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Background and Motivation

• Importance of Two-Pion Photoproduction:
- Crucial for understanding light meson resonances, especially given chal-
lenges in obtaining free pion targets.
- Recent discoveries of exotic heavy states have sparked renewed interest,
advancing hadron spectroscopy.

• Leveraging New Data:
- High-precision data from CLAS12 and GlueX provide new insights, refining
production mechanisms and enhancing model accuracy.

• Theoretical Insights and Challenges:
- Simple pomeron-based models explain the ρ(770) resonance, s-channel
helicity conservation (SCHC), and cross-section behavior at small momen-
tum transfer (|t| ≲ 0.4,GeV2).
- They fail at larger momentum transfers, where additional light meson reso-
nances become significant.

- This highlights the necessity for more detailed models capable of explaining

complex interference patterns and resonance contributions.
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Model Description

Process: γ(q, λq) + p(p1, λ1)→ π+(k1) + π−(k2) + p(p2, λ2)

2→ 3 Dynamics

Our approach builds upon established dynamics within 2→ 2
subchannels, by extending the on-shell πN Deck mechanism to an
off-shell framework

• Direct implementation of ππ resonances within our model

• Embedding of πN resonances in the Deck mechanism
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Kinematics

Helicity frame: the recoiling proton (p⃗2) defines the negative z-axis, and
ΩH = (θH, ϕH) define the angles of the π+.

We will use the following
kinematic invariants:

s = (p1 + q)2 = (p2 + k1 + k2)2,

t = (p1 − p2)2 = (k1 + k2 − q)2,

s12 = (k1 + k2)2 = (p1 − p2 + q)2.
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Resonant Production

• Effective Lagrangian: One-particle exchange model.

• Regge Propagator:

RE(s, t) =
1
s0

αE(t)
αE(0)

1 + τEe−iπαE(t)

sin παE(t)

( s
s0

)αE(t)−1
,

• Include the resonance decay vertex by using an energy-dependent
width Breit-Wigner [Phys. Rev. D 98, 030001 (2018)].

The partial wave amplitude:

Mλ1,λ2,λq (s, t, s12,ΩH) =
∑
lm

Mlm
λ1,λ2,λq

(s, t, s12,ΩH)Ylm(ΩH)
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Non Resonant Production: Deck Mechanism

M
Deck,GI
λ1λ2λq

(s, t, s12,ΩH) =
√

4πα

×

[( ϵ(q, λq) · k1

q · k1
−
ϵ(q, λq) · (p1 + p2)

q · (p1 + p2)

)
β(tπ1 )M−λ1λ2

(s2, t)

−

( ϵ(q, λq) · k2

q · k2
−
ϵ(q, λq) · (p1 + p2)

q · (p1 + p2)

)
β(tπ2 )M+λ1λ2

(s1, t)
]
.
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Non Resonant Production: NRP- NRS- Waves

Fbkg(s12) ≡ [(sth
12 − s12)(smax

12 − s12)] ,

where

sth
12 = 4m2

π

smax
12 = s + m2

p −
1

2m2
p

[
(s + m2

p)(2m2
p − t) − λ1/2(s,m2

p, 0)λ1/2(t,m2
p,m

2
p)
]
.

Thus

Mnres
P =

1
s

Rf2 (s, t)Fbkg(s12)u(p2, λ2)γµu(p1, λ1)wµ(λγ) ,

Mnres
S =

1
s

gnr
s R(s, t)Fbkg(s12)u(p2, λ2)γµu(p1, λ1)vµ(λγ) .
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Parameterization of Helicity Structure

• Parameterizing helicity-dependent couplings aE,R
λγM

(t) at photon-nucleon
vertices for J = 0, 1, 2 partial waves in two-pion photoproduction. For
example, the P-wave vertex:

T αλγM = aE,R
λγM

(t)
[
qαϵσλγ (q) − qσϵαλγ (q)

]
ϵ∗Mσ(k).

These parameters were allowed to be complex. Upon fitting, these
couplings capture the helicity structure and ensure gauge invariance.

• A total of 30 free parameters:

• S−wave Contributions:
- 2 for each scalar resonance i.e. f0(500), f0(980), f0(1370),
- 2 for the background.

• P−wave Contribution:
- 6 for ρ production via f2 exchange,
- 6 for the backgroud.

• D−wave Contribution: - 10 for the tensor meson f2(1270).
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Fitting Angular Moments

• Parameters are fitted to experimental angular moments from CLAS
data.

