A Comprehensive Study of Double Pion Photoproduction: Regge Approach

NADINE HAMMOUD

University of Barcelona, Spain

With Łukasz Bibrzycki, Robert J. Perry, Vincent Mathieu, Adam P. Szczepaniak

The 10th International Conference on Quarks and Nuclear Physics

Background and Motivation

• IMPORTANCE OF TWO-PION PHOTOPRODUCTION:

- Crucial for understanding light meson resonances, especially given challenges in obtaining free pion targets.
- Recent discoveries of exotic heavy states have sparked renewed interest, advancing hadron spectroscopy.

• LEVERAGING NEW DATA:

- High-precision data from CLAS12 and GlueX provide new insights, refining production mechanisms and enhancing model accuracy.

• THEORETICAL INSIGHTS AND CHALLENGES:

- Simple pomeron-based models explain the $\rho(770)$ resonance, *s*-channel helicity conservation (SCHC), and cross-section behavior at small momentum transfer ($|t| \leq 0.4$, GeV²).

- They fail at larger momentum transfers, where additional light meson resonances become significant.

- This highlights the necessity for more detailed models capable of explaining complex interference patterns and resonance contributions.

Model Description

Process: $\gamma(q, \lambda_q) + p(p_1, \lambda_1) \rightarrow \pi^+(k_1) + \pi^-(k_2) + p(p_2, \lambda_2)$

3 Dynamics

Our approach builds upon established dynamics within $2 \rightarrow 2$ subchannels, by extending the on-shell πN Deck mechanism to an off-shell framework

- Direct implementation of $\pi\pi$ resonances within our model
- Embedding of πN resonances in the Deck mechanism

Kinematics

Helicity frame: the recoiling proton $(\vec{p_2})$ defines the negative *z*-axis, and $\Omega^{H} = (\theta^{H}, \phi^{H})$ define the angles of the π^+ .

We will use the following kinematic invariants:

$$s = (p_1 + q)^2 = (p_2 + k_1 + k_2)^2,$$

$$t = (p_1 - p_2)^2 = (k_1 + k_2 - q)^2,$$

$$s_{12} = (k_1 + k_2)^2 = (p_1 - p_2 + q)^2.$$

Resonant Production

- Effective Lagrangian: One-particle exchange model.
- **Regge Propagator:**

$$\mathsf{R}^{\mathsf{E}}(s,t) = \frac{1}{s_0} \frac{\alpha^{E}(t)}{\alpha^{\mathsf{E}}(0)} \frac{1 + \tau^{\mathsf{E}} e^{-i\pi\alpha^{\mathsf{E}}(t)}}{\sin\pi\alpha^{\mathsf{E}}(t)} \left(\frac{s}{s_0}\right)^{\alpha^{\mathsf{E}}(t)-1},$$

Include the resonance decay vertex by using an energy-dependent • width Breit-Wigner [Phys. Rev. D 98, 030001 (2018)].

The partial wave amplitude:

$$\mathcal{M}_{\lambda_{1},\lambda_{2},\lambda_{q}}(s,t,s_{12},\Omega_{H}) = \sum_{lm} \mathcal{M}_{\lambda_{1},\lambda_{2},\lambda_{q}}^{lm}(s,t,s_{12},\Omega_{H})Y_{lm}(\Omega_{H})$$

Non Resonant Production: Deck Mechanism

$$\mathcal{M}_{\lambda_{1}\lambda_{2}\lambda_{q}}^{\mathsf{Deck},\mathsf{Gl}}(s,t,s_{12},\Omega_{H}) = \sqrt{4\pi\alpha} \\ \times \left[\left(\frac{\epsilon(q,\lambda_{q})\cdot k_{1}}{q\cdot k_{1}} - \frac{\epsilon(q,\lambda_{q})\cdot(p_{1}+p_{2})}{q\cdot(p_{1}+p_{2})} \right) \beta(t_{\pi_{1}}) \mathcal{M}_{\lambda_{1}\lambda_{2}}^{-}(s_{2},t) \right. \\ \left. - \left(\frac{\epsilon(q,\lambda_{q})\cdot k_{2}}{q\cdot k_{2}} - \frac{\epsilon(q,\lambda_{q})\cdot(p_{1}+p_{2})}{q\cdot(p_{1}+p_{2})} \right) \beta(t_{\pi_{2}}) \mathcal{M}_{\lambda_{1}\lambda_{2}}^{+}(s_{1},t) \right].$$

