





æ

イロト イヨト イヨト イヨト

# Spin density matrix elements in polarized photoproduction of resonances

Vanamali Shastry

Indiana University

with V. Mathieu, G. Montaña, A. Szczepaniak, and others

10 July, 2024

Funded by US DoE

Goal: Understanding the photoproduction of light hybrid meson

- $\pi_1(1600)$  is a  $5\pi$  resonance  $(\pi_1 \rightarrow b_1 \pi \rightarrow (\omega \pi) \pi \rightarrow ((3\pi) \pi) \pi)$
- π<sub>1</sub>(1600) production cross section is larger when produced with Δ compared to proton [1].
- Single  $\pi$ -photoproduction is well understood (Gloria's talk, Tue)
- $\pi\Delta$  and  $b_1\Delta$  production
  - $\pi$  exchange process is to be understood (gauge invariance).
  - What is the physics behind the photoproduction of  $\pi(b_1)\Delta$ ?
  - Understand the lower vertex and absorption processes.
  - To what extent do the two vertices influence the SDMEs of the resonances? ( $\Delta$ -SDMEs from  $\pi\Delta$  vs  $b_1\Delta$ )
- Available observables:  $\frac{d\sigma}{dt}$ ,  $\Sigma$ ,  $\rho^{0,1,2}$ .
- SDMEs can be used to model the production amplitude.





イロト イヨト イヨト イヨト

The  $ec{\gamma} p o \pi \Delta o \pi(p\pi)$  amplitude is given by,

$$A_{\lambda_{\gamma},\lambda_{1},\lambda_{2}}(\Omega) = \sum_{\lambda_{\Delta}} T_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}(s,t) D_{\lambda_{\Delta},\lambda_{2}}^{3/2*}(\Omega)$$
(1)

The intensity is given by,

$$I(\Omega, \Phi, P_{\gamma}) = \frac{\kappa}{2} \sum_{\lambda_{\gamma}^{(\prime)}, \lambda_{1}, \lambda_{2}} A_{\lambda_{\gamma}, \lambda_{1}, \lambda_{2}}(\Omega) \hat{\rho}_{\lambda_{\gamma}, \lambda_{\gamma}'} A^{*}_{\lambda_{\gamma}', \lambda_{1}\lambda_{2}}(\Omega)$$
(2)

where  $\kappa$  is the phase space factor.  $\Omega = (\theta, \phi)$  are the  $\Delta$ -decay angles.

$$I(\Omega, \Phi) = 2N \left\{ \rho_{33}^0 \sin^2 \theta + \rho_{11}^0 \left( \frac{1}{3} + \cos^2 \theta \right) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^0 \sin 2\theta \cos \phi - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^0 \sin^2 \theta \cos 2\phi - P_{\gamma} \cos 2\Phi \left[ \rho_{33}^1 \sin^2 \theta + \rho_{11}^1 \left( \frac{1}{3} + \cos^2 \theta \right) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^1 \sin 2\theta \cos \phi - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^1 \sin^2 \theta \cos 2\phi - P_{\gamma} \sin 2\Phi \left[ \frac{2}{\sqrt{3}} \operatorname{Im} \rho_{31}^2 \sin 2\theta \sin \phi + \frac{2}{\sqrt{3}} \operatorname{Im} \rho_{3-1}^2 \sin^2 \theta \sin 2\phi \right] \right\}.$$
 (3)

where the SDMEs are defined as,

$$\rho^{0}_{\lambda_{\Delta}\lambda_{\Delta}'} = \frac{1}{2N} \sum_{\lambda_{\gamma}\lambda_{1}} \tau_{\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}} \tau^{*}_{\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}'}, \quad \rho^{1}_{\lambda_{\Delta}\lambda_{\Delta}'} = \frac{1}{2N} \sum_{\lambda_{\gamma}\lambda_{1}} \tau_{\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}} \tau^{*}_{-\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}'}$$
(4)

$$\rho_{\lambda_{\Delta}\lambda_{\Delta}'}^{2} = \frac{-i}{2N} \sum_{\lambda_{\gamma}\lambda_{1}} \lambda_{\gamma} \tau_{\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}} \tau_{-\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}'}^{*}$$
(5)

