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Part I
Deep learning  the Pc(4312) state
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Physics model

Experimental situation:
● Pc(4312) seen as a maximum in the pJ/ψ energy spectrum
● Pc(4312) has a well defined spin and appears in single partial 

wave
● Σ+

c D0 channel opens at 4.318 GeV -coupled channel problem
● Background contributes to all other waves
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Physics model

● Differential intensity: 

where is a phase space, with

(production term) (background term)

● Starting point: Fixed partial wave (inverse) amplitude: 

● With M expandable in Taylor series (see Frazer, Hendry, Phys. Rev. 134 (1964)) 
one gets:

● Scattering amplitude for two coupled channels in 
scattering length approx (k1, k2 are channel momenta): 
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Altogether 7 model parameters: m11, m22, m12, p0, p1, b0, b1.Altogether 7 model parameters: m11, m22, m12, p0, p1, b0, b1.



ML model – training data - input
● Input examples (effect of energy 

smearing and noise):

● Sample intensities (computed in 65 energy bins) – produced with randomly chosen 
parameter samples – examples

● Parameters were uniformly sampled from the following ranges: 
b0 = [ 0 ; 700 ], b1 = [ -40 ; 40 ], 
p0 = [ 0 ; 600 ], p1 =  [ -35 ; 35 ], 
M22 = [ -0.4 ; 0.4 ], M11 = [ -4 ; 4 ], M12

2 = [ 0 ; 1.4 ]

● For each parameter sample the target class was computed– one of the four: 
b|2, b|4, v|2, v|4
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ML model - training data - targets
● Targets classes:

● m22>0 – bound state, m22<0 – virtual state
●  To localize the poles on Riemann sheets we need to 

find zeros of the amplitude denominator in the 
momentum space:

with
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Symbolically:Symbolically:
Then poles appear on sheets defined with (η1,η2) pairs:  (-,+) - II sheet, (+,-) - IV sheet Then poles appear on sheets defined with (η1,η2) pairs:  (-,+) - II sheet, (+,-) - IV sheet 



ML model – training results
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Does the training data set reflect 
experimental situation ?

● Dimensionality reduction - 
Principal Component Analysis

● Over 99% of the variance can 
be explained with just 6 
features

● Experimental data projected 
onto principal components are 
well encompassed within the 
training dataset



Model predictions – statistical analysis
● The distribution of the target classes was evaluated  with 

● the bootstrap (10 000 pseudo-data based on experimental mean values and uncertainties) and 
● dropout (10 000 predictions from the ML model with a fraction of weights randomly dropped out)
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Summary I
● Takeaways:

● Robust indication towards virtual state obtained.
● Standard χ2 fit may be unstable, since small change in the input may result 

in large parameter fluctuations (change physics interpretation).
● Rather than testing the single model hypothesis with χ2, we obtained the 

probabilities of four competitive pole assignments for the Pc(4312) state.
● The approach was model independent – various microscopical pictures 

can be attached to target classes – meta model.



Amplitude extraction with GANs 
Glòria Montaña, A. Pilloni, Y. Li, L. Bibrzycki, M. Battaglieri 

and others
The A(i)DAPT program

  

Part II
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• Elastic scattering 

• Breit-Wigner type partial waves

• Differential cross section

• Physics constraint: Unitarity of the partial waves

Physics modelPhysics model
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+ Physics constraints in 
Loss function

+ Physics constraints in 
Loss function

Two neural networks, the generator and the discriminator:

• The generator needs to capture the data distribution

• The discriminator estimates the probability that a sample comes from the training data rather than from the generator

Model + gaussian noise

Generative Adversarial Network (GAN) 
with constraints
Generative Adversarial Network (GAN) 
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• Cross section is reproduced qualitatively
• Unitarity constraint is satisfied
• Partial waves               are large
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• Unitarity of the partial waves

• Suppression of higher partial waves

More physics constraintsMore physics constraints
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• Unitarity constraint is satisfied
• Partial waves               are suppressed
• Ambiguity in the sign of the real part
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• Unitarity of the partial waves• Unitarity of the partial waves

• Suppression of higher partial waves• Suppression of higher partial waves

• Positive derivative of the phase shift• Positive derivative of the phase shift

Even more physics constraintsEven more physics constraints
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GeneratedGenerated
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B. Generative Adversarial Networks (GANs): 
extract amplitude from differential cross sections, using 
unitarity
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extract differential cross section (∝ Probability Density) from 
events distribution
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Preliminary status, but the results of using GANs to extract amplitudes from cross sections 
employing physics constraints are promising.

Next steps:
● Increase gaussian noise of the training pseudodata set (currently 0.1%)
● Adjust the generator and/or discriminator models and hyperparameters for convergence
● Determine quantitative agreement between generated and model
● Extension to the event level using normalizing flows
● Extension to more complicated processes
● Generalization of the physics constraints
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