The Search for Exotic Hadrons at GlueX

Alexander Austregesilo for the GlueX Collaboration

The 10th International Conference on Quarks and Nuclear Physics Barcelona, Spain July 9th, 2024

2 The GlueX Experiment

3 Light Quark Spectroscopy: Recent Results

Future of the GlueX Spectroscopy Program

Spectroscopy

Joseph v. Fraunhofer, 1814

- Spectroscopy: study of the interaction between matter and electromagnetic radiation
- Precision measurements of the hydrogen atom spectrum ultimately lead to the development of QED
- Lasting impact on astro- and nuclear physics, solid state physics

The Strong Interaction

Quantum ChromoDynamics (QCD)

- Confinement: only color-neutral objects can be observed
- Baryons and mesons as the relevant degrees of freedom

The Strong Interaction

Quantum ChromoDynamics (QCD)

- Confinement: only color-neutral objects can be observed
- Baryons and mesons as the relevant degrees of freedom
- Exotic configurations permitted by QCD and predicted by many models

The Strong Interaction

Quantum ChromoDynamics (QCD)

- Confinement: only color-neutral objects can be observed
- Baryons and mesons as the relevant degrees of freedom
- Exotic configurations permitted by QCD and predicted by many models

Spectroscopic Notation J^{PC}

- J: Angular momentum
- P: Parity
- C: Charge conjugation

Light Meson Spectroscopy

Meson Spectroscopy

- Study of qq system: equivalent to the hydrogen atom
- Many broad and overlapping states in mass spectrum

Light Meson Spectroscopy

Light Meson Spectroscopy

Meson Spectroscopy

- Study of qq system: equivalent to the hydrogen atom
- Many broad and overlapping states in mass spectrum
- Characterize states by quantum numbers
- Disentangle states with angular distribution of decay
- Use interference to look for small signals

Allowed J^{PC} for $q\bar{q}$ mesons: $0^{++}, 0^{-+}, 1^{--}, 1^{+-}, 2^{++}, ...$

Evidence for Exotic States

Experimental Status

- Forbidden J^{PC} for $q\bar{q}$ mesons: $0^{+-}, 1^{-+}, 2^{+-}, \dots$
- Smoking gun for states beyond the quark-antiquark model
- Lowest mass state $\pi_1(1600)$: $J^{PC} = 1^{-+}$

Evidence for Exotic States

Experimental Status

- Forbidden J^{PC} for $q\bar{q}$ mesons: $0^{+-}, 1^{-+}, 2^{+-}, \dots$
- Smoking gun for states beyond the quark-antiquark model
- Lowest mass state $\pi_1(1600)$: $J^{PC} = 1^{-+}$
- Existence and interpretation debated for a long time

Evidence for Exotic States

1.57

(n (1855))

it projection (baseline fit)

(a) $\chi^2/dof =$

Events/(10MeV/c²)

300

200

15

Experimental Status

- Forbidden J^{PC} for $q\bar{q}$ mesons: $0^{+-}, 1^{-+}, 2^{+-}, ...$
- Smoking gun for states beyond the guark-antiguark model
- Lowest mass state $\pi_1(1600)$: $J^{PC} = 1^{-+}$ ٠
- Significant progress in recent years, isospin-partner $\eta_1(1855)$?

Lattice QCD

- Excited spectrum of states with identified spin, including exotic quantum numbers
- Tremendous progress in recent years: resonance parameters and decay modes
- Experimental results need to reach equivalent precision

The GlueX Experiment

Gluonic Excitation Experiment

GlueX at Jefferson Lab

- 12 GeV electron beam from CEBAF accelerator
- Coherent Bremsstrahlung on diamond radiator
- Linear polarization peak $P_{\gamma} \sim 40\%$
- Photon energy tagged by scattered electrons
- Beam intensity: $1 5 \cdot 10^7 \gamma$ /s in peak

Photoproduction

Complementary Production Mechanism

- Wide variety of states in spectrum accessible
- Photon polarization provides constraints on produced systems
- Understanding of **production mechanism** is prerequisite for interpretation
- Very limited photoproduction data existing at these energies

GlueX Detector

The Path to Exotic Hadrons

Close Collaboration between GlueX Experiment and Theory / Phenomenology

- Detailed study of photoproduction mechanism with polarization, robust theoretical models
- Develop capable analysis frameworks, evaluate with known states in the spectrum

