

Light Hadron Spectroscopy (a) BESIII

On behalf of the BESIII Collaboration

The 10th International Conference on Quarks and Nuclear Physics, Barcelona, July 11th, 2024

Yanping Huang

IHEP, CHINA

中国科学院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

- Other forms of hadrons:
 - Multi-quark: quark number >= 4
 - + Hybrid state: the mixture of quark and gluon
 - + Glueball: composed of gluons (gg, ggg, gggg)

The basic theory for strong interactions is quantum chromodynamics (QCD)

Forms of hadrons

Glueballs are unique particles via self-interactions and formed with force carriers

- Lattice QCD (LQCD) is a non-perturbative method from the first principles in theory.
 - **Different lattice QCD groups** (including lattice simulations with dynamical quarks) now have consistent predictions on the masses and production rates of pure glueballs.
- Lattice QCD predictions on glueball masses:
 - **0++ ground state:** 1.5 1.7 GeV/c²
 - **2++ ground state:** 2.3 2.4GeV/c²
 - ◆ 0-+ ground state: 2.3 2.6GeV/c²

Glueball

- **Glueball production:**
 - Strongly produced in gluon-rich processes
- **Glueball decay:**
 - Gluon is flavor-blind
 - No rigorous predictions on decay patterns and branching ratios
 - (Theor. Phys. 24.373, PLB 380(1960)189-192)

- + The 0⁻⁺ glueball could have similar decays of η_c
- for the 0⁻⁺ glueball

Could have similar decays to the charmonium families as they all decay via gluons

• One of the favorite decay modes of η_c is $\pi\pi\eta'$, so $J/\psi \rightarrow \gamma \pi\pi\eta'$ could be a good place to search

J/\u03c6 radiative decays

Gluon rich environment

$\boldsymbol{\$}$ Glueball production rate in J/ψ radiative decays could be higher than normal hadrons

- Isospin filter: final states dominated by I=0 processes
- Spin-parity filter: C parity must be +, so J^{pc}=0⁻⁺, 0⁺⁺, 1⁺⁺, 2⁺⁺, 2⁻⁺...
- Clean environment in electron-positron collision: very different from proton-proton collision
- Ideal place for glueball search

BESIII Data samples

$M(\pi^+\pi^-\eta')(GeV/c^2)$ Observation of the X(2370) in $J/\psi \rightarrow \gamma \pi \pi \eta^2$ and $J/\psi \rightarrow \gamma K K \eta^2$

- Discovery of the X(2370) by BESIII in $J/\psi \rightarrow \gamma \pi \pi \eta^{2}$
- Confirmation of the X(2370) in $J/\psi \rightarrow \gamma KK\eta'$ with 8.3 σ
- **property consistent to LQCD prediction**
 - Its mass is consistent with LQCD prediction
 - Strongly produced in the gluon-rich J/ψ radiative decays
 - Flavor symmetric decay modes of $\pi\pi\eta$ ' and KK η

A good candidate for 0⁻⁺ glueball: first observation of one particle with mass, production and decay

Determination of its spin-parity is crucial !

7

PRL 132 (2024) 181901

LQCD prediction on lightest pseudoscalar glueball:

 $J^{pc} = 0^{-+}$

 $M = 2395 \pm 14 MeV$

 $B(J/\psi \rightarrow \gamma G_{0-+}) = (2.31 \pm 0.80) \times 10^{-4}$

<u>PRD 100 (2019) 054511</u>

Final results

- The measurements are in a good agreement with the predictions on **lightest pseudoscalar glueball**
 - The spin-parity of the X(2370) is determined to be 0⁻⁺ for the first time
 - Mass is in a good agreement with LQCD predictions
 - + The estimation on B(J/ $\psi \rightarrow \gamma X(2370)$) and prediction on B(J/ $\psi \rightarrow \gamma G_{0-+}$) are consistent within errors (assuming ~5% decay rate, $B(J/\psi \rightarrow \gamma)$ $X(2370)) = (10.7^{+22.8} - 7) \times 10^{-4})$

