The role of convergence methods as fitting functions in the context of the MUonE experiment

Work in collaboration with: Cristiane Yumi London, Diogo Boito and Pere Masjuan

Based on <u>arXiv:2405.13638</u>

Camilo Rojas

Huge discrepancy in the anomalous magnetic moment of the muon •

 $a_{\mu} = (g_{\mu} - 2)/2$

Huge discrepancy in the anomalous magnetic moment of the muon

Motivation

$a_{\mu} = (g_{\mu} - 2)/2$

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\text{th}} = 249(50) \times 10^{-11} ; \quad [5.0\sigma]$$

Muon g-2 Theory iniative | White Paper (arXiv:2006.04822v2) *The Muon g-2 coll. (10.1103/PhysRevLett.131.161802)* (Anna Driutti's talk on Friday)

Huge discrepancy in the anomalous magnetic moment of the muon

MUonE experiment is a good candidate to Clarify this discrepancy (space-like channel)

Camilo Rojas

Motivation

$a_{\mu} = (g_{\mu} - 2)/2$

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\text{th}} = 249(50) \times 10^{-11} ; \quad [5.0\sigma]$$

Muon g-2 Theory iniative I White Paper (arXiv:2006.04822v2) *The Muon g-2 coll. (10.1103/PhysRevLett.131.161802)*

	\ \
	- : dav)
	Fridan
Lalk OI	
tti's tain	And
Drillt	
(Appa Dire	
(Anne.	
V	

• The hadronic contribution dominates the current state of uncertainties.

Camilo Rojas

Motivation

 $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}} \qquad a_{\mu}^{\text{HVP}} = 6845(40) \times 10^{-11}$

• The hadronic contribution dominates the current state of uncertainties.

$$a_{\mu}^{\text{HVP, LO}} = \frac{\alpha^2}{\pi} \int_0^1 dx \ (1 - x) \,\Delta \alpha_{\text{had}}[t(x)]$$

Requires a measurement ulletof $\Delta \alpha_{\rm had}$ in the space-like region ($t = q^2 < 0$)

Motivation

 $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}} \quad a_{\mu}^{\text{HVP}} = 6845(40) \times 10^{-11}$

0.55

0.2

0

0

0

• The hadronic contribution dominates the current state of uncertainties.

The Master Formula

$$a_{\mu}^{\text{HVP, LO}} = \frac{\alpha^2}{\pi} \int_0^1 dx \ (1 - x) \Delta \alpha_{\text{had}}[t(x)]$$
• Requires a measurement
of $\Delta \alpha_{\text{had}}$ in the space-like
region $(t = q^2 < 0)$
• The Master Formula

region ($t = q^2 < 0$)

Motivation

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}} \quad a_{\mu}^{\text{HVP}} = 6845(40) \times 10^{-10}$$

-11

 $a_{\mu}^{\rm SM} =$

0.55

0.2

0

1

0

0

• The hadronic contribution dominates the current state of uncertainties.

The Master Formula

$$a_{\mu}^{\text{HVP, LO}} = \frac{\alpha^2}{\pi} \int_0^1 dx \ (1 - x) \Delta \alpha_{\text{had}}[t(x)]$$
• Requires a measurement
of $\Delta \alpha_{\text{had}}$ in the space-like
region $(t = a^2 < 0)$

region ($t = q^2 < 0$)

Motivation

$$a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}} \quad a_{\mu}^{\text{HVP}} = 6845(40) \times 10^{-11}$$

Problem

Finding a reliable method to fit the data + good extrapolation outside data region without using external information

We propose a technique based on Padé and D-Log Padé Approximants

- Padé and DLog Approximants
- Fitting method & simulations
- Results with realistic errors
- Uncertainties Vs Extrapolation
- Outlook & Conclusions

Outline

Padé and D-Log Approximants

Padé Approximants

$P_M^N(z) = \frac{Q_N(z)}{R_M(z)} = \frac{q_0 + q_1 z + \dots + q_N z^N}{1 + r_1 z + \dots + r_M z^M}$

Advantages

- Systematic and model-independent method
- Partial reconstruction of analytic (physical) properties
- Efficient approximation
- It is possible to provide a systematic error using the **convergence** properties

Camilo Rojas

The standard method for constructing Padé Approximants (PAs)

