

Istituto Nazionale di Fisica Nucleare

Exotic spectroscopy at LHCb

Gabriele Romolini

on behalf of the LHCb collaboration

July 8, 2024

QNP 2024

Introduction

Exotic hadrons

All states with internal structure different from conventional qq or qqq states

- Glueballs
 - No valence quarks, only gluons
- Hadronic molecules
 - Color-singlet hadrons bound by residual nuclear forces
- Tetraquarks and Pentaquarks
 - Bound state of quark and antiquark
- Hadro-quarkonium
 - QQ core state bound to cloud of light quarks and gluons

Exotic spectroscopy at LHCb

The X(3872), aka χ_{c1} (3872), is the first exotic candidate ever observed. [PhysRevLett 91, 262001 (2003)]

Many other exotic candidates have been discovered

The LHCb detector

Run1: 7-8 TeV, 2011-2012 Run2: 13 TeV, 2015-2016-2017-2018

9 fb⁻¹, with 2< η <5

Vertex reconstruction: $\Delta IP = (15 + 29/p_T)\mu m$

Momentum resolution: $\Delta p/p = -0.5-1\%$ (from 2 to 200 GeV)

Hadronic identification:

 $\epsilon_{K \rightarrow K}$ = ~95%, $\epsilon_{K \rightarrow \pi}$ = ~10% $\,$ (from 2 to 200 GeV)

Muon trigger efficiency:

ε > 90%

[IJMPA 30 (2015) 1530022]

Latest exotic study at LHCb

Observation of a doubly charmed tetraquark

- Narrow peak in the D⁰D⁰π⁺ spectrum just below the D^{*+}D⁰ threshold
- $\delta m = -273 \pm 61 \pm 5^{+11}_{-14}$ keV, wrt D*+D⁰ mass threshold
- Γ = 410 ± 165 ± 43⁺¹⁸₋₃₈ keV
- Minimal quark content ccūd
- Consistent with the T⁺_{cc} isoscalar tetraquark
- J^P = 1⁺

[Nature Physics 18, 751–754 (2022)] [Nature Physics 13, 3351 (2022)]

New strange pentaquark candidate $\mathsf{P}_{\psi_s}^{\Lambda}$

Amplitude analysis of $B^- \rightarrow J/\psi \Lambda \bar{p}$

- ~4400 events
- High signal purity (93%)
- m_{B-}=5279.44 ± 0.05 ± 0.07 MeV

Model used:

- NR(J/ $\psi \overline{p}$)
- NR(Λp̄)
 - $\mathsf{K}_{4}^{*}(2045)^{-}, \mathsf{K}_{2}^{*}(2250)^{-}, \mathsf{K}_{3}^{*}(2320)^{-}$ outside the phase space but can contribute
- Combinatorial background
- $\mathsf{P}^{\Lambda}_{\psi_{\mathsf{s}}} \rightarrow \mathsf{J}/\psi\Lambda$ (new)

```
[PhysRevLett 131, 031901 (2023)]
```


New strange pentaquark candidate $\mathsf{P}^{\Lambda}_{\psi_{\circ}}$

- Baseline model $\rightarrow \chi^2$ /ndof = 120.8/47
- Default model $\rightarrow \chi^2$ /ndof = 55.3/51
- $m(P_{\psi}^{\Lambda}) = 4338.2 \pm 0.7 \pm 0.4$ MeV and $\Gamma(P_{\psi}^{\Lambda}) = 7.0 \pm 1.2 \pm 1.3$ MeV
- J = 1/2, odd parity preferred: $J^P = 1/2^+$ excluded at 90% C.L.
- First observation of a pentaquark with strange quark content: [ccuds], significance >100
- Very close to the $\Xi_c^+ D^-$ mass threshold

[PhysRevLett 131, 031901 (2023)]

Doubly charged tetraquark and neutral partner

Joint amplitude analysis of two channels (related by isospin symmetry)

- $B^0 \rightarrow \overline{D}{}^0 D^+_s \pi^- \sim 4000 \text{ events}$
- $B^+ \rightarrow D^- D_s^+ \pi^- \sim 3750$ events

Fit with only \overline{D}^* gives no satisfactory description

[PhysRevLett 131, 041902 (2023)] [PhysRevLett 108, 012017 (2023)]

