Comparison of molecular and compact states for the Tcc(3875) and X(3872)

Lianrong Dai

Huzhou University

QNP, July 8-12, 2024, University of Barcelona
The 10th International Conference on Quarks and Nuclear Physics

1) Dai, Song \& Oset , Evolution of genuine states to molecular ones: The Tcc (3875) case, arXiv: 2306.01607, PLB846(2023)138200
2) Song, Dai \& Oset, Evolution of compact states to molecular ones with coupled channels: The X(3872) case, arXiv: 2307.02382, PRD108(2023)114017

1. Tce(3875)

Dai, Song \& Oset, Evolution of genuine states to molecular ones: The Tcc(3875) case, PLB846 (2023) 138200

Motivation

The dilemma between molecular states and compact (genuine) quark states is the subject of a continuous debate in hadron physics.

$$
\Downarrow
$$

here we take $T_{\mathrm{cc}}(3875)$ as an example

LHCb experiment

Nature Physics 18 (2022) 751;
Nature Communication 13 (2022) 3351

$$
T_{\mathrm{cc}}^{+}(3875) \quad(c c \bar{u} \bar{d})
$$

Its mass and width:

$$
\begin{aligned}
& M_{T_{c c}}=M_{D^{*+}} D^{0}+\delta m_{\exp } \\
& \Gamma=48 \pm 2_{-14}^{+0} \mathrm{keV}
\end{aligned}
$$

compact (genuine) states?
molecular states? mixture?

$$
M_{D^{*+} D^{0}}=3875.09 \mathrm{MeV}
$$

$$
\delta m_{\mathrm{exp}}=-360 \pm 40_{-0}^{+4} \mathrm{keV}
$$

We can see the debate ...

Various models for Tcc(3875)

Compact state

PRD37(1988)744; ZPC57(1993)273;
ZPC61(1994)271; PLB393(1997)119;
PLB123(1983)449; ZPC30(1986)457;
PRD105(2022)014021; EPJA58(2022)110;
\qquad
a mixture
PRD105(2022)014007;
Few Body Syst 35 (2004)175;

debate \Longrightarrow the nature of molecular or compact or mixture?

In the present work

- We develop the general formalism in single channel calculation

- Application to $\mathrm{Tcc}(3875)$

We start with a compact state proving that in the limit of small binding the state becomes purely molecular.

The conclusions are general.

develop general formalism

in single-channel calculation
Dai, Song, Oset, PLB846(2023)138200 [arXiv: 2306.01607]

- assume a hadronic state of bare mass m_{R} (original compact state)
- simplify \Longrightarrow consider an $I=0$ state in the single-channel calculation $\left(D^{*+} D^{0}\right)$.

Fig. 1. $D D^{*}$ amplitude based on the genuine resonance R.

$$
\begin{equation*}
\tilde{t}_{D D^{*}, D D^{*}}(s)=\frac{\tilde{g}^{2}}{s-s_{R}} \tag{0.1}
\end{equation*}
$$

This amplitude is not unitarity.
\square

It is rendered unitary immediately by iterating the diagram of Fig. 1 as shown in Fig. 2

insert the $D D^{*}$ selfenergy in the propagator

Fig. 2. implementing unitarity of the $D D^{*}$ amplitude.

$$
\begin{array}{r}
t_{D D^{*}, D D^{*}}(s)=\frac{\tilde{g}^{2}}{s-s_{R}-\tilde{g}^{2} G_{D D^{*}}(s)} \tag{0.2}\\
\Downarrow \\
\text { selfenergy }
\end{array}
$$

we choose to regularize with a sharp cutoff

$$
\begin{equation*}
G_{D D^{*}}(s)=\int_{|\boldsymbol{q}|<q_{\max }} \frac{d^{3} q}{(2 \pi)^{3}} \frac{\omega_{1}+\omega_{2}}{2 \omega_{1} \omega_{2}} \frac{1}{s-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon} \tag{0.3}
\end{equation*}
$$

where $\omega_{i}=\sqrt{\boldsymbol{q}^{2}+m_{i}^{2}}$. The selfenergy is negative, we take $s_{R}=m_{R}^{2}$ above the $D D^{*}$ threshold.