・ロト・日本・日本・日本・日本

QNP2024

## Large-s scattering:

- Large- $s \rightarrow$  exponential fall-off
- Residual (polynomial) behavior [2]

$$rac{d\sigma}{dt}=eta^R(t)s^{2lpha_{
m eff}-2}$$

- Residual interaction can be modeled using Regge theory.
- Two distinct trajectories (small-*t* and large-*t*).
- Similar cross-section as single pion photoproduction at large-*t*

<u>→</u> π<sup>-</sup> Δ<sup>\*\*</sup> +0.4 (b) +0.2  $\alpha(t)$ 0.4  $\frac{d\sigma}{dt} \left( \frac{\mu b}{GeV^2} \right)$ t GoV 8 64 16 GeV 0.001  $\gamma \rho \rightarrow \pi^+ n$ 0.0001 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 0.4 0.6 -t GeV<sup>2</sup>

Figure:  $\pi \Delta$  photoproduction cross section as reported in Ref. [3].

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

훈

QNP2024

GlueX operates at  $E_\gamma \sim$  9 GeV

(6)

- Simple model; exchange of  $\pi, \ \rho, \ b_1, \ a_2$
- Upper and lower vertices factorize
- The phases of the amplitudes are fixed by the Regge theory.
- Poor man's absorption (PMA) model for π-exchange [4].



Figure: The *t*-channel photoproduction process of  $\pi\Delta$ . *U* and *L* are the upper and lower vertices.

General form of the helicity amplitude is [5]

$$\mathcal{T}_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}(s,t) = \sum_{\times} \left[ \xi_{\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}} \mathcal{T}_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}^{\times}(s,t) \right] ; \qquad \times \in \{\pi,\rho,b_{1},a_{2}\}$$
(7)

$$\mathcal{T}_{\lambda\gamma,\lambda_{1},\lambda_{\Delta}}^{\times}(s,t) = \sqrt{-t} |\lambda_{\gamma}| \sqrt{-t} |\lambda_{1}-\lambda_{\Delta}| \hat{\beta}_{\lambda\gamma}^{\times,U}(t) \hat{\beta}_{\lambda_{1},\lambda_{\Delta}}^{\times,L}(t) \mathcal{P}_{R}^{\times}(s,t) \mathcal{S}_{\times}(t)$$
(8)

• Like exchanges take the same form of the vertex (exchange degeneracy):

$$\hat{\beta}_{\lambda_1,\lambda_{\Delta}}^{\pi,L}(t) = \hat{\beta}_{\lambda_1,\lambda_{\Delta}}^{b_1,L}(t); \qquad \hat{\beta}_{\lambda_1,\lambda_{\Delta}}^{\rho,L}(t) = \hat{\beta}_{\lambda_1,\lambda_{\Delta}}^{a_2,L}(t)$$

- Overall (exponential + polynomial) suppression factors for each exchange (also removes wrong signature poles)
- Residues are polynomials in *t*, coupling constants fitted+fixed.
- (Irving & Worden model [2] has constant residues, all fixed phenomenologically.)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●



QNP2024

### Reflectivity basis

- Reflectivity operation involves 180° rotation about the "y-axis" + parity inversion ⇒ inversion of the "y-axis" [6, 7].
- The amplitude in the reflectivity basis can be defined as (valid for  $\gamma p \rightarrow \pi \Delta$ ):

$$\mathcal{T}_{\lambda_{1},\lambda_{\Delta}}^{(\epsilon)}(s,t) = \frac{1}{2} \left( \mathcal{T}_{1,\lambda_{1},\lambda_{\Delta}}(s,t) + \epsilon \mathcal{T}_{-1,\lambda_{1},\lambda_{\Delta}}(s,t) \right)$$
(9)

