Observation of $\Lambda\Lambda$ **Production in the Reaction** (K^- , K^+) with HypTPC at J-PARC **Double Strangeness Systems with E42 Detector**

Jung Keun Ahn (Korea University)

Doubly Strange Dibaryon Systems and *H* **Particle**

 For N quarks, the QCD color magnetic interaction can be summarized by an effective Hamiltonian acting on the quarks' spin and color indices;

$$\mathscr{H}_{\text{eff}} \propto -\sum_{i \neq j}^{N} \{\vec{\lambda}\vec{\sigma}\}_i \cdot \{\vec{\lambda}\vec{\sigma}\}_j = 8N - \frac{1}{2}C_6^N + \frac{4}{3}S_N(S_N+1).$$

For 6 quarks, the color-spin interaction energies are

$$\langle \mathcal{H}_{\text{eff}} \rangle_1 = -24, \quad \langle \mathcal{H}_{\text{eff}} \rangle_8 = -28/3, \quad \langle \mathcal{H}_{\text{eff}} \rangle_{\overline{10}} = +8/3, \quad \langle \mathcal{H}_{\text{eff}} \rangle_{27} = +3,$$

2024/07/10 Slide 1

The History of H-Dibaryon Searches

H-Dibaryon Search at J-PARC : E42

- E42 aims at searching for an *H*-dibaryon in $\Lambda p\pi^-$, $\Lambda\Lambda$, and $\Xi^- p$ from ¹²C(K^- , K^+) at 1.8 GeV/*c*.
- \odot E42 has a good sensitivity over a broad range of the *H* mass.

Ξ Nuclear Potential

- Spectral response of the $-B_{\Xi}$ spectrum for ${}^{12}C(K^-, K^+)$ provides some information on the WS potential depth V_0^{Ξ} , which ≈ -14 MeV (DWIA) but ≈ 0 MeV (SCDW) analyses.
- \bigcirc High-resolution Ξ^- nuclear state measurement

10

-Br (MeV)

with E70 detector

Ξ Nuclear Potential

○ Ξ spectrum of ⁹Be(K⁻, K⁺) within DWIA using the optimal Fermi-averaged K⁻p → K⁺Ξ⁻ amplitude favors V₀^Ξ ≈ -17 MeV¹.
 ○ The same study on ¹²C(K⁻, K⁺) shows strong energy and angular dependencies².

^{*a*} T. Harada and Y. Shirabayashi, Phys. Rev. C 103, 024605 (2021). ^{*b*} T. Harada and Y. Shirabayashi, Phys. Rev. C 102, 024618 (2020).

ΞN Interaction with 9 Be (K^-, K^+) and 12 C (K^-, K^+)

- Ξ^-N elastic cross section $\sigma \approx 30$ mb at ~ 0.55 GeV/*c*¹.
- $\sigma(\Xi^- p \rightarrow \Xi^- p) = 24 \text{ mb at } 90\% \text{ CL}$ and $\sigma(\Xi^- p \rightarrow \Lambda\Lambda) = 4.3^{+6.3}_{-2.7} \text{ in}$ $p_{\Xi} = 0.2 \text{ to } 0.8 \text{ GeV}/c^2.$

^{*a*} T. Tamagawa *et al.*, Nucl. Phys. A 691, 234c (2001); Y. Yamamoto, T. Tamagawa, T. Fukuda, T. Motoba, PTP 106, 363 (2001).

^bJ.K. Ahn *et al.*, Phys. Lett. B633, 214 (2006).

E42 Detector at J-PARC K1.8 Beamline

Superconducting Hyperon Spectrometer

Scattered Particles at Forward Angles

 \bigcirc We reconstructed the masses and momenta for scattered particles successfully with the forward K^+ spectrometer.

Charged Particles at Large Angles in HypTPC

Particle Identification with HypTPC

- $\langle dE/dx \rangle_{20\%}$ truncated vs p/z for reconstructed HypTPC tracks in the diamond target dataset (C(K^- , K^+)X reactions).
- $\sigma_{dE/dx} / \langle dE/dx \rangle \sim 20\%$ for the range $0.40 < p_T < 0.45$ GeV/*c*.

