Improving $\pi\pi$ dispersive amplitude analyses and resonance determination with Forward Dispersion Relations

Pablo Rabán

in collaboration with J.R. Peláez and J. Ruiz de Elvira Universidad Complutense de Madrid

QNP2024, Barcelona, July 11th 2024

Pablo Rabán

Improving $\pi\pi$ dispersive amplitude analyses and resonance determination with FDR QNP20.

▶ 1 Motivation

▶ 1 Motivation

▶ 2 Improving $\pi\pi$ dispersive amplitudes

- * Global fit to data
- * Results (preliminary)

▶ 2 Improving $\pi\pi$ dispersive amplitudes

- * Global fit to data
- * Results (preliminary)
- ▶ 3 Resonance determination

Why are we interested in $\pi\pi$?

Why are we interested in $\pi\pi$?

1. π is the lightest hadron \Rightarrow their interaction is key for other processes

Why are we interested in $\pi\pi$?

1. π is the lightest hadron \Rightarrow their interaction is key for other processes

2. Extract resonances produced in the interaction in a model-independent way

3. $\pi\pi$ data present some problems

- 3. $\pi\pi$ data present some problems
 - * 70's, data extracted indirectly with approximations

3. $\pi\pi$ data present some problems

* 70's, data extracted indirectly with approximations

3. $\pi\pi$ data present some problems

* 70's, data extracted indirectly with approximations

* Incompatibilities, large systematic errors, do not satisfy dispersion relations, several solutions (I, II and III)...

3. $\pi\pi$ data present some problems

* 70's, data extracted indirectly with approximations

* Incompatibilities, large systematic errors, do not satisfy dispersion relations, several solutions (I, II and III)...

Improving $\pi\pi$ dispersive amplitude analyses and resonance determination with FDR

Previous work by J.R. Peláez, J. Ruiz de Elvira et al.

✓ Constrained fit to data CFD(2011) up to 1.4 GeV R. Garcia-Martín et al., Phys.Rev. D83, 074004 (2011)

- ✓ Constrained fit to data CFD(2011) up to 1.4 GeV R. García-Martín et al., Phys.Rev. D83, 074004 (2011)
 - Forward Dispersion Relations (FDR) up to 1.4 GeV
 - Roy-like dispersion relations (partial-waves) up to $1.1 \ \text{GeV}$

- ✓ Constrained fit to data CFD(2011) up to 1.4 GeV R. García-Martín et al., Phys.Rev. D83, 074004 (2011)
 - Forward Dispersion Relations (FDR) up to 1.4 GeV
 - Roy-like dispersion relations (partial-waves) up to $1.1 \; \text{GeV}$
- ✓ S0 and P Global(2019) parameterizations up to 1.8 GeV J.R. Peláez et al., Eur.Phys.J.C 79, 1008 (2019)

- ✓ Constrained fit to data CFD(2011) up to 1.4 GeV R. García-Martín et al., Phys.Rev. D83, 074004 (2011)
 - Forward Dispersion Relations (FDR) up to 1.4 GeV
 - Roy-like dispersion relations (partial-waves) up to 1.1 GeV
- ✓ S0 and P Global(2019) parameterizations up to 1.8 GeV J.R. Peláez et al., Eur.Phys.J.C 79, 1008 (2019)
 - Fit to CFD up to 1.4 GeV
 - Phenomenological fits above 1.4 GeV

Previous work by J.R. Peláez, J. Ruiz de Elvira et al.

✓ Constrained fit to data CFD(2011) up to 1.4 GeV R. García-Martín et al., Phys.Rev. D83, 074004 (2011)

- Forward Dispersion Relations (FDR) up to 1.4 GeV
- Roy-like dispersion relations (partial-waves) up to $1.1~{
 m GeV}$
- ✓ S0 and P Global(2019) parameterizations up to 1.8 GeV J.R. Peláez et al., Eur.Phys.J.C 79, 1008 (2019)
 - Fit to CFD up to 1.4 GeV
 - Phenomenological fits above 1.4 GeV

✓ Model-independent resonance determination: pole positions and couplings for $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, $f_2(1270)$ and $\rho(770)$

R. García-Martín et al., Phys. Rev. Lett. 107, 072001 (2011) J.R. Peláez et al., Phys. Rev. Lett. 130, 051902 (2019)

 $\pmb{\times}$ For precision above 1 GeV, a revision of the inelasticities η in certain regions is needed