The SDMEs take the form,

$$\rho_{\lambda_{\Delta}\lambda_{\Delta}'}^{0} = \frac{1}{N} \sum_{\lambda_{1}} \left[ \mathcal{T}_{\lambda_{1},\lambda_{\Delta}}^{(+)} \mathcal{T}_{\lambda_{1},\lambda_{\Delta}'}^{(+)*} + \mathcal{T}_{\lambda_{1},\lambda_{\Delta}}^{(-)} \mathcal{T}_{\lambda_{1},\lambda_{\Delta}'}^{(-)*} \right]$$
(10)

$$\rho_{\lambda_{\Delta}\lambda_{\Delta}'}^{1} = \frac{1}{N} \sum_{\lambda_{1}} \left[ \mathcal{T}_{\lambda_{1},\lambda_{\Delta}}^{(+)} \mathcal{T}_{\lambda_{1},\lambda_{\Delta}'}^{(+)*} - \mathcal{T}_{\lambda_{1},\lambda_{\Delta}}^{(-)} \mathcal{T}_{\lambda_{1},\lambda_{\Delta}'}^{(-)*} \right]$$
(11)

• The  $\epsilon = (-)+$  amplitudes are dominated by (un)natural parity meson exchange. Natural and Unnatural amplitudes

$$N_{-1} = T_{\frac{1}{2}\frac{3}{2}}^{(+)} \qquad N_0 = T_{\frac{1}{2}\frac{1}{2}}^{(+)} \qquad N_1 = T_{\frac{1}{2}-\frac{1}{2}}^{(+)} \qquad N_2 = T_{\frac{1}{2}-\frac{3}{2}}^{(+)} \qquad (12)$$
$$U_{-1} = T_{\frac{1}{2}\frac{3}{2}}^{(-)} \qquad U_0 = T_{\frac{1}{2}\frac{1}{2}}^{(-)} \qquad U_1 = T_{\frac{1}{2}-\frac{1}{2}}^{(-)} \qquad U_2 = T_{\frac{1}{2}-\frac{3}{2}}^{(-)} \qquad (13)$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E のQ (\* 7/21)</p>



Figure: Natural and unnatural cominations of SDMEs in the helicity frame.

The non-zero vaule of  $\rho_{33}^N$  at small-t indicates the presence of absorption corrections.

イロト イロト イヨト イヨト ヨー のくで

8/21

QNP2024



Figure: Natural and Unnatural amplitudes from the JPAC model compared with IWM.

QNP2024



Figure: The natural exchange amplitudes and their  $\rho$  and  ${\it a}_2$  components from the JPAC model compared with IWM.

QNP2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

# Conclusions

- A simplistic model that assumes Regge exchange and factorization
- Explains the general features the SDMEs of  $\pi\Delta$  photoproduction; needs fine tuning to match the data.
- Diagonal elements of  $\rho^{0,1}$  can be interpreted as sum/difference of production probabilities
- $\Delta$  is produced dominantly in the helicity  $\pm 1/2$  ( $\pm 3/2$ ) configuration at small-t (large-t)
- (Some of the) relative phases of helicity amplitudes can be fixed from SDMEs
- All amplitudes except the natural spin-nonflip amplitude experience absorption corrections
- Absorption is evident in the SDMEs and the BSA
- $\pi$ -exchange dominates small-t region;  $a_2$  exchange dominates the large-t region.
- Work in progress!

