Puzzle for the Vector Meson Threshold Photoproduction

Igor Strakovsky

The George Washington University

- Vector Meson Zoo.
- Vector Meson Nucleon Scattering Length.
 - MAMI & ELPH for Omega.
 - JLab for Phi & J/Psi.
 - JLab for Phi.
 - JLab for J/Psi.
 - From CNF to EIC for Upsilon.
- How Unique LHCb Pc Evidence.
- Introduction to Interference.
 - Alternative Solution for GlueX J/Psi data.
 - Cusp effects.
- Summary.

7/9/2024

Vector Meson Zoo

- Some vector mesons can, compared to other mesons, be measured to very high precision.
- This stems from fact that *vector mesons* have *same* quantum numbers as *photon*.

Vector Meson – Nucleon SL

7/9/2024

QNP 2024, Barcelona, Spain, July 2024

Vector Meson – Nucleon Scattering Length Determination

IIS, D. Epifanov, & L. Pentchev, Phys Rev C 101, 042201 (2020 IIS, L. Pentchev, & A.I. Titov, Phys Rev C 101, 045201 (2020)

- Small *positive* or *negative VN SL* may indicate weakly *repulsive* or *attractive VN* interaction if there is no VN bound state below experimental *q_{min}*.
- For evaluation of *absolute* value of *VN SL*, we apply *VMD* approach that links near-threshold photoproduction *Xsections* of $\gamma p \rightarrow Vp$ & elastic $Vp \rightarrow Vp$

 $\gamma p \rightarrow \omega p \rightarrow \pi^0 \gamma p \rightarrow 3 \gamma p$ Measurements from A2 I **PDG** BR($\omega \rightarrow \pi^0 \gamma$) = 8.4%

QNP 2024, Barcelona, Spain, July 2024

IIS, L. Pentchev, & A.I. Titov, Phys Rev C 101, 045201 (2020)

• *Legendre* polynomial extension

$$d\sigma/d\Omega(E_{\gamma},\cos\theta) = \sum_{j=0} A_j(E_{\gamma})P_j(\cos\theta)$$

is way to determine σ_t

$$\sigma_t = 4\pi A_0(E_\gamma)$$

Experimental Evidence for Attractive $p\phi$ Interaction from

S. Acharya et al. Phys Rev Lett 127, 172301 (2021)

• Recently, Collaboration has deduced spin averaged $p\phi$ SL

 $a_{\phi N} = -(0.85 \pm 0.34 \pm 0.14) + i(0.16 \pm 0.10 \pm 0.09) \text{ fm}$

from *two-particle momentum correlation function* using *Lednicky-Lyuboshits* approach R. Lednicky & V.L. Lyuboshits, Sov J Nucl Phys **35**, 770 (1982)

- Actually, is doing *two-particle correlations* of combined $p\phi \& \bar{p}\phi$ pairs measured in *high-multiplicity* in *pp* collisions @ W = 13 TeV.
- Besides, FSI correlation C(k) depends on production mechanism.

• Then, () assumes that *proton* & ϕ are produced *independently* @ ~ 1 fm distance.

• Another problem is that it is practically impossible to observe $p\phi$ (or any *vector meson*) correlation (@ very small $p\phi$ energy, *i.e.*, *near threshold*) @ ϕ (with ϕ or another detector).

Attractive Nø Interaction from

QNP 2024, Barcelona, Spain, July 2024

J/ Wp Scattering Length from Gue

• All previous *theoretical* results (including *potential* approaches & LQCD calculations) gave much-much larger SL.

7/9/2024

QNP 2024, Barcelona, Spain, July 2024

- *Ouasi-data* were generated using *QCD* approach using *QCD* approach
- Further optimization of the low- Q^2 taggers may allow even smaller q_{min} to be achieved.

It was assumed total integrated luminosity of 100 fb⁻¹ for photoproduction @ D, which corresponds to 116 days of beam with 10³⁴ cm⁻² s⁻¹, for MC calculations.
 O. Gryniuk *et al.* Phys Rev D 102, 014016 (2020)

IIS, W.J. Briscoe, L. Pentchev, & A. Schmidt, Phys Rev C 104, 074028 (2021

• *QCD* production amplitude can be factorized in terms of *gluonic generalized parton distributions (GPD)* & *quarkonium* distribution amplitude on one side & hard *quark-gluon* interaction on other side.