Cross Section Measurements

η Diff. Cross Sec. 8.0 < E₂ < 8.5 GeV

$\gamma p \rightarrow \eta p$

- t-channel dominant, but coverage of entire kinematic regime
- Regge models at low |t|, Handbag for intermediate |t|

Cross Section Measurements

$\gamma p \rightarrow \eta p$

- t-channel dominant, but coverage of entire kinematic regime
- Regge models at low |t|, Handbag for intermediate |t|
- Energy coverage: 3 12 GeV
 Overlap with previous measurements

Many other channels

- Precise measurement for many different final states ongoing
- Consistency between decay modes limits systematic uncertainties

Polarization Transfer First GlueX Publication: PRC 95, 042201 (2017)

$\pi^{\rm 0}$ and η from 2016 Commissioning Data

- Modeling production mechanism: Σ sensitive to exchanged J^{PC}
- Cancel systematic effects by rotating polarization plane by 90°
- First measurement for η in this energy

Pseudoscalar Meson Photoproduction

Beam Asymmetry Measurements

Jefferson Lab

- η : significantly higher precision
- η' : first measurement in this
- K^+ : no visible *t*-dependence
- π^- : unnatural exchange important at small -t

- Neutral exchange: natural parity exchange dominates
- Charge exchange: unnatural parity exchange for small t

Vector Meson Photoproduction

Spin-Density Matrix Elements

- Full angular distribution of vector meson production and decay is described by spin-density matrix elements ρ^k_{ii}
- Linear beam polarization provides access to nine linearly independent SDMEs
- Intensity W is expressed as function of angles cos ϑ, φ, Φ and degree of polarization P_γ

$$\begin{split} W(\cos\vartheta,\varphi,\Phi) &= W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi) \\ W^{0}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right) \\ W^{1}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi \right) \\ W^{2}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi \right) \\ Schilling et al. [Nucl. Phy. B, 15 (1970) 397] \end{split}$$

Extraction of SDMEs with Amplitude Analysis Technique

Extended Maximum-Likelihood Fit

$$\ln L = \underbrace{\sum_{i=1}^{\text{events}} \ln \mathcal{I}(\tau_i)}_{\text{Experiment}} - \underbrace{\int d\Omega \, \mathcal{I}(\tau) \, \eta(\tau)}_{\text{Normalization Integral}}$$

- Choose SDMEs such that intensity fits the observed events
- Normalization integral evaluated by a phase-space Monte Carlo sample with the acceptance $\eta(\tau) = 0/1$

Analysis Strategy

- Improve theoretical description of photoproduction process
- Understand and evaluate detector acceptance
- Prerequisites for amplitude analysis of possible exotic signals

ρ(770) Meson SDMEs PRC 108, 055204 (2023)

$\gamma p ightarrow ho$ (770)p

- High precision with only fraction of data set
- Orders of magnitude more precise than previous measurements
- Uncertainties dominated by systematics
- Agree with Regge model up to $-t \approx 0.5 \, {\rm GeV}^2/c^2$ [JPAC, PRD 97 094003 (2018)]
- Studies of mass and energy dependence

ρ(770) Meson SDMEs PRC 108, 055204 (2023)

$\gamma p ightarrow ho$ (770)p

- High precision with only fraction of data set
- Orders of magnitude more precise than previous measurements
- Uncertainties dominated by systematics
- Agree with Regge model up to $-t \approx 0.5 \,\text{GeV}^2/c^2$ [JPAC, PRD 97 094003 (2018)]
- Studies of mass and energy dependence

ρ(770) Meson SDMEs PRC 108, 055204 (2023)

Spin-Density Matrix Element Analysis for other Hadrons

- Λ(1520) photoproduction [PRC 105, 035201 (2022)], analysis of ω(782), φ(1020) ongoing
- Improve theoretical description of photoproduction process and evaluate detector acceptance

- Natural parity exchange dominates across t range
- Deviation from *s*-channel helicity conservation (ℙ)
 ⇒ Contribution from *f*₂, *a*₂

Study of Charge Exchange Mechanism

 $-P_{\gamma}\sin 2\Phi \frac{3}{\sqrt{2}} \operatorname{Im} \left[\rho_{31}^{2}\sin 2\vartheta \sin \varphi + \rho_{3-1}^{2}\sin^{2}\vartheta \sin 2\varphi \right] \right\}$