- M+N+1 equations relate: PA coefficients (q_i , r_i) with original function coefficients (a_i) .
- PAs return a better approximation for the M+N+1 term

Padé Ap
StieltjWhat about Padé
Convergence ??
$$f(z) = \int_0^\infty \frac{\mathrm{d}\phi(u)}{1+zu} \phi$$

- $\Delta \alpha_{had}(t)$ is a Stieltjes function! [Masjuan, Peris '09], [Aubin, Blum, Golterman, Peris '12] •
- There are convergence theorems for PAs to Stieltjes functions [Baker '96] ullet
- Some convergence properties (<u>thanks to analyticity and unitarity</u>): ullet* poles of P_N^{N+k} , $k \ge -1$, are located in the positive real axis; * PA sequences uniformly converge to the original function;
 - * PA sequences act as bounds to the function

proximants jes function

u(u) is a measure in $u \in [0,\infty)$

We can use the convergence theorem to bound our function

 $P_1^1(t) \le P_2^2(t) \le \dots \le \Delta \alpha_{\text{had}} \le \dots \le P_1^2(t) \le P_0^1(t)$

D-Log Padé Approximants

Advantages respect to Padés

- It is useful to reproduces not only poles but also cuts or branch points of the original function
- Faster convergence
- Also model independent to find the singularity position value and its multiplicity

Is not longer a rational approximant

Little is know about D-Logs, they work and we have a convergence conjecture. We find:

Camilo Rojas

<u>Consider the following function:</u>

$$f(z) = A(z)\frac{1}{(\mu - z)^{\gamma}} + B(z) \quad \gamma \in \Re$$

Set a new function applying
the logarithm derivative
$$F(z) = \frac{d}{dz} \ln f(z) \approx \frac{\gamma}{(\mu - z)}$$

- Approach $F(z)$ with a Padé sequence : $\tilde{P}_N^M[F(z)]$
- Unfold the process: Integrate, exponentiate and normalize
 $\mathcal{D}_N^M(z) = f(0) \exp\left[\int dz \tilde{P}_N^M(z)\right]$ d.o.f: M+N+2

 $D_1^1(t) \le D_2^2(t) \le \ldots \le \Delta \alpha_{\text{had}} \le \ldots \le D_3^2(t) \le D_2^1(t)$

Fitting method & Simulations

From Taylor expansion

Padé Approximants

Camilo Rojas

Fitting Method

Data generation — simple model for $\Delta \alpha_{had}(t)$ as a Stieltjes function •

$$(x, \alpha \Delta \alpha)$$

 $0.2 \leq$

•

$$\Delta \alpha_{\text{had}}(t) = a_1 t + a_2 t^2 + a_3 t^3 + \cdots$$

$$\Rightarrow \chi$$

$$t = -\frac{m_{\mu}^2 x^2}{1 - x} \qquad P_1^1(x) = -\frac{b_1 m_{\mu}^2 x^2}{1 - x + b_2 m_{\mu}^2 x^2} \qquad b_2 = \frac{a_2}{a_1} > 1$$

Example PA:

$$P_1^1(t) = \frac{a_1 t}{1 - \frac{a_2}{a_1} t} \qquad \begin{array}{c} t \to x \\ \text{Making change} \\ \text{of variable} \end{array} \quad t = -\frac{m_{\mu}^2 x^2}{1 - x}$$

- PA parameters: χ^2 minimization
- No cancelations between zeros and poles

Camilo Rojas

[Greynat, de Rafael (2022)]

 $\alpha_{\rm had}(x) \times 10^5)$ $\leq x \leq 0.93$

30 equally spaced bins — data point are mid-value of each bin

Fitting parameters: starting with unknown Taylor series coefficients of $\Delta lpha_{
m had}(t)$

model-independent constraints

Fitting Method

Data generation — simple model for $\Delta \alpha_{had}(t)$ as a Stieltjes function ullet

$$(x, \alpha \Delta \alpha)$$

 $0.2 \leq$

ullet

$$\Delta \alpha_{\rm had}(t) = a_1 t + a_2 t^2 + a_3 t^3 + \cdots$$

Example DLog:

$$D_2^1(t) = \frac{-f_0 t}{(r_1 - t)^{\gamma_1}} \to D_2^1(x) = \frac{f_0 m_\mu^2 x^2 (1 - x)^{-1 + \gamma_1}}{(r_1 - r_1 x + m_\mu^2 x^2)^{\gamma_1}}$$
$$t \to x$$

