

Deep learning the analytical structure of scattering amplitudes

Łukasz Bibrzycki Faculty of Physics and Applied Computer Science, AGH University of Krakow

Deep learning the *P_c*(4312) state

L. Ng, Ł. Bibrzycki, J. Nys, C. Fernandez-Ramirez, A. Pilloni, V. Mathieu, A.J.Rasmusson, A.P. Szczepaniak

Objective

Determining the nature of the $P_c(4312)$ pentaquark candidate

Du et al., 2102.07159 C. F-R et al. (JPAC), Phys. Rev. Lett. 123, 092001 (2019)

complex coupl. in the Lagrangian) Nakamura, Phys. Rev. D 103, 111503 (2021)

(ruled out) LHCb, Phys. Rev. Lett. 122, 222001 (2019)

Physics model

Experimental situation:

4.38

- $P_c(4312)$ seen as a maximum in the pJ/ψ energy spectrum
- P_c(4312) has a well defined spin and appears in single partial wave
- Σ_{c}^{+} \overline{D}^{0} channel opens at 4.318 GeV -coupled channel problem
- Background contributes to all other waves

Physics model

- Starting point: Fixed partial wave (inverse) amplitude:
- Scattering length With *M* expandable in Taylor series (see *Frazer, Hendry, Phys. Rev. 134 (1964)*) $\hat{M} \approx \hat{m} \hat{c}s$ one gets: $T_{11} = \frac{m_{22} - ik_2}{(m_{11} - ik_1)(m_{22} - ik_2) - m_{12}^2}$ Effective range
- Scattering amplitude for two coupled channels in scattering length approx (k_1 , k_2 are channel momenta):

• Differential intensity:
$$\frac{dN}{d\sqrt{s}} = \rho(s) \left[|P_1(s)T_{11}(s)|^2 + B(s) \right]$$

where $\rho(s) = pqm_{\Lambda_b}$ is a phase space, with $p = \lambda^{\frac{1}{2}}(s, m_{\Lambda_b}^2, m_K^2)/2m_{\Lambda_b}, \ q = \lambda^{\frac{1}{2}}(s, m_p^2, m_{\psi}^2)/2\sqrt{s}$

 $P_1(s) = p_0 + p_1 s$ (production term) $B(s) = b_0 + b_1 s$ (background term)

Altogether 7 model parameters: m_{11} , m_{22} , m_{12} , p_0 , p_1 , b_0 , b_1 .

 $\hat{T}^{-1} = \hat{M}(s) - i\hat{p}$

ML model – training data - input

Input examples (effect of energy smearing and noise):

- Sample intensities (computed in 65 energy bins) produced with randomly chosen parameter samples – examples
- Parameters were uniformly sampled from the following ranges:
 b₀ = [0;700], b₁ = [-40;40],
 p₀ = [0;600], p₁ = [-35;35],
 M₂₂ = [-0.4;0.4], M₁₁ = [-4;4], M₁₂² = [0;1.4]
- For each parameter sample the target class was computed one of the four:
 b|2, b|4, v|2, v|4

ML model - training data - targets

0

- Targets classes:
 - $m_{22}>0$ bound state, $m_{22}<0$ virtual state
 - To localize the poles on Riemann sheets we need to find zeros of the amplitude denominator in the momentum space:

$$p_0 + p_1 q + p_2 q^2 + p_3 q^3 + q^4 = 0$$

with

$$p_{0} = (s_{1} - s_{2}) m_{22}^{2} - (m_{12}^{2} - m_{11}m_{22})^{2}$$

$$p_{1} = 2 (s_{1} - s_{2}) m_{22} + 2m_{11} (m_{12}^{2} - m_{11}m_{22})$$

$$p_{2} = -m_{11}^{2} + m_{22}^{2} + s_{1} - s_{2}$$

$$p_{3} = 2m_{22}$$

Then poles appear on sheets defined with (η_1, η_2) pairs: (-,+) - II sheet, (+,-) - IV sheet Symbolically: $K : \{ [I_1, ..., I_{65}](m_{11}, m_{22}, m_{12}, p_0, p_1, b_0, b_1) \} \rightarrow \{ b | 2, b | 4, v | 2, v | 4 \}$

ML model – training results

Does the training data set reflect experimental situation ?