QNP2024

・ロト ・ 四ト ・ 国ト ・ 国ト - 三日 -

# Conclusions

- A simplistic model that assumes Regge exchange and factorization
- Explains the general features the SDMEs of  $\pi\Delta$  photoproduction; needs fine tuning to match the data.
- $\bullet$  Diagonal elements of  $\rho^{0,1}$  can be interpreted as sum/difference of production probabilities
- $\Delta$  is produced dominantly in the helicity  $\pm 1/2$  ( $\pm 3/2$ ) configuration at small-t (large-t)
- (Some of the) relative phases of helicity amplitudes can be fixed from SDMEs
- All amplitudes except the natural spin-nonflip amplitude experience absorption corrections
- Absorption is evident in the SDMEs and the BSA
- $\pi$ -exchange dominates small-t region;  $a_2$  exchange dominates the large-t region.
- Work in progress!

# Thank you!

QNP2024

・ロト ・ 四ト ・ 国ト ・ 国ト - 三日 -

# Bibliography I



#### F. Afzal et al.

An Upper Limit on the Photoproduction Cross Section of the Spin-Exotic  $\pi_1(1600)$ . 7 2024



A. C. Irving and R. P. Worden.

Regge Phenomenology. Phys. Rept., 34:117-231, 1977.



A. Bovarski, Robert E. Diebold, Stanley D. Ecklund, G. E. Fischer, Y. Murata, Burton Richter, and W. S. C. Williams, PHOTOPRODUCTION OF pi- delta++ (1236) FROM HYDROGEN FROM 5-GeV TO 16-GeV. Phys. Rev. Lett., 22:148-151, 1969.



P. K. Williams.

Extrapolation model for pi pi scattering. Phys. Rev. D. 1:1312-1318, 1970.



J. Nys, V. Mathieu, C. Fernández-Ramírez, A. Jackura, M. Mikhasenko, A. Pilloni, N. Sherrill, J. Ryckebusch, A. P. Szczepaniak, and G. Fox.

Features of  $\pi\Delta$  Photoproduction at High Energies. Phys. Lett. B. 779:77-81, 2018.



S. U. Chung and T. L. Trueman.

Positivity Conditions on the Spin Density Matrix: A Simple Parametrization. Phys. Rev. D. 11:633, 1975.



V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A. W. Jackura, M. Mikhasenko, A. Pilloni, and A. P. Szczepaniak.

Moments of angular distribution and beam asymmetries in  $\eta \pi^0$  photoproduction at GlueX. Phys. Rev. D, 100(5):054017, 2019.



E. Afzal et al.

Measurement of Spin-Density Matrix Elements in  $\Delta^{++}(1232)$  photoproduction. 6 2024.