Jefferson Lab

erson National Accelerator Facility

SDMEs in Δ^{++} (1232) Photoproduction

arXiv:2406.12829 (2024)

• Models under-constrained by previous measurements, do not describe unnatural parity exchange

Sensitive to relative sign of exchange couplings

SDMEs in $\Delta^{++}(1232)$ Photoproduction

Jefferson Lab Thomas Jefferson National Accelerator Facility

Models under-constrained by previous measurements, do not describe unnatural parity exchange

Sensitive to relative sign of exchange couplings

The $\eta\pi$ and $\eta'\pi$ Systems

- Strongest evidence for exotic $\pi_1(1600)$ from COMPASS in these channels
- Competitive statistical precision, but different production and multiple decay modes
- Collaboration with theory on development of amplitudes and models

- Clear signals for $a_0(980)$ and $a_2(1320)$
- Different angular distribution between charged (top) and neutral (bottom) final state
- Production mechanism populates states with different spin-projections

\Rightarrow Amplitude Analysis

PWA with Beam Polarization

$$\mathcal{I}(\Omega, \Phi) = \mathcal{I}^0(\Omega) - P_\gamma \mathcal{I}^1(\Omega) \cos 2\Phi - P_\gamma \mathcal{I}^2(\Omega) \sin 2\Phi$$

• New amplitude formalism in reflectivity basis with $Z_{\ell}^{m}(\Omega, \Phi) = Y_{\ell}^{m}(\Omega)e^{-i\Phi}$: JPAC [PRD 100, 054017 (2019)]

$$\mathcal{I}(\Omega, \Phi) \propto (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(\varepsilon = -)} \operatorname{Re} Z_{\ell}^{m}(\Omega, \Phi) \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(\varepsilon = +)} \operatorname{Im} Z_{\ell}^{m}(\Omega, \Phi) \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(\varepsilon = +)} \operatorname{Re} Z_{\ell}^{m}(\Omega, \Phi) \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m}^{(\varepsilon = -)} \operatorname{Im} Z_{\ell}^{m}(\Omega, \Phi) \right|^{2}$$

• Reflectivity $\varepsilon = \pm$ corresponds to naturality of exchange

- Describes all two-pseudoscalar meson systems ($\pi\pi$, $K\bar{K}$, $\pi\eta$, etc.)
- Fully mass-independent analysis difficult due to complexity of wave set: S_0^{\pm} , $P_{-1,0,1}^{\pm}$, $D_{-2,-1,0,1,2}^{\pm}$,...
- Require theory input to limit number of amplitudes or constrain mass dependence of known resonances

a₂(1320) Cross Section

Semi-mass dependent method: impose Breit-Wigner shape for a₂(1320)

a₂(1320) Cross Section

- Good agreement with theory prediction, demonstrate validity of method
- Separation of natural and unnatural parity exchange mechanisms, natural exchange dominant
- Reference for search for exotic $\pi_1(1600)$ in $\eta'\pi$

Projection for $\pi_1(1600) \to \eta^{(')}\pi_{arXiv:2407.03316 (2024)}$

Jefferson Lab

 \Rightarrow First upper limit on the photoproduction cross section of the spin-exotic $\pi_1(1600)$

Projection for $\pi_1(1600) \to \eta^{(')} \pi_{arXiv:2407.03316 (2024)}$

Saturate measured $\omega \pi \pi$ cross section (*I* = 1) with *a*₂(1320) and $\pi_1(1600)$ lineshapes

- Upper limit for photoproduction cross sections $\gamma p \rightarrow \pi_1^0(1600)p$ and $\gamma p \rightarrow \pi_1^-(1600)\Delta^{++}$
- Project this cross section into ηπ and η'π
 ⇒ Could dominate η'π⁰ and η'π[−] channels

First look at $\gamma p \rightarrow \eta' \pi^- \Delta^{++}$

Vector-Pseudoscalar Meson Systems

PWA of $\gamma p ightarrow \omega \pi^0 p$

- High statistical precision
- Clear separation of **b₁(1235)** (1⁺) and **ρ(1450)** (1⁻)
- Production dominated by natural parity exchange

- Ω describes the decay of the resonance
- ${\bf \Omega}_{\rm H}$ describes the decay of the vector meson
- tindicates the orientation of the polarization plane
- All vector-pseudoscalar meson systems ($\omega \pi$, $\omega \eta$, $\phi \pi$, ...)