 $\pmb{\times}$ For precision above 1 GeV, a revision of the inelasticities η in certain regions is needed

X Matching between partial-waves amplitudes (PWA) and Regge parameterization (average) must be improved for precision as well

X Matching between partial-waves amplitudes (PWA) and Regge parameterization (average) must be improved for precision as well

× Improving the precision and imposing dispersive constraints up to higher energies allows us to study the well-known $\rho(1450)$

Our objectives are:

* Improve previous partial-wave analyses

- * Improve previous partial-wave analyses
 - ⇒ Describe the available data up to the highest energies \sim 1.8-2 GeV → Global parameterizations for S2, D0, D2, F, G0, G2 partial-waves

- * Improve previous partial-wave analyses
 - ⇒ Describe the available data up to the highest energies \sim 1.8-2 GeV → Global parameterizations for S2, D0, D2, F, G0, G2 partial-waves
 - $\Rightarrow~$ Improving the precision of the analysis above 1 GeV
 - $\rightarrow~$ Better matching with Regge
 - $\rightarrow\,$ Improve P-wave global parametrization, and η description

- * Improve previous partial-wave analyses
 - ⇒ Describe the available data up to the highest energies \sim 1.8-2 GeV → Global parameterizations for S2, D0, D2, F, G0, G2 partial-waves
 - $\Rightarrow~$ Improving the precision of the analysis above 1 GeV
 - $\rightarrow~$ Better matching with Regge
 - $\rightarrow\,$ Improve P-wave global parametrization, and η description
 - \Rightarrow Imposing Forward Dispersion Relations up to higher energies (1.6 GeV)
 - $\rightarrow~$ Matching with Regge at higher energies
 - \rightarrow **G**-waves are needed

- * Improve previous partial-wave analyses
 - ⇒ Describe the available data up to the highest energies \sim 1.8-2 GeV → Global parameterizations for S2, D0, D2, F, G0, G2 partial-waves
 - $\Rightarrow~$ Improving the precision of the analysis above 1 GeV
 - $\rightarrow~$ Better matching with Regge
 - $\rightarrow\,$ Improve P-wave global parametrization, and η description
 - \Rightarrow Imposing Forward Dispersion Relations up to higher energies (1.6 GeV)
 - $\rightarrow~$ Matching with Regge at higher energies
 - \rightarrow **G**-waves are needed
- * Resolve the incompatibilities and decide among the different solutions above 1.4 GeV

- * Improve previous partial-wave analyses
 - ⇒ Describe the available data up to the highest energies \sim 1.8-2 GeV → Global parameterizations for S2, D0, D2, F, G0, G2 partial-waves
 - $\Rightarrow~$ Improving the precision of the analysis above 1 GeV
 - $\rightarrow~$ Better matching with Regge
 - $\rightarrow\,$ Improve P-wave global parametrization, and η description
 - \Rightarrow Imposing Forward Dispersion Relations up to higher energies (1.6 GeV)
 - $\rightarrow~$ Matching with Regge at higher energies
 - \rightarrow **G**-waves are needed
- * Resolve the incompatibilities and decide among the different solutions above 1.4 GeV
- * Parameterization and model-independent analyses in order to extract resonances, without imposing them in our analysis

1. Global parameterization of $t_{\ell}^{I}(s)$ (partial-waves) through fit to data (improving matching with Regge, precision, η descriptions...)

1. Global parameterization of $t'_{\ell}(s)$ (partial-waves) through fit to data (improving matching with Regge, precision, η descriptions...)

* New global G-waves (relevant for precision above 1 GeV)

2. Reconstruct the amplitudes T'(s, 0) from the global partialwave parameterizations

$$T'(s,\theta) = 32\pi \sum_{\ell} (2\ell+1) P_{\ell}(\cos\theta) t'_{\ell}(s)$$

Convenient isospin basis for the Forward Dispersion Relations

$$T^{00} = \frac{1}{3}(T^0 + 2T^2), \ T^{0+} = \frac{1}{2}(T^1 + T^2), \ T'_t = \frac{1}{6}(2T^0 + 3T^1 - 5T^2)$$

