

Amplitude Analysis of $\omega \pi^0$ Photoproduction at GlueX

Kevin Scheuer QNP 2024

1. GlueX & Mapping the Meson Spectrum

- Understanding the search for mesonic resonances
- How photoproduction at \bullet GlueX aids in this search

- these particles

2. Partial Wave Analysis of $\omega \pi^0$ Events

Resonances beyond the well understood $b_1(1235)$

PWA provides insight into the physical parameters of

3. Production Mechanisms

Compare percentage of waves produced naturally and unnaturally using the reflectivity basis

1. GlueX & Mapping the Meson Spectrum

- Understanding the search for mesonic resonances
- How photoproduction at GlueX aids in this search

- these particles

2. Partial Wave Analysis of $\omega \pi^0$ Events

Resonances beyond the well understood $b_1(1235)$

PWA provides insight into the physical parameters of

3. Production Mechanisms

Compare percentage of waves produced naturally and unnaturally using the reflectivity basis

1. GlueX & Mapping the Meson Spectrum

- Understanding the search for mesonic resonances
- How photoproduction at GlueX aids in this search

2. Partial Wave Analysis of $\omega \pi^0$ Events

- these particles

Resonances beyond the well understood $b_1(1235)$

PWA provides insight into the physical parameters of

3. Production Mechanisms

Compare percentage of waves produced naturally and unnaturally using the reflectivity basis

Nodel i Model #2 SND 2009 BABAR **SND** Collaboration BES III SND 2000 SND 2000 (π₀γ) 12 SND 2000b (π_ογ) Using vector-meson SND (This work) 10 dominance model 8 assumption, measured the $\rho(1450)$ mass & width to be $M, \Gamma = 1523 \pm 4, 368 \pm 6$ 1.4 1.3 in an $e^+e^- \rightarrow \omega \pi^0$ IIIII cross section model. 0.9 2023 0.7 1.6 √s. GeV 1.8 2.2

Phys.Rev.D 108 (2023) 9, 092012

Phys.Rev.D 108 (2023) 9, 092012

- e^- beam interacts with diamond radiator \rightarrow produces linearly polarized photon beam \rightarrow photons strike stationary proton target
- Good charged & neutral acceptance
- All analysis shown today will be from the completed Phase 1 dataset

Nucl.Instrum.Meth.A 987 (2021) 164807

Linearly Polarized Photons

- Acquire ~40% polarization in the coherent peak region $E_{\gamma} = 8.2 - 8.8$
- Partial Wave Analysis model utilizes the measured polarization fraction and angle

• Reflectivity $\epsilon = \pm 1$ basis is tied to the naturality $\tau = \pm 1 = P(-1)^J$ of the exchange particle *E*

• Ex: $\epsilon = +1 \rightarrow \tau_E = +1 \rightarrow E = \mathbb{P}$ (Pomeron exchange)

• $I^G(J^{PC}) = 1^+(1^{+-}) \rightarrow \ell = D, S$ wave contributions

- E852 measured amplitude ratio $D/S = 0.269 \ (\pm 0.009)_{stat} \ (\pm 0.01)_{svs}$

Well know with comparable charged decay $\gamma p \rightarrow b_1^- \Delta^{++}$

A PWA "standard candle" to help find other resonances

• Reflectivity $\epsilon = \pm 1$ basis is tied to the naturality $\tau = \pm 1 = P(-1)^J$ of the exchange particle E

• Ex: $\epsilon = +1 \rightarrow \tau_E = +1 \rightarrow E = \mathbb{P}$ (Pomeron exchange)

$$I^G(J^{PC}) = 1^+(1^{+-}) \rightarrow \ell = D, S$$
 wave contributions

- E852 measured amplitude ratio $D/S = 0.269 (\pm 0.009)_{stat} (\pm 0.01)_{sys}$

Well know with comparable charged decay $\gamma p \rightarrow b_1^- \Delta^{++}$

A PWA "standard candle" to help find other resonances

• Reflectivity $\epsilon = \pm 1$ basis is tied to the naturality $\tau = \pm 1 = P(-1)^J$ of the exchange particle *E*

• Ex: $\epsilon = +1 \rightarrow \tau_E = +1 \rightarrow E = \mathbb{P}$ (Pomeron exchange)

• $I^G(J^{PC}) = 1^+(1^{--}) \rightarrow \ell = P$ wave contributions

Wide mass width can create interference with b_1

Polarized Photoproduction of $\omega\pi^0$

- Amplitudes defined by Wigner D functions of the decay angles: $Z_m^i(\Phi, \theta, \phi, \theta_H, \phi_H)$
- Interference between $\{J^P \ell\}_i$ allowed, each having $m = -\ell \dots \ell$ projections
 - Complex production parameters $[c^i]_m^{(\epsilon)} \rightarrow$ provide an amplitude and phase measurement

$$I \approx (1 - P_{\gamma}) \left[\left| \sum_{i,m} [c^{i}]_{m}^{-} \operatorname{Im}(Z_{m}^{i}) \right|^{2} + \left| \sum_{i,m} [c^{i}]_{m}^{+} \operatorname{Re}(Z_{m}^{i}) \right|^{2} \right] + (1 + P_{\gamma}) \left[\left| \sum_{i,m} [c^{i}]_{m}^{+} \operatorname{Im}(Z_{m}^{i}) \right|^{2} + \left| \sum_{i,m} [c^{i}]_{m}^{-} \operatorname{Re}(Z_{m}^{i}) \right|^{2} \right]$$