Missing-Mass Spectrum for $p(K^-, K^+)X$ **Reactions**

○ Missing-mass spectrum for $p(K^-, K^+)X$ reactions is reproduced by considering the reconstruction efficiencies for Ξ^- decays with visible and invisible Λ decays, which are obtained from an independent Monte Carlo simulation study.

2024/07/10 Slide 12

Ξ^- Production in the ${}^{12}C(K^-, K^+)$ Reaction

The $\Xi^- \to \Lambda \pi^-$ and its subsequent $\Lambda \to p\pi^-$ visible decays are reconstructed using HypTPC track information.

0.4-Entries/ 0.025 GeV/c in arbitrary unit acceptance 0.2-Counts/(0.025 GeV/c 300 1 GeV/c QMD model E42 for V_o^I=12 MeV 200 HO nuclear density $p_{K^-} = 1.8 \, \text{GeV}/c$ without EN PWIA for $\Theta_{\kappa}=0^{\circ}$ 100 Very Preliminary 0 0.5 1.5 0.4 0.6 0.8 momentum (GeV/c) Ξ momentum (GeV/c) 2024/07/10 (Slide 1 Slide 13

E224

 $p_{K^-} = 1.65 \, \text{GeV}/c$

$\Xi^- N$ Scattering in the ${}^{12}C(K^-, K^+)$ Reaction

○ Colinearity angle $\cos \psi = (\vec{p}_{K^-} - \vec{p}_{K^+}) \cdot \vec{p}_{\Xi}^{\text{rec}}$ ○ $\sigma_{\Xi^-N} = 30.7 \pm 6.7^{+3.7}_{-3.6}$ mb for $\langle p_{\Xi} \rangle = 0.55$ GeV/*c* and $R(\sigma_{\Xi^-p}/\sigma_{\Xi^-n}) \approx 1.1$ in the eikonal approximation¹.

^aT. Tamagawa et al., Nucl. Phys. A 691, 234c (2001).

Individual Elementary Processes in ¹²**C**(*K*⁻, *K*⁺)

○ One and two-step processes may contribute to the ${}^{12}C(K^-, K^+)$ reactions but the previous intranuclear cascade model calculation¹ needs further improvements to reproduce the experimental data from E176².

^aY. Nara, A. Ohnishi, T. Harada, A. Engel, Nucl. Phys. A 614, 433 (1997).
^bT. Iijima *et al.*, Nucl. Phys. A 546, 588 (1992).

$$K^{-}p \rightarrow K^{+} \begin{pmatrix} \Xi^{-} \\ \Xi(1535)^{-} \end{pmatrix}$$

$$K^{-}p \rightarrow \begin{pmatrix} \pi \\ \eta \\ \rho \end{pmatrix} \begin{pmatrix} \Lambda \\ \Sigma \\ \Sigma^{*} \end{pmatrix}; \begin{pmatrix} \pi \\ \eta \\ \rho \end{pmatrix} N \rightarrow K^{+} \begin{pmatrix} \Lambda \\ \Sigma \\ \Sigma^{*} \end{pmatrix} \xrightarrow{\text{OS}} 0 \xrightarrow{\text{O$$

Cross sections $d^2\sigma/d\Omega dp_{K^+}$ **for** ${}^{12}\mathbf{C}(K^-, K^+)$ **Reaction**

Binding Energy Spectrum for ${}^{12}C(K^-, K^+)X$

- E42 can offer critical information on individual processes involved in the ${}^{12}C(K^-, K^+)$ reaction with large acceptance despite moderate energy resolution.
- The processes include reactions with the emission of Ξ^- , Ξ^-p , $\Lambda\Lambda$, and hypernuclear decay particles such as two pions.

$\Lambda\Lambda$ **Production in the** (K^- , K^+) **Reactions**

Summary

- E42 will soon open the box for the *H*-dibaryon search.
- E42 can also offer critical information on individual processes involved in the ${}^{12}C(K^-, K^+)$ reactions with large acceptance despite moderate energy resolution.
- Additionally, E42 has a good dataset for extensive studies of kaonic nuclei (F. Oura, Wed 14:40 M5) and K^* production in ${}^{12}C(K^-, p)$ reactions.

Proposal for J-PARC 50 GeV Proton Synchrotron Double ϕ Production in $\overline{p}p$ Reactions near Threshold