• DLog parameters: χ^2 minimization

Camilo Rojas

[Greynat, de Rafael (2022)]

30 equally spaced bins — data point are mid-value of each bin

Fitting parameters: starting with unknown Taylor series coefficients of $\Delta lpha_{
m had}(t)$

 γ_1

$$D_2^2(t) = \frac{-f_0 t e^{\beta t}}{(r_1 - t)^{\gamma_1}} \to D_2^2(x) = \frac{f_0 m_\mu^2 x^2 (1 - x)^{-1 + \gamma_1}}{(r_1 - r_1 x + m_\mu^2 x^2)^{\gamma_1}} e^{\beta \frac{r_1}{\gamma_1}}$$

$$t \to x$$

Model-independent constraints for β , r_1 , γ_1 , ...

Results with realistic errors

- 1000 toy data sets
- $(x, \alpha \Delta \alpha_{had}(x) \times 10^5) 30$ data points equally spaced in $0.2 \le x \le 0.93$
- Central value randomly chosen from a gaussian distribution with expected error of MUonE experiment private communication with Abbiendi, Carloni Calame, Venanzoni
- Analysis of the fits for each Padé and DLog
- χ^2 penalties (θ functions) if coefficients do not follow the expected hierarchy
- Value of $a_{\mu}^{\rm HVP,LO}$ calculated for each data set (extrapolation was done in the whole region, even in the data region)

Toy model result:

 $a_{\mu}^{\mathrm{HVP,LO}}$

$$(6991^{+22}_{-20}) \times 10^{-11}$$

best result we can expect from PAs and **DLogs predictions**

 $P_1^1(t) \le P_2^2(t) \le \dots \le \Delta \alpha_{\text{had}} \le \dots \le P_2^3(t) \le P_1^2(t)$

Camilo Rojas

Convergence pattern preserved for the central values

- Good fit qualities
- Statistical and theoretical error of the same order but statistical is higher

$$\Delta \alpha_{\text{QED-model}}(t) = KM \left[-\frac{5}{9} - \frac{4M}{3t} + \frac{2\left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right)}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{3t}}}{1 + \sqrt{1 - \frac{4M}{3t}}} \right| \right]$$

Inner error bar — statistical error

Exterior error bar — statistical and systematic errors added in quadrature

 $D_1^1(t) \le D_2^2(t) \le \ldots \le \Delta \alpha_{\text{had}} \le \ldots \le D_3^2(t) \le D_2^1(t)$

Camilo Rojas

Convergence pattern preserved for the central values

- Good fit qualities
- Statistical and theoretical error of the same order but statistical is higher

$$\Delta \alpha_{\text{QED-model}}(t) = KM \left[-\frac{5}{9} - \frac{4M}{3t} + \frac{2\left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right)}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{3t}}}{1 + \sqrt{1 - \frac{4M}{3t}}} \right| \right]$$

Inner error bar — statistical error

Exterior error bar — statistical and systematic errors added in quadrature

	$a_{\mu}^{\rm HVP,LO} \times 10^{11}$	$\chi^2/n_{ m dof}$		$a_{\mu}^{\rm HVP,LO}\times 10^{11}$	$\chi^2/n_{ m dof}$
P_1^1	6938 ± 21	$1.01\substack{+0.27 \\ -0.25}$	D_2^1	$7052\substack{+66 \\ -71}$	$1.01\substack{+0.26 \\ -0.26}$
P_1^2	$7042\substack{+114 \\ -104}$	$1.01\substack{+0.28 \\ -0.26}$	D_2^2	$6956\substack{+96 \\ -65}$	$1.05\substack{+0.28 \\ -0.27}$
P_2^2	$6980\substack{+46 \\ -34}$	$1.05\substack{+0.29 \\ -0.27}$	D_3^2	$6999\substack{+48\\-39}$	$1.10\substack{+0.29 \\ -0.28}$
P_{2}^{3}	$6994\substack{+85 \\ -49}$	$1.11\substack{+0.29 \\ -0.31}$	D_3^3	6977^{+72}_{-53}	$1.14\substack{+0.30 \\ -0.29}$
Final result	6987^{+46}_{-34}		Final result	$6988\substack{+48 \\ -39}$	