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

Qualitatively, we can clearly observe: same decay modes between the X(2370) and η_c if phase space allows

In the upper KK mass band of 1.5-1.7GeV range, clear signals of both X(2370) and η_c

In the lower KK mass band of f₀(980), no **X(2370), nor** η_c

> Such high similarity between the X(2370) and η_c decay modes strongly supports the glueball interpretation of the X(2370)

Study in $J/\psi \rightarrow \gamma K^0_s K^0_s \eta$

10

Discovery of a Glueball-like Particle: X(2370)

- Only one resonance observed with mass, s consistent to 0⁻⁺ glueball expectation
 - + In the mass range of 2.3 2.6GeV: consistent with LQCD prediction
 - + Production rate in the J/ψ radiative decays: consistent with LQCD prediction
 - + Decay property highly similarity to η_c : two favorite decay modes of $\pi^+\pi^-\eta'$ and $K\bar{K}\eta'$

Only one resonance observed with mass, spin-parity, production rate and decay property

11

	X(2370)	ηc
f ₀ (980)η'	\checkmark	\checkmark
f ₀ (980)η	Suppressed	Suppressed
f ₀ (1500)η	\checkmark	\checkmark

The X(2370) decay properties:

- + Major decay mode $f_0(980)\eta'$ with large $s\bar{s}$ component: disfavor the pure $u\bar{u} + d\bar{d}$ meson interpretation
- + Major decay mode $f_0(1500)\eta$ with large $u\bar{u} + d\bar{d}$ component: disfavor the pure $s\bar{s}$ meson interpretation
- The suppression of $f_0(980)\eta$ mode: disfavor the pure $s\bar{s}$ meson interpretation +
- + The high similarities between X(2370) and η_c decay modes strongly support the 0⁻⁺ glueball interpretation
- The X(2370) production properties:
 - richly produced in J/ψ radiative decays as the glueball expectation •
 - + In the mass region larger than 2.3GeV, the unique particle X(2370) for the 0⁻⁺ glueball candidate in J/ψ radiative decays and two golden decay modes ($\pi\pi\eta'$ and $KK\eta'$)

X(2370) Properties

Interpertation on the X(2370)

Disfavors $q\bar{q}$ meson with pure $u\bar{u}/d\bar{d}$ component

Disfavors $q\bar{q}$ meson with pure $s\bar{s}$ component

Disfavors $q\bar{q}$ **meson with pure** $s\bar{s}$ **component**

Scalar Glueball Candidates — $f_0(1710)$

۲ The f₀(1710) favors to be a scalar glueball or large glueball content if it is Large production rate: $B(J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \eta \eta) = 2.35^{+0.13} - 0.11^{+1.24} - 0.74 \times 10^{-4}$ $B(J/\psi \rightarrow \gamma \eta)$ ◆ **Decay suppression in** $\eta \eta' : B[f_0(1710) \to \eta \eta' / f_0(1710) \to \pi \pi] < (2.9 \pm_{-0.9}^{+1.1}) \times 10^{-10}$ **Controversy:** Dynamic mixing mechanism?

Tensor Glueball Candidates — f₂(2340)

$$egin{aligned} \Gamma(J/\psi o \gamma G_{2^+}) &= 1.01(22) keV \ \Gamma(J/\psi o \gamma G_{2^+})/\Gamma_{tot} &= 1.1 imes 10^- \end{aligned}$$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