The condition that a pole appears at s_{0} (the square of the mass of the physical state) below the threshold

$$
\begin{gathered}
s_{0}-s_{R}-\tilde{g}^{2} G_{D D^{*}}\left(s_{0}\right)=0 \\
\Downarrow
\end{gathered}
$$

the value of \tilde{g}^{2} can be obtained

Molecular probability

PRD81(2010)014029; IJMPA28(2013)1330045

$$
P=-\left.g^{2} \frac{\partial G}{\partial s}\right|_{s=s_{0}}, \quad \widetilde{g}^{2}=\lim _{s \rightarrow s_{0}}\left(s-s_{0}\right) \frac{\widetilde{g}^{2}}{s-s_{R}-\widetilde{g}^{2} G_{D D^{*}}(s)}=\left.\frac{\widetilde{g}^{2}}{1-\widetilde{g}^{2} \frac{\partial G}{\partial s}}\right|_{s=s_{0}}
$$

Thus the molecular probability is

$$
\begin{equation*}
P=-\left.\frac{\widetilde{g}^{2} \frac{\partial G}{\partial s}}{1-\widetilde{g}^{2} \frac{\partial G}{\partial s}}\right|_{s=s_{0}} \tag{0.5}
\end{equation*}
$$

Several limits:

1) $\tilde{g}^{2} \rightarrow 0, P \rightarrow 0$, the compact state survives
2) $\tilde{g}^{2} \rightarrow \infty, P \rightarrow 1$, the state becomes pure molecular
3) $s_{0} \rightarrow s_{\mathrm{th}}, P \rightarrow 1$, the state becomes pure molecular which is interesting
\Downarrow
It is a consequence of unitarity and analyticity of the t and G functions.
When the binding energy goes to zero, the state becomes fully molecular, the compact component has been fagocitated by the molecular component.

3. Results scenario 1 ($\beta=0$)

for molecular probability

$$
\sqrt{s_{R}}=\sqrt{s_{\mathrm{th}}}+\Delta \sqrt{s_{R}}
$$

$\sqrt{s_{0}} \Rightarrow$ assumed value of the energy of the bound state

Fig. 3. as a function of $\sqrt{s_{0}}$ with $\Delta \sqrt{s_{R}}=102 \mathrm{MeV}$ [PRL119(2017)202002]

1) when $\sqrt{s_{0}} \rightarrow \sqrt{s_{\mathrm{th}}}, P \rightarrow 1$.
2) for $q_{\text {max }}=450 \mathrm{MeV}$, at $s_{0}^{\exp }=\sqrt{s_{\text {th }}}-0.36 \mathrm{MeV}, P \sim 0.9 \Rightarrow$ indicating that the original compact state has evolved to become practically a molecular state.
${ }^{66}$ SCale ${ }^{99}$ with $\Delta \sqrt{s_{R}}=10 \mathrm{MeV}$ and $\Delta \sqrt{s_{R}}=1 \mathrm{MeV}$
blue curve for $q_{\max }=450 \mathrm{MeV}$
It is seen that the "scale" shows up clearly.

3) when $\sqrt{s_{0}} \rightarrow \sqrt{s_{\mathrm{th}}}$, molecular probability $P \rightarrow 1$, the same trend.
4) at $s_{0}^{\exp }: \Delta \sqrt{s_{R}}=1 \mathrm{MeV}, P \sim 0.15 \Rightarrow$ indicating that the state remains mostly nonmolecular.
5) It can be seen that $\Delta \sqrt{s_{R}}=10 \mathrm{MeV}, P \sim 0.55 \Rightarrow$ as $\Delta \sqrt{s_{R}}$ becomes smaller, P is decreasing.

The binding energy by itself cannot give a proof of the nature of the state.

So what other magnitudes can really tell us about the nature of the state?