イロト イポト イヨト イヨト

Back up





< □ > < @ > < E > < E > E の Q @ 13/21

| · · · · · · · · · · · · · · · · · · ·                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\hat{\beta}^{e,if}_{\mu_i\mu_f}$                             | Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\hat{\beta}_{+1}^{\pi,\gamma\pi}(t)$                         | $\sqrt{2}e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\hat{\beta}_{+1}^{\rho,\gamma\pi}(t)$                        | $\frac{g_{\rho\pi\gamma}}{2m_{\rho}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\hat{\beta}_{+1}^{b_1,\gamma\pi}(t)$                         | $\frac{g_{b_1\pi\gamma}}{2m_{b_1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\hat{\beta}_{+1}^{a_2,\gamma\pi}(t)$                         | $\frac{g_{a_2}\pi_{\gamma}}{2m_{a_2}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\hat{\beta}^{\pi,N\Delta}_{1}(t)$                            | $g_{\pi N\Delta}(\underline{m}_N + \underline{m}_{\Delta})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\hat{\beta}^{\pi,N\Delta}(t)$                                | $\sqrt{2m_\Delta}$<br>$g_{\pi N\Delta}(-m_N^2+m_Nm_\Delta+2m_\Delta^2+t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $p_{-\frac{1}{2}+\frac{1}{2}}(t)$                             | $\sqrt{6}m_{\Delta}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\beta_{+\frac{1}{2}+\frac{1}{2}}^{n,n\Delta}(t)$             | $-5\pi N\Delta (-10N_N-10N_N-14N_\Delta+10N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N-14N_N$ |
| $\hat{\beta}_{-\frac{1}{2}+\frac{3}{2}}^{\pi,N\Delta}(t)$     | $\frac{-g_{\pi N\Delta}}{\sqrt{2}m_{\Delta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\hat{\beta}^{\rho,N\Delta}_{1}(t)$                           | $\frac{-(2m_{\Delta}g^{(1)}_{\rho N\Delta}+g^{(2)}_{\rho N\Delta}(m_N-m_{\Delta}))}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $+\frac{1}{2}+\frac{3}{2}$                                    | $2m_{\Delta}^{2}$ $-(2m_{M}m_{\Delta}g^{(1)}, +g^{(2)}, (-m_{M}m_{\Delta}+m^{2}+2t)+2tg^{(3)}, )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\beta_{-\frac{1}{2}+\frac{1}{2}}^{\rho,\mathrm{N}\Delta}(t)$ | $\frac{(3M_{W}M_{\Delta}^{2}s_{\rho N\Delta}^{2}+s_{\rho N\Delta}^{2}(M_{W}M_{\Delta}^{2}+M_{\Delta}^{2}+30)+3S_{\rho N\Delta}^{2}}{2\sqrt{3}m_{\Delta}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\hat{\beta}_{+\frac{1}{2}+\frac{1}{2}}^{\rho,N\Delta}(t)$    | $\frac{-(2m_{\Delta}g^{(1)}_{\rho N\Delta}+g^{(2)}_{\rho N\Delta}(2m_N-3m_{\Delta})+2g^{(3)}_{\rho N\Delta}(m_N-m_{\Delta}))}{2\sqrt{3}m_{\Delta}^3}\left(-t\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\hat{\beta}^{\rho,N\Delta}_{-\frac{1}{2}+\frac{3}{2}}(t)$    | $\frac{g^{(2)}_{\rho N\Delta}}{2m^2_{\Delta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Residues from the JPAC model.

QNP2024

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 14/21



BSA from the JPAC model compared to the GlueX data [8].

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

$$\rho_{\frac{1}{2}\frac{1}{2}}^{0} + \rho_{\frac{1}{2}\frac{1}{2}}^{1} = \frac{2}{N} \left( |N_{0}|^{2} + |N_{1}|^{2} \right) \qquad \operatorname{Re} \left( \rho_{\frac{3}{2}\frac{1}{2}}^{0} + \rho_{\frac{3}{2}\frac{1}{2}}^{1} \right) = \frac{2}{N} \operatorname{Re} \left( N_{-1} N_{0}^{*} - N_{1} N_{2}^{*} \right)$$
(14)

$$\rho_{\frac{1}{2}\frac{1}{2}}^{0} - \rho_{\frac{1}{2}\frac{1}{2}}^{1} = \frac{2}{N} \left( |U_{0}|^{2} + |U_{1}|^{2} \right) \qquad \operatorname{Re}\left(\rho_{\frac{3}{2}\frac{1}{2}}^{0} - \rho_{\frac{3}{2}\frac{1}{2}}^{1} \right) = \frac{2}{N} \operatorname{Re}\left(U_{-1}U_{0}^{*} - U_{1}U_{2}^{*}\right)$$
(15)

$$\rho_{\frac{3}{2}\frac{3}{2}}^{0} + \rho_{\frac{3}{2}\frac{3}{2}}^{1} = \frac{2}{N} \left( |N_{-1}|^{2} + |N_{2}|^{2} \right) \quad \operatorname{Re}\left(\rho_{\frac{3}{2}-\frac{1}{2}}^{0} + \rho_{\frac{3}{2}-\frac{1}{2}}^{1} \right) = \frac{2}{N} \operatorname{Re}\left(N_{0}N_{2}^{*} + N_{1}N_{-1}^{*}\right)$$
(16)