Jefferson Lab

Jefferson National Accelerator Facility

 $[\]Rightarrow$ K. Scheuer (W&M), Session B

Study of A(1405) Decay

Differential Cross Section

- Neutral $\Sigma^0 \pi^0$ decay isolates isospin 0
- Λ(1405) line shape deviates from pure Breit-Wigner form
- GlueX studies $\Lambda(1520)$ independently in $\gamma p \rightarrow K^+ \Lambda(1502)$ [PRC 105, 035201 (2022)]

Study of A(1405) Decay

Two-Pole Hypothesis

- Simultaneous fit to both channels
- K-matrix parametrization for Λ(1405)
- Incoherent sum of Λ(1520) and background
- Fit favors two poles, currently working towards determination of pole positions

J/ψ Photoproduction at Threshold $\gamma p \rightarrow J/\psi p$, $J/\psi \rightarrow e^+e^-$

Threshold for J/ψ production: $E_{\gamma} = 8.22 \, {
m GeV}$

 $\gamma \rightarrow$

Electron identification: *E*/*p* in calorimeters, pion background suppression by 10⁻⁴

Kinematic Fit with 0.1% precision on photon beam energy

J/ψ Photoproduction at Threshold $\gamma p \rightarrow J/\psi p, J/\psi \rightarrow e^+e^-$

Threshold for J/ψ production: $E_{\gamma} = 8.22 \, {
m GeV}$

- Electron identification: *E*/*p* in calorimeters, pion background suppression by 10⁻⁴
- Kinematic Fit with 0.1% precision on photon beam energy
- Cross section normalized by non-resonant e⁺e⁻ production (Bethe-Heitler)

J/ψ Cross Section at Threshold PRL 123, 072001 (2019)

Energy dependence probes

- Production dynamics
 Brodsky et al. [PRL 498 (2001)]
- Gluon distribution in proton
 Kharzeev et al. [NPA 661, 568 (1999)]

J/ ψ Cross Section at Threshold PRL 123, 072001 (2019)

Energy dependence probes

- Production dynamics
 Brodsky et al. [PRL 498 (2001)]
- Gluon distribution in proton Kharzeev et al. [NPA 661, 568 (1999)]

Search for Resonance in $J/\psi p$

- No evidence for P_c^+ states
- Model-dependent upper limit for $J^{PC} = 3/2^{-1}$ • State | BR (90% CL) • $P_c^+(4312)3/2^- < 2.9\%$ • $P_c^+(4440)3/2^- < 1.6\%$ • $P_c^+(4457)3/2^- < 2.7\%$
- Disfavors hadrocharmonium and some molecular models

J/ψ Cross Section with GlueX-I Data PRC 108, 025201 (2023)

• 4 times more data, smaller systematic uncertainties, precise measurement of $d\sigma/dt$

• Results relevant for fundamental properties: proton mass, gravitational form factors, scattering length

Jefferson Lab

fferson National Accelerator Facility

J/ψ Cross Section with GlueX-I Data PRC 108, 025201 (2023)

- 4 times more data, smaller systematic uncertainties, precise measurement of $d\sigma/dt$
- Results relevant for fundamental properties: proton mass, gravitational form factors, scattering length
- Possible evidence for contribution from open charm production

Jefferson Lab

as Jefferson National Accelerator Facility

The Future of GlueX

Detector Upgrades

- DIRC: Extend kaon/pion separation (Fall 2019)
- FCal2: PbWO₄ insert with higher granularity Commissioned by the end of 2024

GlueX Phase II + JLab Eta Factory

- Started 2020, 2023, continue with FCal2 in 2025
- Emphasis on final states with strangeness
- Higher luminosity: rare processes

GlueX with CEBAF 22 GeV Upgrade

Charmonium spectroscopy

- Exclusive photoproduction of J/ψ, χ_c and ψ(2S)
- Prediction for large cross section of Z_c(3900) near threshold JPAC, PRD 106, 094009 (2022)

Status of the GlueX Experiment

- Full data set for initial phase of GlueX available and under active analysis
- Several exciting physics results, many more to come
- GlueX Phase II in process: focus on meson spectrum with strangeness content