Y. Guo, X. Ji, & Y. Liu, Phys Rev D 103, 096010 (2021)

Narrow Pentaquarks from $\Lambda_{h} \rightarrow J/\psi p K^{-}$

Search for Pentaquark State Decaying into pJ/ ψ in Y(1S) Inclusive Decays @ X. Dong et al. arXiv:2403.04340 lbox.org

• Using the data samples of 102 million $\Upsilon(1S)$ and 158 million $\Upsilon(2S)$ events collected by the Belle detector, we search for a pentaquark state in the pJ/ψ final state from $\Upsilon(1,2S)$ inclusive decays. Here, the charge-conjugate $\bar{p}J/\psi$ is included. We observe clear pJ/ψ production in $\Upsilon(1,2S)$ decays and measure the branching fractions to be $\mathcal{B}[\Upsilon(1S) \to pJ/\psi + anything] = [4.27 \pm 0.16(stat.) \pm 0.20(syst.)] \times 10^{-5}$ and $\mathcal{B}[\Upsilon(2S) \to pJ/\psi + anything] = [3.59 \pm 0.14(stat.) \pm 0.16(syst.)] \times 10^{-5}$. We also measure the cross section of inclusive pJ/ψ production in e^+e^- annihilation to be $\sigma(e^+e^- \to pJ/\psi + anything) = [57.5 \pm 2.1(stat.) \pm 2.5(syst.)]$ fb at $\sqrt{s} = 10.52$ GeV using an 89.5 fb⁻¹ continuum data sample. There is no significant $P_c(4312)^+$, $P_c(4440)^+$ or $P_c(4457)^+$ signal found in the pJ/ψ final states in $\Upsilon(1, 2S)$ inclusive decays. We determine the upper limits of $\mathcal{B}[\Upsilon(1, 2S) \to P_c^+ + anything] \cdot \mathcal{B}(P_c^+ \to pJ/\psi)$ to be at the 10^{-6} level.

Search for Pentaquark State in Charm Hadron LHCb Final State @

R. Arij et al arXiv:2404.07131 [hep-ex]

• A search for hidden-charm pentaquark states decaying to a range of $\Sigma_c \overline{D}$ and $\Lambda_c^+ \overline{D}$ final states, as well as doubly-charmed pentaquark states to $\Sigma_c D$ and $\Lambda_c^+ D$, is made using samples of proton-proton collision data corresponding to an integrated luminosity of 5.7 fb⁻¹ recorded by the \mathcal{M}_c^{CD} detector at $\sqrt{s} = 13$ TeV. Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of the Λ_c^+ baryon in the $\Lambda_c^+ \to pK^-\pi^+$ decay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases.

- I do not think these new results may ``kill" hidden charm states.
- Point is that we do not know theoretically expected Xsec & BR.
- Now, these results are just some additional constraints on pentaquark model.

Search for Pentaquark State in $J/\psi p \in J/\psi \bar{p}$ in $B_s^0 \to J/\psi p \bar{p}$ Decays *LHCK* Observation $O_J J/\psi \Lambda Res$ Consistent with Strange 5q Candidate in $B^- \to J/\psi \Lambda \bar{p}$ Decay Bump Hunting An amplitude analysis of flavor universal P^0 is the second state of the second state

• An amplitude analysis of flavor-untagged $B_s^0 \rightarrow J/\psi p \bar{p}$ decays is performed using a sample of 797 ± 31 decays reconstructed with the I_{HCD}^{PD} detector. The data, collected in proton-proton collisions between 2011 and 2018, correspond to an integrated luminosity of 9 fb⁻¹. Evidence for a new structure in the $J/\psi p$ and $J/\psi \bar{p}$ systems with a mass of $4337_{-4}^{+7} + 2_{-2}^{+2}$ MeV and a width of $29_{-12}^{+26} + 14_{-14}^{+14}$ MeV is found, where the first uncertainty is statistical and the second systematic, with a significance in the range of 3.1 to 3.7σ , depending on the assigned J^P hypothesis.

<mark>3.1σ to 3.7σ</mark> ⋛ 60 Ј Candidates/(0.01 GeV) Candidates/(0.01 40 2020 4.3 4.2 4.1 4.4 4.1 4.2 4.3 4.4 $m(J/\psi \ \overline{p})$ [GeV] $m(J/\psi p)$ [GeV]

• An amplitude analysis of $B^- \rightarrow J/\psi \Lambda \overline{p}$ decays is performed using 4400 signal candidates selected on a data sample of pp collisions recorded at center-of-mass energies of 7, 8, and 13 TeV with the LHCb detector, corresponding to an integrated luminosity of 9 fb⁻¹. A narrow resonance in the $J/\psi \Lambda$ system, consistent with a pentaquark candidate with strangeness, is observed with high significance. The mass and the width of this new state are measured to be $4338.2 \pm 0.7 \pm 0.4$ MeV and $7.0 \pm 1.2 \pm 1.3$ MeV, where the first uncertainty is statistical and the second systematic. The spin is determined to be 1/2 and negative parity is preferred. Because of the small Q-value of the reaction, the most precise single measurement of the B^- mass to date, $5279.44 \pm 0.05 \pm 0.07$ MeV, is obtained.