$$\rho_{\frac{3}{2}\frac{3}{2}}^{0} - \rho_{\frac{3}{2}\frac{3}{2}}^{1} = \frac{2}{N} \left( |U_{-1}|^{2} + |U_{2}|^{2} \right) \quad \operatorname{Re} \left( \rho_{\frac{3}{2}-\frac{1}{2}}^{0} - \rho_{\frac{3}{2}-\frac{1}{2}}^{1} \right) = \frac{2}{N} \operatorname{Re} \left( U_{0} U_{2}^{*} + U_{1} U_{-1}^{*} \right)$$
(17)

$$\operatorname{Im} \rho_{\frac{3}{2}\frac{1}{2}}^{2} = \frac{1}{N} \operatorname{Re} \left( N_{-1}U_{0}^{*} + N_{2}U_{1}^{*} - N_{1}U_{2}^{*} - N_{0}U_{-1}^{*} \right)$$
(18)

$$Im \rho_{\frac{3}{2}-\frac{1}{2}}^{2} = \frac{1}{N} \operatorname{Re} \left( N_{-1}U_{1}^{*} - N_{2}U_{0}^{*} - U_{-1}N_{1}^{*} + U_{2}N_{0}^{*} \right)$$
(19)  
$$N = 2 \left( |N_{-1}|^{2} + |N_{0}|^{2} + |N_{1}|^{2} + |N_{2}|^{2} + |U_{-1}|^{2} + |U_{0}|^{2} + |U_{1}|^{2} + |U_{2}|^{2} \right)$$
(20)

$$\Sigma = \frac{2}{2N} \sum_{\sigma = -1, 0, 1, 2} (|N_{\sigma}|^2 - |U_{\sigma}|^2)$$

$$(21)$$

Vanamali Shastry

QNP2024

### Absorption

- Additional corrections to Regge exchange
- Experimental evidences in the form of
  - Non-zero polarization of  $\pi N o \pi N$  scattering
  - Forward scattering cross section of  $\pi\text{-photoproduction}$  (Gloria's talk on Tue)),  $np \to pn,$  etc
  - Peripheriality of π-exchange reactions
  - SDMEs and BSA of  $\pi\Delta$  photoproduction (more later)
- "Effective" way of taking care of multiple exchanges (FSI, etc).

$$\mathcal{T}_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}(s,t) = \sum_{\times} \left[ \xi_{\lambda_{\gamma}\lambda_{1}\lambda_{\Delta}} \mathcal{T}_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}^{\times}(s,t) \right] ; \qquad \times \in \{\pi,\rho,b_{1},a_{2}\}$$
(22)

$$\mathcal{T}_{\lambda\gamma,\lambda_{1},\lambda_{\Delta}}^{\times}(s,t) = \sqrt{-t} \, {}^{|\lambda\gamma|} \sqrt{-t} \, {}^{|\lambda_{1}-\lambda_{\Delta}|} \, \hat{\beta}_{\lambda\gamma}^{\times,0}(t) \, \hat{\beta}_{\lambda_{1},\lambda_{\Delta}}^{\times,L}(t) \, \mathcal{P}_{R}^{\times}(s,t) \, \mathcal{S}_{\times}(t)$$
(23)

- The  $\sqrt{-t}$  factors arise from angular mometum and the model
- The model factors for unnatural exchange are evaluated at  $t=m_\pi^2 
  ightarrow {\sf PMA}.$

Natural and Unnatural amplitudes

$$N_{-1} = T_{\frac{1}{2}\frac{3}{2}}^{(+)} \qquad N_0 = T_{\frac{1}{2}\frac{1}{2}}^{(+)} \qquad N_1 = T_{\frac{1}{2}-\frac{1}{2}}^{(+)} \qquad N_2 = T_{\frac{1}{2}-\frac{3}{2}}^{(+)}$$
(24)  
$$U_{-1} = T_{\frac{1}{2}\frac{3}{2}}^{(-)} \qquad U_0 = T_{\frac{1}{2}\frac{1}{2}}^{(-)} \qquad U_1 = T_{\frac{1}{2}-\frac{1}{2}}^{(-)} \qquad U_2 = T_{\frac{1}{2}-\frac{3}{2}}^{(-)}$$
(25)