Toy model result:

 $a_{\mu}^{\mathrm{HVP,LO}}$ =

Camilo Rojas

$$(6991^{+22}_{-20}) \times 10^{-11}$$

best result we can expect from PAs and **DLogs predictions**

Uncertainties Vs Extrapolation

 $x_{
m max}=0.990$

Fits up to $x \sim 0.93$ and extrapolated up to x_{max} :

Camilo Rojas

 $x_{
m max}=0.995$

$$x_{
m max}=1$$

 $x_{
m max}=0.990$

Fits up to $x \sim 0.93$ and extrapolated up to x_{max} :

Camilo Rojas

 $x_{
m max}=0.995$

Fits up to $x \sim 0.93$ and extrapolated up to x_{max} :

x_{\max}	$a_{\mu,\mathrm{PAs}}^{\mathrm{HVP,LO}}$	
0.990	$6927\left(^{+33}_{-27} ight)(\pm4)$	692
0.995	$6967\left(^{+40}_{-31} ight)(\pm5)$	697
0.997	$6978\left(^{+43}_{-33} ight)(\pm5)$	698
1.000	$6987\left(^{+46}_{-34} ight)(\pm7)$	6988

First error - statistical error

Second error - systematic (extrapolation) error

$$\Delta \alpha_{\rm QED-model}(t) = KM$$

Fits up to $x \sim 0.93$ and extrapolated up to x_{max} :

x_{\max}	$a_{\mu,\mathrm{PAs}}^{\mathrm{HVP,LO}}$	$a_{\mu,\mathrm{Dlogs}}^{\mathrm{HVP,LO}}$	$a_{\mu,{ m QED-model}}^{ m HVP, LO}$	$a_{\mu,\mathrm{data-sets}}^{\mathrm{HVP,LO}}$		
0.990	$6927 \begin{pmatrix} +33 \\ -27 \end{pmatrix} (\pm 4)$	$6928 \begin{pmatrix} +36 \\ -31 \end{pmatrix} (\pm 4)$	$6918\left(^{+21}_{-20} ight)(\pm4)$	$6926\binom{+22}{-20}$		
0.995	$6967 \begin{pmatrix} +40 \\ -31 \end{pmatrix} (\pm 5)$	$6970\left(^{+42}_{-34} ight)(\pm7)$	$6959(\pm 21)(\pm 17)$	$6969 \begin{pmatrix} +22 \\ -20 \end{pmatrix}$		
0.997	$6978 \left(^{+43}_{-33} ight) (\pm 5)$	$6981 \left(^{+43}_{-38} ight) (\pm 9)$	$6971(\pm 21)(\pm 17)$	$6982\left(^{+22}_{-20} ight)$		
1.000	$6987 \left(^{+46}_{-34} ight) (\pm 7)$	$6988 \begin{pmatrix} +48 \\ -39 \end{pmatrix} (\pm 11)$	$6980(\pm 21)(\pm 17)$	$6991 \left(^{+22}_{-20} ight)$		
al error Extrapolation seems to be und						
matic (extrapolation) error						

First error - statistica

Second error - system

$$\Delta \alpha_{\rm QED-model}(t) = KM$$

$$-\frac{5}{9} - \frac{4M}{3t} + \frac{2\left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right)}{\sqrt{1 - \frac{4M}{t}}} \log \left|\frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}}\right|$$

- the data from the MUonE experiment. Approximants up to 6 coefficients seem ok!
- function (we use analyticity and unitarity, yet <u>inclusive</u>) \Rightarrow beyond the unitary cut!
- PAs and DLogs can provide a lower and upper **bound** for the true value!
- Uncertainties may be <u>reduced</u> if: ullet
 - Knowledge about the structure of $\Delta \alpha_{had}(t)$ is included (or either extracted from fit)
 - ullet

Conclusions

• Discrepancy for a_{μ} between experimental measurements and predictions reached the 5.0 σ level

D-Logs and Padé approximant sequences are a model-independent method to fit and extrapolate

The method uses fundamental knowledge about the analytic structure of $\Delta \alpha_{had}(t)$. It is a Stieltjes

Extrapolate to certain x_{max} (corresponding to "large enough energy") and then match to pQCD or e⁺e⁻ (with DLogs we can access the time-like: $\pi^+\pi^-$ or $\pi^0\gamma$ production thresholds, p-meson!)