Status of the GlueX Experiment

- Full data set for initial phase of GlueX available and under active analysis
- Several exciting physics results, many more to come
- GlueX Phase II in process: focus on meson spectrum with strangeness content

Beyond GlueX

- Spectroscopy is active field of research with global effort
- Versatile GlueX detector used for precision measurements of QCD
- Detector upgrades for more science potential
- Development of new programs

Status of the GlueX Experiment

- Full data set for initial phase of GlueX available and under active analysis
- Several exciting physics results, many more to come
- GlueX Phase II in process: focus on meson spectrum with strangeness content

Beyond GlueX

- Spectroscopy is active field of research with global effort
- Versatile GlueX detector used for precision measurements of QCD
- Detector upgrades for more science potential
- Development of new programs

gluex.org/thanks

Dedicated GlueX Presentations

- Session C: I. Jaeglé: "The radiative decay width measurement of the η -meson at GlueX"
- Session B: K. Scheuer: "Amplitude Analysis of $\omega \pi^0$ Photoproduction at GlueX"

Amplitude Analysis

Step 1: Mass-Independent Partial-Wave Analysis (PWA)

- Partial wave $\psi_w(\tau)$: Complex-valued amplitude which describes angular distribution of decay products
- Constant in a narrow mass bin: model-independent
- Total intensity distribution $\mathcal I$ in each mass bin: coherent sum of amplitudes with production coefficients T_w

$$\mathcal{I}(au) = \left|\sum_{w}^{waves} T_w \; \psi_w(au)
ight|^2$$

Amplitude Analysis

Step 1: Mass-Independent Partial-Wave Analysis (PWA)

- Partial wave $\psi_w(\tau)$: Complex-valued amplitude which describes angular distribution of decay products
- Constant in a narrow mass bin: model-independent
- Total intensity distribution $\mathcal I$ in each mass bin: coherent sum of amplitudes with production coefficients T_w

Step 2: Model for Mass Dependence for Results from Step 1

- Breit-Wigner function for narrow, isolated resonances
- Approximations for coupled channels: Flatté, K-matrix, ...
- Amplitudes for dynamical effects: triangle singularity, ...
- Treatment of background

Extraction of physical quantities: pole positions, coupling constants

PWA of $\omega\eta$ System

Accessible states:

- 1⁻⁻: ω(1650), ω(1420)
- 1^{+-} : $h_1(1595)$ (needs confirmation)
- 0⁻⁻ and 2⁺⁻: exotic quantum numbers
- 2⁻⁻: never observed

Analysis of several Vector-Pseudoscalar Systems ongoing

PrimEx- η

PrimEx- η : Precision measurement of η decay

- Primakoff production of η meson on nuclear target (Helium)
- Precise measurement of cross section at small production angles
- Experiment completed in three beam times 2019, 2021 and 2022
- Compton cross section measured simultaneously to verify systematic effects and monitor stability

π^{\pm} and π^{0} Polarizability

Status and Projection for Sensitivity

- Fundamental property of the strong interaction, precise predictions from χPT
- Primakoff production of $\pi^+\pi^-$ and $\pi^0\pi^0$ with 6 GeV polarized photon beam on Pb target
- New wire chambers behind forward calorimeter to detect muon background, data recorded in 2022

π^{\pm} and π^{0} Polarizability

Status and Projection for Sensitivity

- Fundamental property of the strong interaction, precise predictions from χPT
- Primakoff production of $\pi^+\pi^-$ and $\pi^0\pi^0$ with 6 GeV polarized photon beam on Pb target
- New wire chambers behind forward calorimeter to detect muon background, data recorded in 2022
- Precision for π^{\pm} estimated to be comparable with COMPASS, but different systematic effects
- Neutral pion polarizability has never been measured

K_L Facility: Strangeness Spectroscopy

Strange Hadron Spectroscopy with Secondary K_L Beam

- Use secondary photon beam to produce tertiary beam of neutral kaons
- GlueX detector with 4π acceptance for charged and neutral final states
- World-wide unique facility, planned to be ready after 2027
- Hyperon spectroscopy to identify missing baryon resonances, $K\pi$ scattering to study κ meson

Jefferson Lab

lefferson National Accelerator Facility