- Scattering length
- Effective range

For scattering length \& effective range

The unitarity of the $t_{D D^{*}, D D^{*}}$ amplitude

$$
\begin{equation*}
\operatorname{Im} t^{-1}=\operatorname{Im}\left(\frac{s-s_{R}}{\tilde{g}^{2}}-G_{D D^{*}}(s)\right)=-\operatorname{Im} G_{D D^{*}}(s)=\frac{k}{8 \pi \sqrt{s}} \tag{0.6}
\end{equation*}
$$

with k the meson-meson on shell momentum.
The relationship with the f^{QM} [Quantum Mechanics]

$$
\begin{equation*}
t=-8 \pi \sqrt{s} f^{\mathrm{QM}} \simeq-8 \pi \sqrt{s} \frac{1}{-\frac{1}{a}+\frac{1}{2} r_{0} k^{2}-i k} \tag{0.7}
\end{equation*}
$$

It is easy to induce

$$
\begin{align*}
-\frac{1}{a} & =\frac{s_{\mathrm{th}}-s_{R}}{\tilde{g}^{2}}-\operatorname{Re} G_{D D^{*}}\left(s_{\mathrm{th}}\right) \tag{0.8}\\
r_{0} & =\left.2 \frac{\sqrt{s}}{\mu} \frac{\partial}{\partial s}\left\{(-8 \pi \sqrt{s})\left(\frac{s-s_{R}}{\tilde{g}^{2}}-\operatorname{Re} G_{D D^{*}}(s)\right)\right\}\right|_{s=s_{\mathrm{th}}} \tag{0.9}
\end{align*}
$$

scattering length and effective range

$$
q_{\max }=450 \mathrm{MeV} \text { at } s_{0}^{\exp }=\sqrt{s_{\mathrm{th}}}-0.36 \mathrm{MeV}
$$

$\Delta \sqrt{s_{R}}[\mathrm{MeV}]$	$a[\mathrm{fm}]$	$r_{0}[\mathrm{fm}]$
0.1	0.87	-114.07
0.3	1.19	-79.33
1	2.10	-38.20
5	4.62	-9.26
10	5.74	-4.51
50	7.25	-0.47
70	7.39	-0.17
102	7.51	0.06

It can be seen that as $\Delta \sqrt{s_{R}}$ becomes smaller (decreasing the P), a becomes smaller and smaller and r_{0} grows indefinitely.

The lesson we draw is the a and r_{0} are very useful to determine the molecular probability of the state.

scenario 2 (hybrid)

assume a mixture of the compact state and the molecular one, by taking a potential

$$
\begin{equation*}
V^{\prime}=V+\frac{\tilde{g}^{2}}{s-s_{R}} \tag{0.10}
\end{equation*}
$$

It is easy to generalize the probability

$$
\begin{equation*}
P=-\left.\frac{\left[\widetilde{g}^{2}+\left(s-s_{R}\right) V\right] \frac{\partial G}{\partial s}}{1-\left[\widetilde{g}^{2}+\left(s-s_{R}\right) V\right] \frac{\partial G}{\partial s}-V G}\right|_{s=s_{0}} \tag{0.11}
\end{equation*}
$$

The pole at s_{0} appears when

$$
\begin{equation*}
s_{0}-s_{R}-\left[\widetilde{g}^{2}+\left(s_{0}-s_{R}\right) V\right] G\left(s_{0}\right)=0 \tag{0.12}
\end{equation*}
$$

scenario 3 (direct interaction)

just a test for short of binding, we take a potential

$$
\begin{equation*}
1-V G\left(s_{\mathrm{th}}\right)=0, \quad V=\beta V_{\mathrm{LHG}} \tag{0.13}
\end{equation*}
$$

where $V_{\text {LHG }}$ is the attractive potential from the local hidden gauge approach [Phys. Rep. 164, 217; Phys. Rep. 381, 1; Phys. Rep. 161, 213; Phys. Rev. D 79, 014015]

$\overline{\Delta \sqrt{s_{R}}[\mathrm{MeV}]}$	$\beta=0$	$\beta=0.74$
10	0.58	0.94
20	0.73	0.97
50	0.87	0.99

There is some attractive interaction, the molecular probability increases appreciably.