Muon Anomalous magnetic moment

The anomalous magnetic moment of the muon

• The magnetic moment (for charged leptons)

$$\overrightarrow{\mu_l} = g_l \frac{e}{2m_l} \cdot \overrightarrow{S}$$

• The magnetic anomaly (deviation from Dirac value)

$$a_l = (g_l - 2)/2$$

This observable can be both precisely measured experimentally and predicted in the Standard Model, providing a stringent test of the SM.

• The first order correction (by J. Schwinger)

$$a_e^{\text{QED,LO}} = \alpha/2\pi \approx 1.16 \times 10^{-3}$$
 α is fine stru

"These quantum fluctuations modify g"

icture constant

The anomalous magnetic moment of the muon

• E821 @BNL measurement with an error of 0.54 ppm

$$a_{\mu}^{\exp} = 116592089(63) \times 10^{-11}$$

Merge with FNAL measurement
 $a_{\mu}^{\exp} = 116592089(63) \times 10^{-11}$ [0.35 ppm]

• The theoretical calculation with SM (approved consensus)

$$a_{\mu}^{\text{SM}} = 116591810(43) \times 10^{-11}$$
 By the Muon $g - 2$

Current discrepancy limited by:

- Experimental uncertainty: New run test at FNAL and J-PARC x4 accuracy
- In the theoretical frame: How to calibrate Hadronic Contributions uncertainties.

 $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\th} = 251(59) \times 10^{-11}$

The anomalous magnetic moment of the muon

Main contribution: LO Vacuum Polarization estimated rel. uncertainty 0.35% - 0.6% $a_{u}^{\text{HVP}} = a_{u}^{\text{LO,HVP}} + a_{u}^{\text{NLO,HVP}} + a_{u}^{\text{NNLO,HVP}}$

• QED corrections known up to 5 loops with related precision $\sim 7 \times 10^{-10}$

 $a_{\mu}^{\text{QED}} = 116584718.931(104) \times 10^{-11}$ Aoyama, Hayakawa, Kinoshita, Nio (2012)

• EW corrections up to 2 loops with precision $\sim 10^{-9}$ rel. uncertainty < 1%

 $a_u^{\rm EW} = 153.6(1.0) \times 10^{-11}$

Gnendiger, D. Stöckinger, H. Stöckinger-Kim (2013)

• Hadronic contribution $\sim 7 \times 10^{-8}$; the dominant theoretical uncertainty

How to calculate the HVP contribution?

Using the dispersive relation integral:

- Using the optical theorem
- Involving the total hadronic cross section measured experimentally at e +e machines

$$a_{\mu}^{\text{HVP, LO}} = \frac{\alpha}{\pi^2} \int_0^\infty \frac{\mathrm{d}s}{s} K(s) \operatorname{Im}\Pi_{\text{had}}(s+i\epsilon) \quad ; \quad K(s) = \int_0^1 \frac{x^2(1-x)}{x^2+(1-x)\frac{s}{m_{\mu}^2}} \, \mathrm{d}x \sim \frac{1}{s}$$

 $Im\Pi_{had}(s)$ is the hadronic contribution to the photon vacuum polarisation function

had. Vacuum Polarization

optical theorem

had. cross section

hadrons

Data-Driven

$$a_{\mu}^{\text{HVP, LO}} = \left(\frac{\alpha m_{\pi}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \ \frac{K(s)R(s)}{s^2}$$

$$R(s) = \left(\frac{3s}{4\pi\alpha^2}\right) \ \sigma_{e^+e^- \to \text{hadrons}}(s) = 12\pi \text{Im}\Pi_{\text{had}}$$

$$a_{\mu}^{\text{HVP, LO}} = \left(\frac{\alpha m_{\pi}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \, K(s) \, \sigma_{e^+e^- \to \text{hadrons}}(s)$$

Kernel has the lepton information !