Doubly charged tetraquark and neutral partner

- Peaking structure well described by adding a $J^{P} = 0^{+}$ state $T_{cs0}(2900)^{++/0}$ (**new**)
- m = 2908 ± 11 ± 20 MeV, Γ= 136 ± 23 ± 11 MeV
- Significance >9σ
- $J^{P} = 0^{+}$ favoured by >7.5 σ

[PhysRevLett 131, 041902 (2023)] [PhysRevLett 108, 012017 (2023)]

X(3960) observation

Amplitude analysis of $B^+ \rightarrow D_s^+ D_s^- K^+$

- 360 events
- Threshold enhancement in the D⁺_s D⁻_s mass spectrum

Model used:

- $\psi(4260), \psi(4660)$ (J^{PC} = 1⁻⁻) (known)
- X(3960), $X_0(4140)$ (J^{PC} = ???) (**new**)
- NR($D_s^+ D_s^- K^+$)

[PhysRevLett 131, 071901 (2023)]

X(3960) observation

- $m(x_{(3960)}) = 3956 \pm 5 \pm 10$ MeV, $\Gamma(x_{(3960)}) = 43 \pm 13 \pm 8$ MeV, significance > 12σ
- $X_0(4140)$ describe the dip near 4140 MeV, significance = 3.9 σ . The dip can be described also with $J/\psi\phi \rightarrow D_s^+D_s^-$ rescattering
- Both with preferred J^{PC}= 0⁺⁺
- X(3960) exotic candidate with minimal quark content [ccss]

[PhysRevLett 131, 071901 (2023)]

Evidence for a $J/\psi K_s^\circ$ structure

Amplitude analysis of $B^0 \rightarrow J/\psi \phi K_s^0$

- ~1900 events
- Search for the isospin partners of the $T_{\psi_{s1}}^{\theta^+}$ states observed in the B⁺ \rightarrow J/ $\psi\phi$ K⁺ decay [PhysRevLett 127, 082001 (2021)]

Model used:

- 9 excited K states
- 7 X (J/ $\psi\phi$ exotic states)
- Τ_{ψ_{s1}}(4220)
- $T_{\psi_{1}}^{\theta 0}$ (4000) (**new**)
- $NR(J/\psi\phi)$

[PhysRevLett 131, 131901 (2023)]

Evidence for a $J/\psi K_s^{\circ}$ structure

 $B^0 \rightarrow J/\psi \phi K_s^0$

- Simultaneous fit to the two channel because of the small sample size
- $M(T_{\psi_{s1}}^{00}(4000)) = 3991_{-10}^{+12} + 9_{-17}^{+9} \text{ MeV}, \Gamma(T_{\psi_{s1}}^{00}(4000)) = 105_{-25}^{+29} + 17_{-23}^{+17} \text{ MeV}, \text{ significance} = 4.0\sigma$
- Mass difference between neutral and charged state △M = -12 ^{+11 +6}_{-10 -4} MeV, consistent with the two states being isospin partners
- With isospin symmetry imposed significance = 5.4σ

[PhysRevLett 131, 131901 (2023)]

Prompt pentaquarks in charm final states

- Mass of observed pentaquarks is close to some hadron-hadron threshold
- Search for pentaquark decays into a range of $\Sigma_c \overline{D}$, $\Lambda_c^+ \overline{D}$, $\Sigma_c D$ and $\Lambda_c^+ D$
- 42 different modes are tested
 - Simultaneous extended maximum likelihood fit to signal region and sideband region
 - Scan of the Q-value in 4 MeV steps up to
 600 MeV to search for peaks
 - No clear signal observed, upper limits are set as function of Q-value
 - Signal model based on the known pentaquark states is also fitted, the signal yield is found to be consistent with zero in all cases

[arXiv:2404.07131]

$\chi_{c1}(3872)$ nature using radiative decays

 $B^+ \rightarrow \chi_{c1}(3872)K^+$ decay to measure the ratio:

$$\mathscr{R}_{\psi\gamma} \equiv \frac{\Gamma_{\chi_{c1}(3872) \to \psi(2S)\gamma}}{\Gamma_{\chi_{c1}(3872) \to J/\psi\gamma}}$$

- Different theoretical prediction depending on the model
- Allow us to study the nature of $\chi_{c1}(3872)$
- $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ first observation

[arXiv:2406.17006]