Polarized Photoproduction of $\omega\pi^0$

- Amplitudes defined by Wigner D functions of the decay angles: $Z_m^i(\Phi, \theta, \phi, \theta_H, \phi_H)$
- Interference between $\{J^P \ell\}_i$ allowed, each having $m = -\ell \dots \ell$ projections
 - Complex production parameters $[c^i]_m^{(\epsilon)} \rightarrow$ provide an amplitude and phase measurement

$$I \approx (1 - P_{\gamma}) \left[\left| \sum_{i,m} [c^{i}]_{m}^{-} \operatorname{Im}(Z_{m}^{i}) \right|^{2} + \left| \sum_{i,m} [c^{i}]_{m}^{+} \operatorname{Re}(Z_{m}^{i}) \right|^{2} \right] + (1 + P_{\gamma}) \left[\left| \sum_{i,m} [c^{i}]_{m}^{+} \operatorname{Im}(Z_{m}^{i}) \right|^{2} + \left| \sum_{i,m} [c^{i}]_{m}^{-} \operatorname{Re}(Z_{m}^{i}) \right|^{2} \right]$$

Monte Carlo Input-Output Study

Fit data using a Mass-Dependent Model with $b_1(1235)$ and $\rho(1450)$

Generate Monte Carlo (MC) from 1.

Fit MC from 2. with a mass-independent model, using a $J^P \ell = \{1^+(S, D), 1^-P\}$ waveset. Compare results to "truth" info

Observe that the $J^P \mathscr{C}_m^{(\epsilon)} = 1^+ S_0^+$ and $1^- P_1^+$ waves capture the b_1 and ρ respectively, with a significant phase motion matching the input

15

Mass Independent Fit to GlueX Phase 1 Data

- Waveset: $J^{P} \mathscr{C} = \{1^{+}S, 1^{+}D, 1^{-}P\}$
 - Every D wave's phase and magnitude constrained to the S wave. Magnitude constrained like 0 < D/S < 1.0
 - Incoherent isotropic background to absorb additional contributions
- Required $M_{p\pi^0} > 1.4 \ GeV$ to remove excited baryon background

Example Fit Result with $M_{p\pi^0} > 1.4 \ GeV$ $0.3 < -t < 0.5 \ GeV^2$, $1.48 < M_{\omega\pi^0} < 1.50 \ GeV$

Interference Between $\mathscr{C}_m^{(\epsilon)} = S_0^{(+)}$, $P_1^{(+)}$ Waves Grouped in bins of -t, errors are purely statistical

Wide 1^- contribution

Phase motion matches previous input-output Monte Carlo study

Interference Between $\mathscr{C}_m^{(\epsilon)} = S_0^{(+)}, P_1^{(+)}$ Waves Grouped in bins of -t, errors are purely statistical

 $0.3 < -t < 0.5 \ GeV^2$

Wide 1^- contribution

Phase motion matches previous input-output Monte Carlo study

Production Mechanism Dominance Colored by exchange particle naturality τ_E (natural / unnatural)

Note: Errors are purely statistical, and unnatural results are likely very susceptible to model changes

Conclusions

- Largest $\gamma p \rightarrow \omega \pi^0 p$ photoproduction dataset
- Observe $J^P = 1^+$ and $1^$ contributions consistent with an interference between the $b_1(1235)$ and vector amplitude
- 1⁺ production dominated by natural diffractive Pomeron exchange mechanisms

 $0.1 < -t < 0.2 \ GeV^2$ $0.3 < -t < 0.5 \ GeV^2$ $0.2 < -t < 0.3 \ GeV^2$

BACKUP SLIDES: Index

- 1. Baryon Background
- 2. Fit Result Intensity-Phase Matrices
- 3. Fit Result Intensities
- 4. Orientation Pairing Comparison
- 5. $N\pi^0$ Cut Comparison
- 6. *D/S* Constraint Comparison

BACKUP: Baryon Background Cut at $M_{N\pi} > 1.4 \ GeV$ influenced by Δ baryon peaks at large $\omega \pi^0$ masses

23

BACKUP: Model Matrix 0.1 < -t < 0.2

BACKUP: Model Matrix 0.2 < -t < 0.3

BACKUP: Model Matrix 0.3 < -t < 0.5

26

Data

 $\varepsilon = +1$

 $\varepsilon = -1$

BACKUP: Model Matrix 0.5 < -t < 0.9

BACKUP: Wave Intensities 0.1 < -t < 0.2

 $\varepsilon = +1$

 $\varepsilon = -$

BACKUP: Wave Intensities 0.2 < -t < 0.3

 $\omega \pi^0$ inv. mass (GeV)

BACKUP: Wave Intensities 0.3 < -t < 0.5

 $\varepsilon = +1$

BACKUP: Wave Intensities 0.5 < -t < 0.9

 $\omega \pi^0$ inv. mass (GeV)

BACKUP: Orientation Pairing Comparison Functions effectively as 2 independent datasets

BACKUP: Orientation Pairing Comparison Functions effectively as 2 independent datasets

BACKUP: $M_{p\pi^0}$ **Cut Comparison** Compare the effects without the cut, and enforcing $M_{p\pi^0} > 1.4 \ GeV$

BACKUP: $M_{p\pi^0}$ **Cut Comparison** Compare the effects without the cut, and enforcing $M_{p\pi^0} > 1.4 \ GeV$

BACKUP: *D*/*S* **Constraint Comparison** Compare the effects with the constraint, and without

BACKUP: *D*/*S* **Constraint Comparison** Compare the effects with the constraint, and without