Alternative representation usually use in: Lattice $ds dx \rightarrow dx ds$ In terms of the Euclidean space $\bar{\Pi}(Q^2)$; $Q^2 = -q^2 < 0$ $\alpha_{QCD} \approx \mathcal{O}(1) \Rightarrow \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{D}$ $= \frac{\alpha}{\pi} \int dx \ (x-1) \,\overline{\Pi}^{\text{HVP}} \left(Q^2 \right)$ $a_{\mu}^{\text{HVP, LO}} =$ This representation would be useful for MUonE experiment since it is in the $\int_{s_0}^{\infty} \frac{\mathrm{d}s}{s} \frac{Q^2}{(s+Q^2)} \frac{1}{\pi} \mathrm{Im}\Pi_{\mathrm{had}}(s)$ $ar{\Pi}^{ ext{HVP}}\left(Q^{2}
ight)$ space-like domain =

> C. Aubin, T. Blum, Phys. Rev. D, 75 (2007) P. Boyle, L. Del Debbio, E. Kerrane, J. Zanotti, Phys. Rev. D, 85 (2012) X. Feng, K. Jansen, M. Petschlies, D.B. Renner, Phys. Rev. Lett., 107 (2011)

Tension between Data-driven Vs Lattice QCD

MUonE Experiment

MUonE Experiment ($\mu e \rightarrow \mu e$) @CERN

It is a new experimental proposal @ CERN:

- experiment)
- It is a pure t-channel process at tree level
- The M2 muon beamline ($E_{\mu} \simeq 150 \, {\rm GeV}$) is available at CERN
- be achieved
- angles.

MUonE experiment - event selection

- Scattering µ's on experiment)
- It is a pure t-chan
- The M2 muon bea
- Useful cms energ
- Easy selection ba angles.
- With ~ 3 years of be achieved

target

MUonE experiment - measurement in the space-like momentum

Recovering the Master Formula

- $a_{\mu}^{LO,HVP}$ is given by the integral of the curve (smooth behaviour)
- Requires a measurement of $\Delta lpha_{
 m had}$ in the space-like region ullet
- It enhances the contribution from low q^2 region (below 0.11 GeV²) ullet
- They expect to cover 87% of the $a_{\mu}^{LO,HVP}$ with the space-like integral

(• But they need to extrapolate: $x \rightarrow 1$, (13% missing)

Its precision is determined by the uncertainty on $\Delta \alpha_{had}$ in this region

using the output of the routine hadr5n12 (which uses time-like hadron production data and perturbative QCD)

taken from F. Jegerlehner. Nucl Phy proc suppl (2008)

 $x_{peak} \simeq 0.914$

on (
$$t = q^2 < 0$$
)

Here is our motivation !!

Recovering the Master Formula

using the output of the routine hadr5n12 (which uses time-like hadron production data and perturbative QCD)

aviour)

ו (t=q2<0)

).11GeV2)

h this region

egral

This fitting method must be:

- A very precise fitting
- A fast convergence method to the original function
- It must have the same analytical properties as the original function

Stieltjes function

$$f(z) = \int_0^\infty \frac{\mathrm{d}\phi(u)}{1+zu}$$

$$f(z) = \sum_{i=0}^{\infty} f_i(-z)^i, \qquad f_i = \int_0^{\infty} u^i dx^i$$

$$\begin{vmatrix} f_m & f_{m+1} & \cdots & f_{m+n} \\ f_{m+1} & f_{m+2} & \cdots & f_{m+n+1} \\ \vdots & \vdots & & \vdots \\ f_{m+n} & f_{m+n+1} & \cdots & f_{m+2n} \end{vmatrix} >$$

Aubin, Blum, Golterman, Peris (2012)