- Dimensionality reduction -Principal Component Analysis
- Over 99% of the variance can be explained with just 6 features
- Experimental data projected onto principal components are well encompassed within the training dataset

Model predictions – statistical analysis

- The distribution of the target classes was evaluated with
 - the bootstrap (10 000 pseudo-data based on experimental mean values and uncertainties) and
 - dropout (10 000 predictions from the ML model with a fraction of weights randomly dropped out)

Summary I

- Takeaways:
 - Robust indication towards virtual state obtained.
 - Standard χ² fit may be unstable, since small change in the input may result in large parameter fluctuations (change physics interpretation).
 - Rather than testing the single model hypothesis with χ^2 , we obtained the probabilities of four competitive pole assignments for the P_c(4312) state.
 - The approach was model independent various microscopical pictures can be attached to target classes meta model.

Amplitude extraction with GANs Glòria Montaña, A. Pilloni, Y. Li, L. Bibrzycki, M. Battaglieri and others

Physics model

- Elastic scattering $\pi^+\pi^- \to \pi^+\pi^ A(s, \cos\theta) = \sum_{\ell=0}^{n} (2\ell+1) f_{\ell}(s) P_{\ell}(\cos\theta)$
- Breit-Wigner type partial waves $f_{\ell}(s), \ \ell = 0, 1$

$$f_{0}(s) = \frac{m_{\sigma}\Gamma_{\sigma}}{m_{\sigma}^{2} - s - i\Gamma_{\sigma}m_{\sigma}} \qquad m_{\sigma} \approx 0.475 \text{ GeV} , \ \Gamma_{\sigma} \approx 0.55 \text{ GeV}$$
$$f_{1}(s) = \frac{m_{\rho}\Gamma_{\rho}}{m_{\rho}^{2} - s - i\Gamma_{\rho}m_{\rho}} \qquad m_{\rho} = 0.775 \text{ GeV} , \ \Gamma_{\rho} = 0.147 \text{ GeV}$$
$$\longrightarrow A(s, \cos\theta) = f_{0}(s) + 3f_{1}(s)\cos\theta$$

• Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{1}{s} |A(s,\theta)|^2$$

• Physics constraint: Unitarity of the partial waves

$$Im f_0(s) = |f_0(s)|^2 Im f_1(s) = |f_1(s)|^2 \qquad f_l(s) = \frac{1}{2} \int_{-1}^{+1} d(\cos \theta) P_\ell(\cos \theta) A(s, \theta)$$

Generative Adversarial Network (GAN) with constraints

Two neural networks, the **generator** and the **discriminator**:

- The **generator** needs to capture the data distribution
- The **discriminator** estimates the probability that a sample comes from the training data rather than from the generator

Preliminary results (i)

- Cross section is reproduced qualitatively
- Unitarity constraint is satisfied
- Partial waves $\ell \geq 2$ are large

More physics constraints

• Unitarity of the partial waves $f_{\ell}(s), \ \ell = 0, 1$

 $Im f_0(s) = |f_0(s)|^2$ $Im f_1(s) = |f_1(s)|^2$

• Suppression of higher partial waves

 $f_{\ell}(s) = 0, \ \ell \ge 2$

Preliminary results (ii)

- Cross section is reproduced qualitatively
- Unitarity constraint is satisfied
- Partial waves $\ell \geq 2$ are suppressed
- Ambiguity in the sign of the real part

Even more physics constraints

• Unitarity of the partial waves $f_{\ell}(s), \ \ell = 0, 1$

 $Im f_0(s) = |f_0(s)|^2$ $Im f_1(s) = |f_1(s)|^2$

• Suppression of higher partial waves

 $f_{\ell}(s) = 0, \ \ell \ge 2$

• Positive derivative of the phase shift $\frac{d}{ds} \delta_0(s) \ge 0$ $\frac{d}{ds} \delta_1(s) \ge 0$

$$\delta_{\ell}(s) = \operatorname{atan}\left(\frac{\operatorname{Im} f_{\ell}(s)}{\operatorname{Re} f_{\ell}(s)}\right)$$

Preliminary results (iii)

Generated

- Cross section is reproduced qualitatively
- Unitarity constraint is satisfied
- Partial waves $\ell \geq 2$ are suppressed
- The real part takes the right sign

Events \rightarrow Cross section \rightarrow Amplitude

extract differential cross section (\propto Probability Density) from events distribution

B. Generative Adversarial Networks (GANs): extract amplitude from differential cross sections, using unitarity

Summary II

Preliminary status, but the results of using GANs to extract amplitudes from cross sections employing physics constraints are promising.

Next steps:

- Increase gaussian noise of the training pseudodata set (currently 0.1%)
- Adjust the generator and/or discriminator models and hyperparameters for convergence
- Determine quantitative agreement between generated and model
- Extension to the event level using normalizing flows
- Extension to more complicated processes
- Generalization of the physics constraints