- They claim that mass resolution is much better than 10 MeV (4337-4312 = 25 MeV).
- However, one can *exclude* that P(4337) is the same as P(4312).

15<mark>σ</mark> LHCD FHCD 180F Data Nominal fit 9 fb⁻¹ 160— Null-hyp. fit Candidates/(2 MeV) 14($-NR(J/\psi \overline{p})$ $NR(\Lambda \overline{p})$ 120 Background 100 80 60 40 20 0⊑ 4.2 4.25 4.3 4.35 $m(J/\psi A)$ [GeV]

R. Arij et al Phys Rev Lett 128, 062001 (2022)

7/9/2024

When looking at Maxwell equations, it is hard to imagine how beautiful the **rainbow** is. Richard Feynman

Similar may be said about Quantum Interference.

Everybody knows that the interference does exist. But it is not always easy to imagine how it will work in a particular case.

Yakov Azimov

Interference

a. Azimov, J Phys G 37

• Quantum Interference may be seen in complementary variable – energy (mass in rest frame):

• It is seen here as *deformation* of **BW** peaks.

7/9/2024

(qu)

7/9/2024

Alternative Solution for Guilt Data

IIS, W.J. Briscoe, E. Chudakov, I. Larin, L. Pentchev, A. Schmidt, & R.L. Workman, Phys Rev C 108, 015202 (2023

S. Adhikari et al, Phys Rev C 108, 025201 (20

QNP 2024, Barcelona, Spain, July 2024

- "Young" VM hypothesis may explain fact that obtained SL value for φ-meson nucleon compared to typical hadron size of 1 fm indicates that proton is more transparent for φ-meson compared to α-meson & is much less transparent that J/ψ-meson.
- Future \bigoplus & \bigoplus high-quality experiments will have chance to evaluate physics for J/ψ & *Y*-mesons.
- It allows us to understand dynamics of cc & bb production
 @ threshold & to look for effect of CC P_c(4312).

- *Compared* ability to measure $\pi^- p \to \phi n \& \pi^- p \to J/\psi n$ @ thresholds, which are free from VMD, is important input to phenomenology (PWA).
- *Polarized measurements* are important contribution for model independent PWA.

UMMAR

Exclusive ϕ Electroproduction from closes

F.-X. Girod, M. Guidal, A. Kubarovsky, V. Kubarovsky, P. Stoler, C. Weiss et al, PR12–12–00

• Diff Xsec $d\sigma/dt$ is sensitive probe

Igor Strakovsky

25

• Don't have *vector meson* beams, so experiments @ modern *EM*-accelerators attempt to access such interactions via *EM* production reactions $ep \rightarrow e'Vp$.

• ϕ -meson electroproduction DB is limited & there are no thr measurements which are suitable to evaluate ϕN SL.

• Simple empirical parametrization for Xsec was constructed.

QNP 2024, Barcelona, Spain, July 2024

Interpretation of $P_c(4312)^+$

• Interpretation of $P_c(4312)^+$ is consistent with

• *Pole structure* of $P_c(4312)^+$ & uniformized *S-matrix*.

L.M. Santos, V.A.A. Chavez, & D.L. Sombillo, arXiv:2405.11906 [hep-ph] D. Winney et al, Phys Rev D 108, 5 (2023)

Ya. Azimov, J Phys G 37, 023001 (2010

Inter

erence

• Same phenomenon may be *seen* in complementary variable – energy (mass in rest frame):

• It is seen here as *deformation* of **BW** peaks.

• Pure BW term:
$$|a|(E - E_0 + i\Gamma/2)^{-1}|^2 = |a|^2 [(E - E_0)^2 + \Gamma^2/4]^{-1}$$

• BW with background:
$$|B + a (E - E_0 + i \Gamma/2)^{-1}|^2$$

 $= |B|^2$
 $+ |a|^2 [(E - E_0)^2 + \Gamma^2/4]^{-1}$
 $+ [2 |B a/ \cos\phi (E - E_0) + |B a/ \sin\phi \Gamma] \times [(E - E_0)^2 + \Gamma^2/4]^{-1}$ interference term

Role of interference depends on relative value & on relative phase ϕ of B & a; it is *linear* in a, may change sign & be either **positive** or **negative**.

- @ small value of |a/B| interference term may be more essential than proper BW contribution.
- Due to additional *E*-dependence, interference *may change sign*, provide either bump, or **dip**, or **both**.
- Bump &/or dip positions are, in general, shifted from *true position* of resonance.
- Same resonance may interfere differently in different decay modes.