2. Reconstruct the amplitudes T'(s, 0) from the global partialwave parameterizations

$$T'(s,\theta) = 32\pi \sum_{\ell} (2\ell+1) P_{\ell}(\cos\theta) t'_{\ell}(s)$$

Convenient isospin basis for the Forward Dispersion Relations

$$T^{00} = rac{1}{3}(T^0 + 2T^2), \ T^{0+} = rac{1}{2}(T^1 + T^2), \ T'_t = rac{1}{6}(2T^0 + 3T^1 - 5T^2)$$

Example:

Improving $\pi\pi$ dispersive amplitude analyses and resonance determination with FDR QNP2024, July 11

3. Imposing the Forward and Roy-like dispersion relations through a constrained fit to data

$$\operatorname{Re}T^{00}(s,0) = T^{00}(4m_{\pi}^{2},0) + \frac{s(s-4m_{\pi}^{2})}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{(2s'-4m_{\pi}^{2})\operatorname{Im}T^{00}(s',0)}{s'(s'-s)(s'-4m_{\pi}^{2})(s'+s-4m_{\pi}^{2})} ds'$$

ŝ

3. Imposing the Forward and Roy-like dispersion relations through a constrained fit to data

$$\operatorname{Re} T^{00}(s,0) = T^{00}(4m_{\pi}^{2},0) + \frac{s(s-4m_{\pi}^{2})}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{(2s'-4m_{\pi}^{2})\operatorname{Im} T^{00}(s',0)}{s'(s'-s)(s'-4m_{\pi}^{2})(s'+s-4m_{\pi}^{2})} ds'$$

.

4. Extract resonances from the FDRs

✓ Are the Forward Dispersion Relations fulfilled?

✓ Are the Forward Dispersion Relations fulfilled?

✓ Are the Forward Dispersion Relations fulfilled?

 $\checkmark\,$ Roy and GKPY (once-subtracted Roy eqs) for S0, P and S2 partial-waves are also satisfied by our new global parameterizations

Inelasticity data description improved \checkmark

✓ Inelasticity data description improved

15/23

✓ Better matching between PWAs and Regge parameterizations

✓ Better matching between PWAs and Regge parameterizations

 $\checkmark~$ For T^{0+} and $T^{\prime_t=1}$ the matching is extended from 1.4 to 1.6 GeV \Rightarrow We impose their FDRs up to 1.6 GeV

 $\checkmark~$ Better matching between PWAs and Regge parameterizations

 $\checkmark~$ For ${\cal T}^{0+}$ and ${\cal T}'^{t=1}$ the matching is extended from 1.4 to 1.6 GeV \Rightarrow We impose their FDRs up to 1.6 GeV

But... What about the $\rho(1450)$?

* We want to obtain the resonances produced in the $\pi\pi$ interaction (Recall that $\sqrt{s_{\text{pole}}} = M_R - i\Gamma_R/2$)

* We want to obtain the resonances produced in the $\pi\pi$ interaction (Recall that $\sqrt{s_{\text{pole}}} = M_R - i\Gamma_R/2$)

* Avoid models and parameterizations \Rightarrow Use **Dispersive output!** (No poles introduced, nor relation between pole positions and residues)

Pablo Rabán

* We want to obtain the resonances produced in the $\pi\pi$ interaction (Recall that $\sqrt{s_{\text{pole}}} = M_R - i\Gamma_R/2$)

* Avoid models and parameterizations \Rightarrow Use **Dispersive output!** (No poles introduced, nor relation between pole positions and residues)

* Need of a robust and general analytic continuation: continued fractions

$$C_N(s) = a_0 / \left(1 + \frac{a_1(s-s_1)}{1 + \frac{a_2(s-s_2)}{\cdots \cdot a_{N-1}(s-s_{N-1})}} \right)$$

"Interpolate" with this functional form, which holds poles ($\sim N/2$)

* We want to obtain the resonances produced in the $\pi\pi$ interaction (Recall that $\sqrt{s_{\text{pole}}} = M_R - i\Gamma_R/2$)

* Avoid models and parameterizations \Rightarrow Use **Dispersive output!** (No poles introduced, nor relation between pole positions and residues)

* Need of a robust and general analytic continuation: continued fractions

$$C_N(s) = a_0 \Big/ \Big(1 + \frac{a_1(s-s_1)}{1 + \frac{a_2(s-s_2)}{\cdot \cdot \cdot \cdot a_{N-1}(s-s_{N-1})}} \Big)$$

"Interpolate" with this functional form, which holds poles ($\sim N/2$)

* In order to determine a **pole resonance**, we look for poles for different N, and we only obtain the physical poles in a stable way!