 $\lambda_1 = -\frac{1}{2}$  amplitudes are related via parity. Eg:

$$\begin{split} N_{0} &= (\beta_{1}^{\rho} S_{\rho} \mathcal{P}_{\rho} - \beta_{1}^{a_{2}} S_{a_{2}} \mathcal{P}_{a_{2}}) \sqrt{-t} \beta_{\frac{1}{2}\frac{1}{2}}^{\rho} \\ N_{1} &= (\beta_{1}^{\rho} S_{\rho} \mathcal{P}_{\rho} - \beta_{1}^{a_{2}} S_{a_{2}} \mathcal{P}_{a_{2}}) (-t) \beta_{\frac{1}{2} - \frac{1}{2}}^{\rho} \\ &+ \frac{1}{2} (-\beta_{1}^{\pi} S_{\pi} \mathcal{P}_{\pi} + \beta_{1}^{b_{1}} \sqrt{-t} S_{b_{1}} \mathcal{P}_{b_{1}}) (-m_{\pi}^{2}) \left(1 - \frac{t}{m_{\pi}^{2}}\right) \beta_{\frac{1}{2} - \frac{1}{2}}^{\pi} \\ U_{0} &= (-\beta_{1}^{\pi} S_{\pi} \mathcal{P}_{\pi} + \beta_{1}^{b_{1}} \sqrt{-t} S_{b_{1}} \mathcal{P}_{b_{1}}) \sqrt{-t} \beta_{\frac{1}{2}\frac{1}{2}}^{\pi} \end{split}$$
(26)

$$U_{1} = \frac{1}{2} \left(-\beta_{1}^{\pi} S_{\pi} \mathcal{P}_{\pi} + \beta_{1}^{b_{1}} \sqrt{-t} S_{b_{1}} \mathcal{P}_{b_{1}}\right) \left(-m_{\pi}^{2}\right) \left(1 + \frac{t}{m_{\pi}^{2}}\right) \beta_{\frac{1}{2} - \frac{1}{2}}^{\pi}$$
(29)

- Absorption correction to natural exchanges No pole contributions
  - Negative reflectivity amplitudes are purely  $\pi$  and  $b_1$  exchanges
  - Positive reflectivity amplitudes are  $\rho$  and  $a_2$  exchanges, and get absorption corrections from  $\pi$  and  $b_1$  exchanges.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで

The suppression factors are,

$$S_{\pi} = c_{\pi} e^{(b_U t)} (\alpha_U(t) + 2)/2$$
(30)

$$S_{b_1} = c_{\pi} e^{(b_U t)} (\alpha_U(t) + 1)$$
(31)

$$S_{\rho} = e^{(b_N t)} (\alpha_N(t) + 1)/2$$
 (32)

$$S_{a_2} = e^{(b_N t)} \alpha_N(t) (\alpha_N(t) + 2)/3, \qquad (33)$$

< □ > < @ > < E > < E > E の Q @ 19/21

### JPAC model [5]

- Residues are polynomials in t
- Residues constructed phenomenologically using covariant Lagrangians (possible sign ambiguity)
- Upper vertex coupling constants fixed using decay widths
- Lower vertex is the same for all exchanges of a given naturality because of exchange degeneracy
- Lower vertex:  $\pi p\Delta$  coupling constant is fixed from the  $\Delta \rightarrow p\pi$  decay width,  $\rho p\Delta$  coupling constants fitted to the scattering data

Irving & Worden Model (IWM) [2]

- Residues are constants
- All vertices fixed phenomenologically

イロト イポト イヨト イヨト 二日



Cross sections for  $\pi\Delta$  photoproduction from JPAC model compared to data (from [5]).

イロト イヨト イヨト イヨト

æ