Extension to X(3872)

Song, Dai, Oset, Evolution of compact states to molecular ones with coupled channels: The case of the $X(3872)$, PRD108(2023)114017

Develop general formalism (coupled-channel)

Same as above in single-channel for $\operatorname{Tcc}(3875)$, we start with a bare mass m_{R} in coupled-channel for $\mathrm{X}(3872)$

$$
\begin{align*}
\left|D^{*} \bar{D}, I=0\right\rangle & =\frac{1}{\sqrt{2}}\left(D^{* 0} \bar{D}^{0}+D^{*+} D^{-}\right) \tag{0.14}\\
t_{D^{*} \bar{D}}(I=0) & =\frac{\tilde{g}^{2}}{s-s_{R}} \tag{0.15}
\end{align*}
$$

If we decide to have a bound state at s_{0}, once given s_{R}, we can obtain \tilde{g}^{2} as

$$
\begin{equation*}
\tilde{g}^{2}=\left.\frac{s-s_{R}}{\frac{1}{2} G_{1}+\frac{1}{2} G_{2}}\right|_{s_{0}} \tag{0.16}
\end{equation*}
$$

The loop functions G_{i} of $i=1$ for $\bar{D}^{0} D^{* 0}$ and $i=2$ for $D^{-} D^{*+}$.

Couplings and probabilities

$$
\begin{array}{r}
g_{1}^{2}=\lim \left(s-s_{0}\right) T_{11} ; \quad g_{2}^{2}=\lim \left(s-s_{0}\right) T_{22} \tag{0.17}\\
g_{2}=g_{1} \lim \left(s-s_{0}\right) \frac{T_{21}}{T_{11}}
\end{array}
$$

By using L'Hospital's rule we easily find

$$
\begin{gather*}
g_{1}^{2}=\left.\frac{\frac{1}{2} \tilde{g}^{2}}{1-\frac{1}{2} \tilde{g}^{2} \frac{\partial}{\partial s}\left(G_{1}+G_{2}\right)}\right|_{s_{0}} ; \quad g_{2}=g_{1} \tag{0.18}\\
P_{1}=-\left.g_{1}^{2} \frac{\partial G_{1}}{\partial s}\right|_{s_{0}}=-\left.\frac{\frac{1}{2} \tilde{g}^{2} \frac{\partial G_{1}}{\partial s}}{1-\frac{1}{2} \tilde{g}^{2} \frac{\partial}{\partial s}\left(G_{1}+G_{2}\right)}\right|_{s_{0}} \tag{0.19}\\
P_{2}=-\left.g_{2}^{2} \frac{\partial G_{2}}{\partial s}\right|_{s_{0}}=-\left.\frac{\frac{1}{2} \tilde{g}^{2} \frac{\partial G_{2}}{\partial s}}{1-\frac{1}{2} \tilde{g}^{2} \frac{\partial}{\partial s}\left(G_{1}+G_{2}\right)}\right|_{s_{0}}
\end{gather*}
$$

The $\mathrm{X}(3872)$ is closer to the $D^{* 0} \bar{D}^{0}(i=1)$, we find

1) when $\tilde{g}^{2} \rightarrow 0, \quad P_{1} \rightarrow 0, P_{2} \rightarrow 0$, compact state.
2) when $\tilde{g}^{2} \rightarrow \infty, \quad P_{1}+P_{2}=1$, completely molecular.
3) when $s_{0} \rightarrow s_{\text {th1 }}, P_{1} \rightarrow 1, P_{2} \rightarrow 0$, completely molecular state dominated by the $D^{* 0} \bar{D}^{0}$ (i=1) component.

interesting case

We should stress that even if $P_{1} \rightarrow 1, P_{2} \rightarrow 0$, in strong interaction of zero range what matters is the wave function at the origin and the $D^{* 0} \bar{D}^{0}$ and $D^{*+} D^{-}$components become equally important [PRD80(2009)014003; PRD81(2009)014029]

Inclusion of direct interaction

In the local hidden gauge approach the interaction comes from the exchange of vector mesons [Phys. Rept. 164 (1988) 217; Phys. Rept. 381 (2003)1; Phys. Rept. 61 (1988) 213; PRD79(2009)014015]

$$
\begin{equation*}
\frac{1}{2} V=-g^{\prime 2} \frac{4 m_{D^{*}} m_{D^{0}}}{m_{V}^{2}} \tag{0.20}
\end{equation*}
$$

with $g^{\prime}=\frac{m_{v}}{2 f_{\pi}}, m_{\mathrm{v}}=800 \mathrm{MeV}, f_{\pi}=93 \mathrm{MeV}$.