3. Continued fractions (preliminary)

* **Stable** results for different N (e.g. for the $\rho(1450)$)

3. Continued fractions (preliminary)

* **Stable** results for different N (e.g. for the $\rho(1450)$)

3. Analytic continuations

* $T^{00} = (T^0 + 2T^2)/3 \longrightarrow S0$, D0 and G0 waves (f_{ℓ} resonances)

3. Analytic continuations

* $T^{00} = (T^0 + 2T^2)/3 \longrightarrow S0$, D0 and G0 waves (f_{ℓ} resonances)

Improving $\pi\pi$ dispersive amplitude analyses and resonance determination with FDR

Isoscalar resonances (F ⁰⁰)						
	Μ (MeV) Γ (MeV) β					
$f_0(500)$	460^{+9}_{-7}	534^{+16}_{-7}	3.28 ^{+0.22} _{-0.18} GeV			
$f_0(980)$	986 ⁺⁷ ₋₅	54^{+10}_{-16}	$1.9^{+0.5}_{-0.3}~{ m GeV}$			
$f_0(1370)$	1238^{+38}_{-31}	550^{+58}_{-116}	$9.2^{+1.9}_{-1.1}~{ m GeV}$			
$f_0(1500)$	1524 ± 30	84^{+38}_{-36}	5.3 ± 1.4 GeV			
$f_2(1270)$	1267.7 ± 1.1	$195.2^{+2.2}_{-1.8}$	$4.48^{+0.30}_{-0.31} \text{ GeV}^{-1}$			

Isovector resonances (F ⁰⁺)					
Μ (MeV) Γ (MeV) g					
ho(770)	$757.0^{+1.6}_{-1.0}$	$153.0^{+7.6}_{-0.8}$	$6.16\substack{+0.02\\-0.15}$		
ho(1450)	1461 ± 15	290^{+32}_{-38}	2.01 ± 0.45		
$ ho_3(1690)/ ho(1700)$	1675^{+44}_{-56}	248^{+56}_{-45}	XXX		

Isoscalar resonances (F ⁰⁰)						
	Μ (MeV) Γ (MeV) g					
$f_0(500)$	460^{+9}_{-7}	534^{+16}_{-7}	3.28 ^{+0.22} _{-0.18} GeV			
$f_0(980)$	986 ⁺⁷ ₋₅	54^{+10}_{-16}	$1.9^{+0.5}_{-0.3} { m GeV}$			
$f_0(1370)$	1238^{+38}_{-31}	550^{+58}_{-116}	$9.2^{+1.9}_{-1.1}~{ m GeV}$			
$f_0(1500)$	1524 ± 30	84^{+38}_{-36}	5.3 ± 1.4 GeV			
$f_2(1270)$	1267.7 ± 1.1	$195.2^{+2.2}_{-1.8}$	$4.48^{+0.30}_{-0.31}~{ m GeV^{-1}}$			

No models!
Dispersive
extraction!

No poles imposed!

No relation between pole position and residue imposed!

Isovector resonances (F ⁰⁺)					
Μ (MeV) Γ (MeV) g					
ho(770)	$757.0^{+1.6}_{-1.0}$	$153.0^{+7.6}_{-0.8}$	$6.16\substack{+0.02\\-0.15}$		
ho(1450)	1461 ± 15	290^{+32}_{-38}	2.01 ± 0.45		
$ ho_3(1690)/ ho(1700)$	1675^{+44}_{-56}	248^{+56}_{-45}	XXX		

Isoscalar resonances (F ⁰⁰)						
	Μ (MeV) Γ (MeV) g					
$f_0(500)$	460^{+9}_{-7}	534^{+16}_{-7}	3.28 ^{+0.22} _{-0.18} GeV			
$f_0(980)$	986 ⁺⁷ ₋₅	54^{+10}_{-16}	$1.9^{+0.5}_{-0.3} { m GeV}$			
$f_0(1370)$	1238^{+38}_{-31}	550^{+58}_{-116}	$9.2^{+1.9}_{-1.1}~{ m GeV}$			
$f_0(1500)$	1524 ± 30	84^{+38}_{-36}	5.3 ± 1.4 GeV			
$f_2(1270)$	1267.7 ± 1.1	$195.2^{+2.2}_{-1.8}$	$4.48^{+0.30}_{-0.31}~{ m GeV^{-1}}$			

No models! Dispersive extraction!