• The fit procedure involves analyzing data primarily at the highest en-
ergy bin (3.6− 3.8 GeV) and evaluating the model at 3.7 GeV photon
energy.

• Fits are performed for angular moments < YM
L > where L = 0, 1, 2

and M = 0...L, where

< YM
L >=

√
4π

∫
dΩH dσ

dtdm12dΩH Re YLM(ΩH)

[Phys.Rev.D 80 (2009) 072005]

• Each t-bin is fitted separately (600 data points per fit) where statisti-
cal uncertainties are determined using a bootstrap method ensuring
reliable parameter estimates.
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Fitting Results

Eγ = 3.7 GeV and t = −0.45 GeV2
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Fitting Results

Eγ = 3.7 GeV and t = −0.95 GeV2
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Decoding Angular Moments: The Production Puzzle

Our model interprets angular moments via physically motivated parame-
terizations of production amplitudes. We analyze four model decomposi-
tions to understand their contributions:

• Minimal Model: Includes Pomeron-induced resonant ρ(770) produc-
tion and Deck mechanism.

• P+ Deck: Incorporates the full ρ(770) production amplitude and its
corresponding background.

• S + P+ Deck: Extends to include a comprehensive set of related
resonances and their backgrounds.

• Complete Model: Represents our fully developed model.
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Insights from Y0
0 Analysis

t = −0.45 GeV2 (left), t = −0.65 GeV2 (center), t = −0.95 GeV2 (right)

Key observations:

• Minimal model underestimates Y0
0 across all t-bins

• P+ Deck captures Y0
0 near ρ(770) peak but doesn’t match lineshape

• Improved fit with S + P+ Deck, particularly for
√

s12 < mρ
• Enhanced accuracy including D-wave for

√
s12 > mρ
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Analysis Highlights for L = 1 Moments

t = −0.45 GeV2 (left), t = −0.65 GeV2 (center), t = −0.95 GeV2 (right)

Key observations:

• Minimal and P+ Deck models fail across all t-bins for Y1
0 and Y1

1 .

• Including S-wave improves fit for Y1
0 but still falls short.

• Including all resonances is essential to capture observed data features.
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Summary

• Developed a theoretical framework integrating resonance effects and
their impact on angular moments across t.

• Demonstrated the Deck Model’s adaptability in off-shell pion exchange,
which is crucial for understanding resonance structures.

• Validated the model with experimental data, effectively capturing in-
tricate t-dependence.

• Proposed future studies on resonances like f0(980) and f2(1270) at
higher energies due to their increasing prominence.

• Emphasized the necessity of additional amplitudes beyond Pomeron
exchange, such as S-wave and D-wave contributions, to accurately
reflect experimental data.
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Future Work: ρ Meson SDMEs

Importance of Computing SDMEs

• Spin Density Matrix Elements (SDMEs) describe the polarization state
of the studied meson (ρ, ∆++,.. ).

• Validate our model by comparing theoretical predictions with experi-
mental data.

• Understand vector meson production and decay dynamics.

• Explore effects of different production mechanisms.

• Identification of potential areas for further theoretical development.
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Derivation of SDMEs for Vector Mesons

SDMEs of the decaying vector meson, are related to the photon spin den-
sity matrix as:

ρ(V) = Tρ(γ)T†,

where
ρ(γ) =

1
2

I + P⃗γ · σ⃗ ,

for linear polarisation:

P⃗γ = Pγ(− cos 2Φ,− sin 2Φ, 0) ,

Φ is the angle between the production plane and the polarisation vector of
the the photon and 0 ≲ Pγ ≲ 1. Thus:

ρ(V) = ρ0 +

3∑
i=1

Pαγρ
α ,
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Derivation of SDMEs for Vector Mesons
ρα are hermitian matrices and their trace is 1. They are given by:

ρ0
λλ′ =

1
2N

∑
λλN′λN

TλλN′ ,λγλN T∗λ′λN′ ,λγλN
,

ρ1
λλ′ =

1
2N

∑
λλ′NλN

TλλN′ ,−λγλN T∗λ′λN′ ,λγλN
,

ρ2
λλ′ =

i
2N

∑
λλN′λN

λγTλλN′ ,−λγλN T∗λ′λN′ ,λγλN
,

ρ3
λλ′ =

1
2N

∑
λλN′λN

λγTλλN′ ,−λγλN T∗λ′λN′ ,λγλN
.