- Large production rate of f₂(2340): substantially lower than the LQCD prediction for tensor glueball
 - ★ B(J/ψ→γf₂(2340)→γηη) = $(3.8^{+0.62}_{-0.66} + 2.37)_{-2.07}$ × 10⁻⁵ (PRD 87,2013,092009)
 - + B(J/ ψ + $\gamma f_2(2340)$ + $\gamma \phi \phi$) = (1.91 ± 0.14^{+0.72}_{-0.73} × 10⁻⁴ (PRD 93,2016,1126))
 - ★ B(J/ψ→γf₂(2340)→γK_sK_s) =(5.54^{+0.34}_{-0.40} +3.82 × 10⁻⁵ (PRD 98,2018,072003)
 - + B(J/ ψ \rightarrow $\gamma f_2(2340) \rightarrow \gamma \eta' \eta') = (8.67 \pm 0.70^{+0.16}_{-1.67} \times 10^{-6} (\text{PRD 105}, 2022, 072002))$
- Difficulty: Many wide f₂ mesons and large overlaps in the mass region of 2.3GeV (2⁺⁺ glueball mass from the LQCD predictions)
 - Studies are strongly model dependent.

Exotic 1-+ state $n_1 I^G(I^{PC}) = 0^+(1^{-+})$

Observation of Exotic 1-+ Isovector state $\pi(1600)$

Observation of An Exotic 1-+ Isoscalar state $\eta_1(1855)$

Isoscalar 1⁻⁺ is critical to establish the hybrid nonet: partners for the Isovector 1⁻⁺ candidates $\pi(1600)$

Observation of $X(p\bar{p})$ **and** X(1835)

- + Discovered in $J/\psi \rightarrow \gamma p \bar{p}$ by BESII in 2003 and confirmed by BESIII and CLEO-c Further determination of Spin-parity to be 0++
- + No similar threshold structure in other channels \rightarrow It can not be pure FSI effect
 - $M = 1832^{+19}_{-5}^{+18}_{-17} \pm 19 MeV/c^2$, $\Gamma = 13 \pm 19 MeV/c^2$ (<76 MeV/c²@90% C.L.)

- ♦ X(1835) :
 - Discovered by BESII and confirmed by BESIII in $J/\psi \rightarrow \gamma \pi \pi \eta'$
 - Determination of Spin-parity to be 0-+ in $J/\psi \rightarrow K_s K_s \eta$
 - $M = 1844 \pm 9^{+16} 25 MeV/c^{2}$
 - $\Gamma = 192^{+20}_{-17}^{+62}_{-43} \text{ MeV/c}^2$

$M(6\pi)$ (GeV/ c^2) Direct link between the $X(p\bar{p})$ and X(1835)

- - bound state
- ۲
- ۲
 - + X(1835) contains a sizable $s\bar{s}$ component

$\eta(1405) - \eta(1475)$

- The first 0-+ glueball candidate $\eta(1405)$: mass incompatible with LQCD prediction
- * $\eta(1295)$ and $\eta(1475)$ are generally assigned to be the first radial excitation of the ground states of η and η'
 - + $\eta(1405) \eta(1475)$ puzzle :Whether or not the $\eta(1405) \eta(1475)$ are 1 or 2 states?

Data
$$f_1(1285)$$

 $f_1(1420)$
 $f_0(2330)$
 $f_2(2010)$
 η_c
 $\eta_c(1405)$
 $f_1(1510)$
 $X(1835)$
 $f_2(1950)$
 $f_2(1525)$

Observation of X(2600) in $J/\psi \rightarrow \gamma \pi \pi \eta'$

+ Two decays modes: $X(2600) \rightarrow f_0(1500)/X(1540)\eta', f_0(1500)/X(1540) \rightarrow \pi^+\pi^-$

★ Explanation: η radial excitation or exotic hadron?

* Besides of X(1835), X(2120), X(2370), η_c , observation of X(2600) with >20 σ in $J/\psi \to \gamma \pi \pi \eta'$

- A set of interesting and important results from the light hadron spectra achieved:
- + Discovery of a glueball-like particle: X(2370)
 - + Strong correlation between the X(1835) and mppb threshold enhancement. A molecule state or a bound state?
 - + Observation of An Exotic 1⁻⁺ Isoscalar state $\eta_1(1855)$ and Isovector state $\pi(1600)$
- With the more data, the more extensive and intensive investigation is ongoing, looking forward to new results in the near future.