No poles imposed!

No relation between pole position and residue imposed!

Isovector resonances (F ⁰⁺)					
Μ (MeV) Γ (MeV) g					
ho(770)	$757.0^{+1.6}_{-1.0}$	$153.0^{+7.6}_{-0.8}$	$6.16\substack{+0.02\\-0.15}$		
ho(1450)	1461 ± 15	290^{+32}_{-38}	2.01 ± 0.45		
$ ho_3(1690)/ ho(1700)$	1675^{+44}_{-56}	248^{+56}_{-45}	XXX		

* They are all compatible with the PDG listed particles!

Isoscalar resonances (F ⁰⁰)						
	Μ (MeV) Γ (MeV) g					
$f_0(500)$	460^{+9}_{-7}	534^{+16}_{-7}	3.28 ^{+0.22} _{-0.18} GeV			
$f_0(980)$	986 ⁺⁷ ₋₅	54^{+10}_{-16}	$1.9^{+0.5}_{-0.3} { m ~GeV}$			
$f_0(1370)$	1238^{+38}_{-31}	550^{+58}_{-116}	$9.2^{+1.9}_{-1.1}~{ m GeV}$			
$f_0(1500)$	1524 ± 30	84^{+38}_{-36}	5.3 ± 1.4 GeV			
$f_2(1270)$	1267.7 ± 1.1	$195.2^{+2.2}_{-1.8}$	$4.48^{+0.30}_{-0.31}~{ m GeV^{-1}}$			

No models! Dispersive extraction! No poles imposed!

No relation between pole position and residue imposed!

Isovector resonances (F ⁰⁺)					
Μ (MeV) Γ (MeV) g					
ho(770)	$757.0^{+1.6}_{-1.0}$	$153.0^{+7.6}_{-0.8}$	$6.16\substack{+0.02\\-0.15}$		
ho(1450)	1461 ± 15	290^{+32}_{-38}	2.01 ± 0.45		
$ ho_3(1690)/ ho(1700)$	1675^{+44}_{-56}	248^{+56}_{-45}	XXX		

- * They are all compatible with the PDG listed particles!
- * No hints of $\rho(1250)$ (present in old PDG editions and recently claimed for the same data N. Hammoud et al., Phys.Rev. D102, 054029 (2020))

Summary

★ Relevance of our parameterizations

- Simple parameterizations of $\pi\pi$ interaction and their uncertainties, up to 1.8-2 GeV
- ▶ Consistent with data and dispersion relations up to 1.6 GeV
- Being used in different experiments and works

★ Relevance of our parameterizations

Simple parameterizations of $\pi\pi$ interaction and their uncertainties, up to 1.8-2 GeV

▶ Consistent with data and dispersion relations up to 1.6 GeV

Being used in different experiments and works

★ Results (preliminary)

- lmproved $\pi\pi$ amplitudes (inelasticities, Regge matching, precision,...)
- Avoid models and parameterizations for resonance extraction
- ▶ Isoscalar resonances: $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$ y $f_2(1270)$
- ▶ Isovector resonances: $\rho(770)$, $\rho(1450)$ and $\rho_3(1690)/\rho(1700)$
- ▶ No hints of *ρ*(1250)

★ Relevance of our parameterizations

Simple parameterizations of $\pi\pi$ interaction and their uncertainties, up to 1.8-2 GeV

▶ Consistent with data and dispersion relations up to 1.6 GeV

Being used in different experiments and works

★ Results (preliminary)

- lmproved $\pi\pi$ amplitudes (inelasticities, Regge matching, precision,...)
- Avoid models and parameterizations for resonance extraction
- ▶ Isoscalar resonances: $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$ y $f_2(1270)$
- lovector resonances: $\rho(770)$, $\rho(1450)$ and $\rho_3(1690)/\rho(1700)$
- ▶ No hints of *ρ*(1250)

★ To Do

- ▶ Improve the constraints fulfillment and double check the results
- Final results for Solutions II and III (better results for Solution I so far)

Thank you for your attention