•

$$\Delta \alpha_{\rm had}(t) = \sum_{i=1}^{\infty} a_i t^i$$

 $\phi(u)$ is a measure in $u \in [0,\infty)$

 $\mathrm{d}\phi(u)$ Stieltjes series

 $m \ge 0$ > 0 determinant condition $n \ge 0$

Masjuan, Peris (2009) $\Delta \alpha_{had}(t)$ is a Stieltjes function in $t \in (-\infty, 0]$ since HVP correlator is a Stieltjes function

hierarchy

 $i \in \mathbb{N}$

$$0 < a_i < a_{i+1},$$

Model of Greynat and de Rafael

$$\Delta \alpha_{\rm had}[q^2] = \bar{\Pi}(q^2) = q^2 \int_{4m_\pi^2}^{\infty} \mathrm{d}s \frac{\mathrm{Im}\,\Pi(s)}{s(s-q^2+i\epsilon)} \qquad \mathrm{Im}\,\Pi_{\rm had}(s) = \frac{1}{4\pi}$$

$$|F(s)|^2 = \frac{m_{\rho}^4}{(m_{\rho}^2 - s)^2 + m_{\rho}^2 \Gamma(s)^2}$$

$$\Gamma(s) = \frac{m_{\rho} s}{96\pi f_{\pi}^2} \left[\left(1 - \frac{4m_{\pi}^2}{s} \right)^{3/2} \theta(s - 4m_{\pi}^2) + \frac{1}{2} \left(1 - \frac{4m_{k}^2}{s} \right)^{3/2} \theta(s - 4m_{k}^2) \right]$$

$$\Theta(s) = \frac{2}{\pi} \left[\frac{\arctan\left(\frac{s-s_c}{\Delta}\right) - \arctan\left(\frac{4m_{\pi}-s_c}{\Delta}\right)}{\frac{\pi}{2} - \arctan\left(\frac{4m_{\pi}^2-s_c}{\Delta}\right)} \right]$$

• Fitting function from PAs — example

$$\Delta \alpha_{\rm had}(t) = a_1 t + a_2 t^2 + \dots \qquad \text{unknow}$$

$$P_1^1(t) = \frac{q_0 + q_1 t}{1 + r_1 t} \approx q_0 + (q_1 - q_0 r_1)t + (q_1$$

$$P_1^1(x) = -\frac{a_1^2 m_\mu^2 x^2}{a_1 - a_1 x + a_2 n}$$

$$b_1 = a_1 < 0 \qquad \qquad b_2 = \frac{a_2}{a_1} > 1$$

Modified χ^2 function with penalties ullet $\chi^2 = \sum \left[\alpha \, \Delta \alpha_{\text{had}}(x_i) \times 10^5 - P_N^M(x_i) \right] (C^{-1})_{ij}$ i,j=1

model-independent constraints

$$_{j} \left[\alpha \Delta \alpha_{\text{had}}(x_{j}) \times 10^{5} - P_{N}^{M}(x_{j}) \right] + n_{\text{dof}} \sum_{i=2}^{N+M} \theta(a_{i} - a_{i-1})$$

Model parametrisation used by MUonE team

Physics-inspired from the calculable contribution of lepton-pairs and top quarks at t<0

 $\oint_{S} \mathbf{q}^2 = \mathbf{t} < \mathbf{0} \quad \Delta \alpha_{had}(t) = k \left\{ -\frac{5}{9} - \frac{4M}{3t} \right\}$

M with dimension of mass squared, related to the mass of the fermion in the vacuum polarization loop k depending on the coupling $\alpha(0)$, the electric charge and the colour charge of the fermion

$$\frac{M}{t} + \left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \log \left|\frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}}\right|$$

Ref: Giovanni Abbiendi <u>arXiv:2201.13177v1</u> [physics.ins-det]

D-Log Padé Approximants How is our D-Log type function? Get the D-log Padé Analysing the structure of approximants to the approximants and propose original function in t a general function to fit $\mathbf{D}_{N}^{M}(t)$ $f(t) \cong \mathbf{D}_{N}^{M}(t) = f(0) \frac{t \ e^{\sum_{i=1}^{M-N+1} a_{i}t^{i}}}{(\mu_{1} - t)^{\gamma_{1}} \dots (\mu_{N} - t)^{\gamma_{N-1}}}$ $t \to x$ Making change of variable $m^2 r^2$ Fitting function

An example of Padé's approximant (dataset without errors)

First we can consider a data point set without uncertainties just to see the behaviour of the Padé approximant

- The fitting functions for the two sequences proposed (P_N^N and P_N^{N+1}) can be obtained in the same way (results in the right plot)

Fitting to data with no errors

Camilo Rojas

- We confirmed the pattern of convergence
- Some defect effects at order 6 and 7 in PAs
- The systematic uncertainty that we can

