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Our Work
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pole-based enhancements

Enhancements in the invariant mass distribution or scattering cross-section are usually associated
with resonances. However, the nature of exotic signals found near hadron-hadron thresholds remain
a puzzle today. In fact, a purely kinematic triangle mechanism is also capable of producing similar
structures, but do not correspond to any unstable quantum state. In this paper, we report for the

first time, that a deep neural network can be trained to distinguish triangle singularity from pole- ® CO nfl rmed Vid pU e Ilne'

based enhancements. We also identify the type of dynamic pole structure that can be misidentified

as triangle enhancement. We apply our method to confirm that the f J‘:" (4312) " state is not due to Sha pe ana IyS|S that the

a single triangle singularity. and is more favored towards a pole-based interpretation based solely

on pure line-shape analysis. Lastly, we argue how our method can be used as a model-selection tr|a ngle |nterpretat|on can

framework to help in classifying other exotic hadron candidates.
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Abstract

A narrow pentaquark state, P.(4312)7, decaying to J/i'p is discovered with a 200
statistical significance of 7.30 in a data sample of JIE — J/pK ™~ decays which is an
order of magnitude larger than that previously analyzed by the LHCb collaboration.
The P.(4450)" pentaquark structure formerly reported by LHCb is confirmed and

observed to consist of two narrow overlapping peaks, P.(4440)" and P.(4457)7, 8
where the statistical significance of this two-peak interpretation is 5.4o. Proximity 00 4250 4300 4350 4400 4450 4500 4550 4600
of the £+ D" and X7 ﬁ"‘” thresholds to the observed narrow peaks suggests that m Jhyp [MEV

they play an important role in the dynamics of these states.

LHCb, Phys. Rev. Lett. 122, 222001 (2019)
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Various models can produce similar line shapes that fit the
experimental data, despite describing very different physics.
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Theoretical analysis already suggests that the triangle sigularity is an unlikely
origin of the 4312 pentaquark state based on physical constraints.

LHCb, Phys. Rev. Lett. 122, 222001 (2019)
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Deep Learning Framework
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3.Train, Test, and
Validate the DNN

We use machine learning, specifically a Deep Neural 4.Use DNN for Inference
Network, to solve this classification problem.

D.L.B. Sombillo et al., Phys. Rev. D 104, 3, 036001 (2021)
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Formalism

Triangle Singularity
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Follow mass condition to generate multiple
F.-K. Guo et al.,_Prog. Part. Nucl. Phys. 112, 103757 (2020) line shapes for the training dataset.
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Formalism
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M. Kato, Annals of Physics 31, 130 (1965).
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Reimann sheets in a two-channel scattering

— (W—wpole ) (WHwWs 1o (W—Wreg ) (WHw,)  (6)

reg

p(V/3) [|F(V/s)]? + B(V/s)] (7)

JPAC, Phys. Rev. Lett. 123, 092001 (2019).
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FO Fma I ISIM Reimann sheets in a two-channel scattering

1.0 1 1:D° L. M. Santos & D. L. B. Sombillo, Phys. Rev. C 108, 045204 (2023).
ool — o
V| — tpole Pole Counting

e 1 polein [bt]: bound state
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k e 1 polein [tb]: virtual state
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D. Morgan, Nucl. Phys. A 543, 632 (1992).
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DNN Training & Testing
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DNN Validation

Confusion Matrix

Output Label Interpretation
0 Triangle Singularity
1 Bound state
2 Virtual state
3 Compact state

DNN prediction
capability is clear and
generally satisfactory.
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Interpretation of P, (4312)"

Output Label Interpretation
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0 1 2 3 0 ! 2 3 consistently rule out
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traingle singularity,
(a) Uniform distribution (b) Normal distribution and favor the dynamic

pole structure.
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Model Selection Framework

e Our trained model was able to select the most favorable

mechanism to be used to interpret/explain a measured

enhancement, while eliminating the misleading ones.

e Note that this is only suggestive in nature and NOT confirmatory. It
only serves to provide stronger intuition on the true nature of the

measured signals.

e This can be used to study the two other pentaquark states and
various other exotic candidates.
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Analysis of hidden-charm pentaquarks as
triangle singularities via deep learning

Summary:

We developed a model-selection framework using a Deep Neural
Network to distinguish triangle singularity from pole-based
enhancements and confirmed that the single triangle kinematic

interpretation can be consistently ruled out for the Pév(4312)+.
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Backup: The two-peak structure
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We may use a Breit-Wigner for the 4440 state and Pole/TS for the 4457 state.
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Backup: Sample datasets (TS)
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Backup: Sample datasets (Poles)
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