æ

Non Resonant Production: NRP- NRS- Waves

$$F_{bkg}(s_{12}) \equiv \left[(s_{12}^{\text{th}} - s_{12})(s_{12}^{\text{max}} - s_{12}) \right],$$

where

$$s_{12}^{\text{th}} = 4m_{\pi}^{2}$$

$$s_{12}^{\text{max}} = s + m_{p}^{2} - \frac{1}{2m_{p}^{2}} \Big[(s + m_{p}^{2})(2m_{p}^{2} - t) - \lambda^{1/2}(s, m_{p}^{2}, 0)\lambda^{1/2}(t, m_{p}^{2}, m_{p}^{2}) \Big].$$

Thus

$$\mathcal{M}_{P}^{\mathsf{nres}} = \frac{1}{s} R_{f_2}(s, t) F_{bkg}(s_{12}) \overline{u}(p_2, \lambda_2) \gamma^{\mu} u(p_1, \lambda_1) w_{\mu}(\lambda_{\gamma}) ,$$

$$\mathcal{M}_{S}^{\mathsf{nres}} = \frac{1}{s} g_s^{\mathsf{nr}} R(s, t) F_{bkg}(s_{12}) \overline{u}(p_2, \lambda_2) \gamma^{\mu} u(p_1, \lambda_1) v_{\mu}(\lambda_{\gamma}) .$$

Э.

Parameterization of Helicity Structure

Parameterizing helicity-dependent couplings a^{E,R}_{λγM}(t) at photon-nucleon vertices for J = 0, 1, 2 partial waves in two-pion photoproduction. For example, the *P*-wave vertex:

$$\mathcal{T}^{\alpha}_{\lambda_{\gamma}M} = a^{\mathsf{E},\mathcal{R}}_{\lambda_{\gamma}M}(t) \left[q^{\alpha} \epsilon^{\sigma}_{\lambda_{\gamma}}(q) - q^{\sigma} \epsilon^{\alpha}_{\lambda_{\gamma}}(q) \right] \epsilon^{*}_{M\sigma}(k).$$

These parameters were allowed to be complex. Upon fitting, these couplings capture the helicity structure and ensure gauge invariance.

- A total of 30 free parameters:
 - *S*-wave Contributions:
 - 2 for each scalar resonance i.e. $f_0(500), f_0(980), f_0(1370),$
 - 2 for the background.
 - *P*-wave Contribution:
 - 6 for ρ production via f_2 exchange,
 - 6 for the backgroud.
 - *D*-wave Contribution: 10 for the tensor meson $f_2(1270)$.

Fitting Angular Moments

- Parameters are fitted to experimental angular moments from CLAS data.
- The fit procedure involves analyzing data primarily at the highest energy bin (3.6 3.8 GeV) and evaluating the model at 3.7 GeV photon energy.
- Fits are performed for angular moments $\langle Y_L^M \rangle$ where L = 0, 1, 2 and M = 0...L, where

$$\langle Y_L^M \rangle = \sqrt{4\pi} \int d\Omega^H \frac{d\sigma}{dt dm_{12} d\Omega^H} \operatorname{Re} Y_{LM}(\Omega^H)$$

[Phys.Rev.D 80 (2009) 072005]

July 11, 2024

• Each *t*-bin is fitted separately (600 data points per fit) where statistical uncertainties are determined using a bootstrap method ensuring reliable parameter estimates.

Fitting Results

 $E_{\gamma} = 3.7 \text{ GeV} \text{ and } t = -0.45 \text{ GeV}^2$

Nadine Hammoud

Fitting Results

 $E_{\gamma} = 3.7 \text{ GeV} \text{ and } t = -0.95 \text{ GeV}^2$

Nadine Hammoud

July 11, 2024

Decoding Angular Moments: The Production Puzzle

Our model interprets angular moments via physically motivated parameterizations of production amplitudes. We analyze four model decompositions to understand their contributions:

- Minimal Model: Includes Pomeron-induced resonant $\rho(770)$ production and Deck mechanism.
- *P*+ Deck: Incorporates the full $\rho(770)$ production amplitude and its corresponding background.
- *S* + *P*+ Deck: Extends to include a comprehensive set of related resonances and their backgrounds.
- Complete Model: Represents our fully developed model.

