β = 0)

∆
√

sR a1[fm] r0,1[fm] a2[fm] r0,2[fm]

0.1 1.42 −663.61 0.0073− i 0.00003 −664.79− i 1.56
0.3 3.16 −273.51 0.0176− i 0.00020 −273.04− i 1.56
1 7.48 −89.71 0.0530− i 0.00180 −88.46− i 1.56

10 18.45 −9.68 0.3957− i 0.10756 −8.10− i 1.56
50 21.35 −2.29 0.7558− i 0.58190 −0.68− i 1.56
100 21.78 −1.37 0.7818− i 0.78157 0.25− i 1.56

1) r0,1 = −5.34 fm LHCb data in PRD102(2020)092005
−2.78 fm < r0,1 < 1 fm, a1 ≈ 28 fm in PLB833(2022)137290

2) ∆
√

sR = 0.1 MeV, a1, a2 become small, and most important, r0,1, r0,2 become extremely
large, where we had a negligible molecular component. =⇒ enough to discard this scenario.

3) ∆
√

sR = 100 MeV, would be basically acceptable, but P→ 1.
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scenario 2 (hybrid)
Table 2: qmax = 450 MeV (β 6= 0)

∆
√

sR a1[fm] r0,1[fm] a2[fm] r0,2[fm]

0.1 15.60 −24.97 0.7068− i 1.116 1.17− i 1.56
0.3 19.65 −7.13 0.7060− i 1.118 1.16− i 1.56
1 21.38 −2.30 0.7024− i 1.125 1.14− i 1.56

10 22.13 −0.63 0.7818− i 0.780 −3.62− i 1.56
100 22.21 −0.47 0.7385− i 1.038 1.15− i 1.56

r0,1 = −5.34 fm LHCb data in PRD102(2020)092005
−2.78 fm < r0,1 < 1 fm, a1 ≈ 28 fm in PLB833(2022)137290

1) ∆
√

sR = 0.1 MeV, a1 and r0,1 are still unacceptable.
2) ∆

√
sR = 1 MeV, acceptable with the current uncertainty in the experimental values

=⇒ This scenario with P1 + P2 ∼ 0.95 can not be discarded.
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scenario 3
Table 3: g̃2 = 0 and ∆

√
sR = 1 MeV at threshold in different qmax

qmax[MeV] a1[fm] r0,1[fm] a2[fm] r0,2[fm]

450 22.22 −0.449 0.736− i 1.04 1.17− i 1.56
650 22.07 −0.763 0.765− i 0.94 0.82− i 1.56

1) the r0,1 (-0.449 fm) is appreciably different here versus −2.30 fm in Table 2.
=⇒ It is thus clear that an improvement in the measured value of r0,1 can shed
further light on the issue.

2) There is extra information from a2 and r0,2, which are drastically different from
those in Table 1 (only the compact state)

All this is telling us that the precise values of a1, r0,1 and a2, r0,2 are crucial to pin
down the precise nature of the X(3872).
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Summary
We develop the general formalisms in single-channel and coupled-channel
calculations.

As an application, we make the comparison of molecular and compact
states for the Tcc(3875) and X(3872) in three different scenarios.

main conclusion:
The binding energy itself does not determine the compositeness of a state,
but the additional information of the scattering length and effective range
can provide an answer.

Thank you£��¤
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