They satisfy the symmetry properties:

ραλλ′ = (−1)λ−λ
′

ρα−λ−λ′ , for α = 0, 1

,
ραλλ′ = −(−1)λ−λ

′

ρα−λ−λ′ , for α = 2, 3

.
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Derivation of SDMEs for Vector Mesons

The density matrix is related to the decay angular distribution:

W(cos θ, ϕ) = Mρ(V)M† ,

Then the ρ meson decay distribution is:

W(cos θ, ϕ,Φ) = W0(cos θ, ϕ)−Pγ cos 2ΦW1(cos θ, ϕ)−Pγ sin 2ΦW2(cos θ, ϕ) ,

where

W0(cos θ, ϕ) =
3

4π

[
1
2

(1 − ρ0
00) +

1
2

(3ρ0
00 − 1) cos2 θ −

√
2 Re ρ0

10 sin 2θ cos ϕ

− ρ0
1−1 sin2 θ cos 2ϕ

]
,

W1(cos θ, ϕ) =
3

4π

[
ρ1

11 sin2 ϕ + ρ1
00 cos2 θ −

√
2 ρ1

10 sin 2θ cos ϕ − ρ1
1−1 sin2 θ cos 2ϕ

]
,

W2(cos θ, ϕ) =
3

4π

[√
2 Im ρ2

10 sin 2θ sin ϕ + Im ρ2
1−1 sin2 θ sin 2ϕ

]
.
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Back-Up Slides
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Frames

Particle Helicity Frame Gottfried-Jackson Frame
p1 |p⃗1 |(sin θ1, 0, cos θ1) |p⃗1 |(− sin θ1, 0, cos θ1)
p2 |p⃗2 |(0, 0,−1) |p⃗2 |(− sin θ2, 0, cos θ2)
q |⃗q|(− sin θq, 0, cos θq) |⃗q|(0, 0, 1)
k1 k1 = |k⃗1 |(sin θ cos ϕ, sin θ sin ϕ, cos θ) k1 = |k⃗1 |(sin θ cos ϕ, sin θ sin ϕ, cos θ)
k2 k2 = −k1 k2 = −k1
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Resonant Production

Energy-dependent width Breit-Wigner function,following the parameterization provided by
the Particle Data Group (PDG) [Phys. Rev. D 98, 030001 (2018)]:

BWdep(s, l) =
n(s)

m2
BW − s − imBWΓtot(s)

, where n(s) =
(

q
q0

)l

Fl(q, q0)
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Pion-proton Scattering

Figure: Feynman diagram for π−p→ π−p

Assuming that the intermediate pion is offshell, then the pion-proton scattering amplitude will
read:

M−λ = ūλ(p2)
[
A−(s, t, tπ) +

1
2
γµ(q − k1 + k2)µB−(s, t, tπ)

]
uλ(p1),

where tπ = (q − k1)2
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Pion-proton Scattering

Similarly for the positive exchanged pion:

M+λ = ūλ(p2)
[
A+(s, t, tπ) +

1
2
γµ(q − k2 + k1)µB+(s, t, tπ)

]
uλ(p1),

where tπ = (q − k2)2.
In the πN center of mass frame the t-channel A and B defined as follows:

1
4π

A± =
√

s + mp

Z+1 Z+2
f ±1 −

√
s − mp

Z−1 Z−2
f ±2 ,

1
4π

B± =
1

Z+1 Z+2
f ±1 −

1
Z−1 Z−2

f ±2 .

Where f1 and f2 are called the reduced helicity amplitudes, Z±i =
√

Ei ± mp.
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Pion-proton scattering

The partial wave decomposition:

f1 =
1√
|p1 ||p2 |

∞∑
l=0

fl+(s)P′l+1(cos θ) −
1√
|p1 ||p2 |

∞∑
l=2

fl−(s)P′l−1(cos θ),

f2 =
1√
|p1 ||p2 |

∞∑
l=1

[fl−(s) − fl+(s)]P′l (cos θ).

In our model the pion virtuality appears clearly in the incoming proton energy (E1), momen-
tum (P1) as well as our scattering angle (cos θ). Hence we can say that the scalar functions
A and B in our case depends on the pion virtuality.

E1 =
si − tπ + m2

p

2
√

si
,

cos θ =
2si(t − 2m2

p) + (si − tπ + m2
p)(si − m2

π + m2
p)√

λ(si, tπ,m2
p)

√
λ(si,m2

π,m2
p)

.
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