$\chi_{c1}(3872)$ nature using radiative decays

- $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ observed with 5.3 σ and 6.7 σ for Run1 and Run2
- $\mathscr{R}_{\psi\gamma} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$
- Strong argument in favour of a compact component in the $\chi_{c1}^{}(3872)$ structure
- Notably in tension with the upper limit set by the BESIII collaboration

[arXiv:2406.17006]

Future prospects and conclusions

Future prospects

- Many new states are expected and predicted (for example T_{bc}, T_{bb} based on the existence of T_{cc})
 - T_{bb} should be stable, binding energy order of 100 MeV
 - Production mechanism?
- In Run 3, with the removal of the L0 trigger, fully-hadronic final states are accessible allowing studies on open-flavour exotic states
- Prompt pentaquark production still unobserved

2024 (6.8 TeV): 2.38 /fb

2023 (6.8 TeV): 0.37 /fb 2022 (6.8 TeV): 0.82 /fb

2018 (6.5 TeV): 2.19 /ft

2015 (6.5 TeV): 0.33 /fb 2012 (4.0 TeV): 2.08 /fb

2011 (3.5 TeV): 1.11 /fb 2010 (3.5 TeV): 0.04 /fb

May

2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb 2016 (6.5 TeV): 1.67 /fb

Jul

3.9

3.6

3.2

2.8

2.4

1.6

1.2

0.8

0.4

Mar

Integrated Recorded Luminosity (1/fb)

[Eur. Phys. J. A 56, 177 (2020)] [PhysRevLett 102, 094516 (2020)] [Physics Letters B 814, 136095 (2021)]

- Heavy hadron spectroscopy is a highly rich and productive field, with new exotic hadrons being discovered every year
- The spectroscopy of heavy hadrons is essential for a better understanding of the dynamics and binding rules of QCD
- Largely unexplored territory
- Collaboration between the experimental and theoretical communities is essential

Thanks for your attention

Models for multiquark states

Hadronic molecule:

- Low binding energy, narrow states
- Only S-wave, few states predicted
- Independently decaying components
- Mass close to two-body threshold

Compact multiquark:

- Tightly bound states
- Large prompt production at high p_T
- Rich isospin splitting (charged states)

Hadro-quarkonium:

- Open heavy flavour decays suppressed
- Binded quarkonium and light quarks
- No requirements on mass
- Not clear whether binding can happen

23

$\chi_{c1}(3872)$ nature using radiative decays

Reference	$\mathscr{R}_{\psi\gamma}$	
T. Barnes and S. Godfrey	5.8	$c\overline{c}$
T. Barnes, S. Godfrey and S. Swanson	2.6	$\overline{c}\overline{c}$
F. De Fazio	(1.64 ± 0.25)	$\overline{c}\overline{c}$
BQ. Li and K. T. Chao	1.3	\overline{cc}
Y. Dong <i>et al.</i>	1.3 - 5.8	\overline{cc}
A. M. Badalian <i>et al.</i>	(0.8 ± 0.2)	\overline{cc}
J. Ferretti, G. Galata and E. Santopinto	6.4	$\overline{c}\overline{c}$
A. M. Badalian, Yu. A. Simonov and B. L. G. Bakker	2.4	\overline{cc}
W. J. Deng <i>et al.</i>	1.3	\overline{cc}
F. Giacosa, M. Piotrowska and S. Goito	5.4	$c\overline{c}/vc$
E. S. Swanson	0.38%	$D\overline{D}^*$
Y. Dong <i>et al.</i>	0.33%	$\overline{D}\overline{D}^*$
D. P. Rathaud and A. K. Rai	0.25	$D\overline{D}^*$
R. F. Lebed and S. R. Martinez	0.33%	$D\overline{D}^*$
B. Grinstein, L. Maiani and A. D. Polosa	3.6%	$D\overline{D}^*$
FK. Guo et al.	$0.21(g_2'/g_2)^2$	$D\overline{D}^*$
D. AS. Molnar, R. F. Luiz and R. Higa	2 - 10	$D\overline{D}^*$
E. Cincioglu <i>et al.</i>	< 4	$D\overline{D}^*$
S. Takeuchi, M. Takizawa and K. Shimizu	1.1 - 3.4	$D\overline{D}^*$
B. Grinstein, L. Maiani and A. D. Polosa	$> (0.95^{+0.01}_{-0.07})$	$c\overline{c}q\overline{q}$