$$
\begin{equation*}
\frac{\tilde{g}^{2}}{s-s_{R}} \rightarrow \frac{\tilde{g}^{2}}{s-s_{R}}+\beta V \tag{0.21}
\end{equation*}
$$

Scattering length and effective range

At first threshold

$$
\begin{gather*}
-\frac{1}{a_{1}}=\left.(-8 \pi \sqrt{s})\left[\frac{s-s_{R}}{\frac{1}{2}\left[\tilde{g}^{2}+\beta V\left(s-s_{R}\right)\right]}-\operatorname{Re} G_{1}-G_{2}\right]\right|_{s_{\mathrm{th} 1}}, \tag{0.22}\\
r_{0,1}= \tag{0.23}\\
\left.2 \frac{\sqrt{s}}{\mu_{1}} \frac{\partial}{\partial s}\left\{(-8 \pi \sqrt{s})\left[\frac{s-s_{R}}{\frac{1}{2}\left[\tilde{g}^{2}+\beta V\left(s-s_{R}\right)\right]}-\operatorname{Re} G_{1}-G_{2}\right]\right\}\right|_{\mathrm{s}_{\mathrm{th} 1}},
\end{gather*}
$$

At second threshold

$$
\begin{gather*}
-\frac{1}{a_{2}}=\left.(-8 \pi \sqrt{s})\left[\frac{s-s_{R}}{\frac{1}{2}\left[\tilde{g}^{2}+\beta V\left(s-s_{R}\right)\right]}-\operatorname{Re} G_{2}-G_{1}\right]\right|_{\mathrm{s}_{\mathrm{th} 2}}, \tag{0.24}\\
r_{0,2}= \tag{0.25}\\
\left.2 \frac{\sqrt{s}}{\mu_{2}} \frac{\partial}{\partial s}\left\{(-8 \pi \sqrt{s})\left[\frac{s-s_{R}}{\frac{1}{2}\left[\tilde{g}^{2}+\beta V\left(s-s_{R}\right)\right]}-\operatorname{Re} G_{2}-G_{1}\right]\right\}\right|_{\mathrm{s}_{\mathrm{th} 2}},
\end{gather*}
$$

with μ_{i} the reduced mass of the channel.
$\Delta \sqrt{s}_{R}=100 \mathbf{M e V}$, Molecular probability of P_{1} and P_{2} scenario $1(\beta=0) \quad$ [red lines: $D^{0} D^{* 0}$ threshold]

Fig. 4. as a function of $\sqrt{s_{0}}$.

1) when $\sqrt{s_{0}} \rightarrow \mathrm{~s}_{\text {th1 }}, P_{1} \rightarrow 1, P_{2} \rightarrow 0, P_{1}+P_{2} \rightarrow 1$
2) at the energy of $X(3872)$, the probability $P_{1} \sim 0.9$ and $P_{2} \sim 0.05, P_{1}+P_{2} \sim 0.95$

It is also seen that the "scale" shows up clearly.

For $\Delta \sqrt{s_{R}}=0.1 \mathrm{MeV}$, we see that the $P_{1}+P_{2}$ is around 0.02 , indicating that the induced molecular component is negligible.

The conclusion: The binding energy by itself does not give us the molecular probability. It is possible to have a very small binding and still have a negligible molecular component.

$\Delta \sqrt{s}_{R}=1 \mathrm{MeV}$ and $\beta \neq 0$ (mixture) \Longleftarrow by adding the direct interaction

The presence of a reasonable direct meson-meson interaction has as a consequence a drastic increase in the molecular probability of the state.

What happens for scattering length and effective range

Table 1: $q_{\max }=450 \mathrm{MeV}(\beta=0)$

$\Delta \sqrt{s_{R}}$	$a_{1}[\mathrm{fm}]$	$r_{0,1}[\mathrm{fm}]$	$a_{2}[\mathrm{fm}]$	$r_{0,2}[\mathrm{fm}]$
0.1	1.42	-663.61	$0.0073-i 0.00003$	$-664.79-i 1.56$
0.3	3.16	-273.51	$0.0176-i 0.00020$	$-273.04-i 1.56$
1	7.48	-89.71	$0.0530-i 0.00180$	$-88.46-i 1.56$
10	18.45	-9.68	$0.3957-i 0.10756$	$-8.10-i 1.56$
50	21.35	-2.29	$0.7558-i 0.58190$	$-0.68-i 1.56$
100	21.78	-1.37	$0.7818-i 0.78157$	$0.25-i 1.56$

1) $r_{0,1}=-5.34 \mathrm{fm} \quad$ LHCb data in PRD102(2020)092005 $-2.78 \mathrm{fm}<r_{0,1}<1 \mathrm{fm}, a_{1} \approx 28 \mathrm{fm}$ in PLB833(2022)137290
2) $\Delta \sqrt{s}_{R}=0.1 \mathrm{MeV}, a_{1}, a_{2}$ become small, and most important, $r_{0,1}, r_{0,2}$ become extremely large, where we had a negligible molecular component. \Longrightarrow enough to discard this scenario.
3) $\Delta \sqrt{s_{R}}=100 \mathrm{MeV}$, would be basically acceptable, but $P \rightarrow 1$.

scenario 2 (hybrid)

Table 2: $q_{\max }=450 \mathrm{MeV}(\beta \neq 0)$

$\Delta \sqrt{s_{R}}$	$a_{1}[\mathrm{fm}]$	$r_{0,1}[\mathrm{fm}]$	$a_{2}[\mathrm{fm}]$	$r_{0,2}[\mathrm{fm}]$
0.1	15.60	-24.97	$0.7068-i 1.116$	$1.17-i 1.56$
0.3	19.65	-7.13	$0.7060-i 1.118$	$1.16-i 1.56$
1	21.38	-2.30	$0.7024-i 1.125$	$1.14-i 1.56$
10	22.13	-0.63	$0.7818-i 0.780$	$-3.62-i 1.56$
100	22.21	-0.47	$0.7385-i 1.038$	$1.15-i 1.56$

$r_{0,1}=-5.34 \mathrm{fm} \quad$ LHCb data in PRD102(2020)092005
$-2.78 \mathrm{fm}<r_{0,1}<1 \mathrm{fm}, a_{1} \approx 28 \mathrm{fm} \quad$ in PLB833(2022)137290

1) $\Delta \sqrt{s}_{R}=0.1 \mathrm{MeV}, a_{1}$ and $r_{0,1}$ are still unacceptable.
2) $\Delta \sqrt{s}_{R}=1 \mathrm{MeV}$, acceptable with the current uncertainty in the experimental values \Longrightarrow This scenario with $P_{1}+P_{2} \sim 0.95$ can not be discarded.

scenario 3

Table 3: $\tilde{g}^{2}=0$ and $\Delta \sqrt{s_{R}}=1 \mathrm{MeV}$ at threshold in different $q_{\max }$

$q_{\text {max }}[\mathrm{MeV}]$	$a_{1}[\mathrm{fm}]$	$r_{0,1}[\mathrm{fm}]$	$a_{2}[\mathrm{fm}]$	$r_{0,2}[\mathrm{fm}]$
450	22.22	-0.449	$0.736-i 1.04$	$1.17-i 1.56$
650	22.07	-0.763	$0.765-i 0.94$	$0.82-i 1.56$

1) the $r_{0,1}(-0.449 \mathrm{fm})$ is appreciably different here versus -2.30 fm in Table 2 .
\Longrightarrow It is thus clear that an improvement in the measured value of $r_{0,1}$ can shed further light on the issue.
2) There is extra information from a_{2} and $r_{0,2}$, which are drastically different from those in Table 1 (only the compact state)

All this is telling us that the precise values of $a_{1}, r_{0,1}$ and $a_{2}, r_{0,2}$ are crucial to pin down the precise nature of the $X(3872)$.

Summary

We develop the general formalisms in single-channel and coupled-channel calculations.

As an application, we make the comparison of molecular and compact states for the $\mathrm{Tcc}(3875)$ and $\mathrm{X}(3872)$ in three different scenarios.

main conclusion:

The binding energy itself does not determine the compositeness of a state, but the additional information of the scattering length and effective range can provide an answer.

Thank you (谢谢)