12

э

July 11, 2024

Insights from Y_0^0 Analysis

$$t = -0.45 \ GeV^2$$
 (left), $t = -0.65 \ GeV^2$ (center), $t = -0.95 \ GeV^2$ (right)

Key observations:

- Minimal model underestimates Y_0^0 across all *t*-bins
- P+ Deck captures Y_0^0 near $\rho(770)$ peak but doesn't match lineshape
- Improved fit with S + P + Deck, particularly for $\sqrt{s_{12}} < m_{\rho}$
- Enhanced accuracy including *D*-wave for $\sqrt{s_{12}} > m_{\rho}$

Analysis Highlights for L = 1 Moments

$t = -0.45 \ GeV^2$ (left), $t = -0.65 \ GeV^2$ (center), $t = -0.95 \ GeV^2$ (right)

Key observations:

- Minimal and P+ Deck models fail across all t-bins for Y_0^1 and Y_1^1 .
- Including *S*-wave improves fit for *Y*¹₀ but still falls short.
- Including all resonances is essential to capture observed data features.

- Developed a theoretical framework integrating resonance effects and their impact on angular moments across *t*.
- Demonstrated the Deck Model's adaptability in off-shell pion exchange, which is crucial for understanding resonance structures.
- Validated the model with experimental data, effectively capturing intricate *t*-dependence.
- Proposed future studies on resonances like $f_0(980)$ and $f_2(1270)$ at higher energies due to their increasing prominence.
- Emphasized the necessity of additional amplitudes beyond Pomeron exchange, such as *S*-wave and *D*-wave contributions, to accurately reflect experimental data.

15

э

イロト イポト イヨト イヨト

July 11, 2024

Future Work: ρ Meson SDMEs

IMPORTANCE OF COMPUTING SDMEs

- Spin Density Matrix Elements (SDMEs) describe the polarization state of the studied meson (ρ, Δ⁺⁺,...).
- Validate our model by comparing theoretical predictions with experimental data.
- Understand vector meson production and decay dynamics.
- Explore effects of different production mechanisms.
- Identification of potential areas for further theoretical development.

э

July 11, 2024

Derivation of SDMEs for Vector Mesons

SDMEs of the decaying vector meson, are related to the photon spin density matrix as:

$$\rho(V) = T\rho(\gamma)T^{\dagger},$$

where

$$\rho(\gamma) = \frac{1}{2}I + \vec{P_{\gamma}} \cdot \vec{\sigma} \,,$$

for linear polarisation:

$$\vec{P_{\gamma}} = P_{\gamma}(-\cos 2\Phi, -\sin 2\Phi, 0),$$

 Φ is the angle between the production plane and the polarisation vector of the the photon and $0 \leq P_{\gamma} \leq 1$. Thus:

$$\rho(V) = \rho_0 + \sum_{i=1}^3 P^\alpha_\gamma \rho^\alpha \,,$$

Derivation of SDMEs for Vector Mesons

 ρ^{α} are hermitian matrices and their trace is 1. They are given by:

$$\begin{split} \rho^{0}_{\lambda\lambda'} &= \frac{1}{2N} \sum_{\lambda\lambda_{N'}\lambda_{N}} T_{\lambda\lambda_{N'},\lambda_{\gamma}\lambda_{N}} T^{*}_{\lambda'\lambda_{N'},\lambda_{\gamma}\lambda_{N}}, \\ \rho^{1}_{\lambda\lambda'} &= \frac{1}{2N} \sum_{\lambda\lambda'_{N'}\lambda_{N}} T_{\lambda\lambda_{N'},-\lambda_{\gamma}\lambda_{N}} T^{*}_{\lambda'\lambda_{N'},\lambda_{\gamma}\lambda_{N}}, \\ \rho^{2}_{\lambda\lambda'} &= \frac{i}{2N} \sum_{\lambda\lambda_{N'}\lambda_{N}} \lambda_{\gamma} T_{\lambda\lambda_{N'},-\lambda_{\gamma}\lambda_{N}} T^{*}_{\lambda'\lambda_{N'},\lambda_{\gamma}\lambda_{N}}, \\ \rho^{3}_{\lambda\lambda'} &= \frac{1}{2N} \sum_{\lambda\lambda_{N'}\lambda_{N}} \lambda_{\gamma} T_{\lambda\lambda_{N'},-\lambda_{\gamma}\lambda_{N}} T^{*}_{\lambda'\lambda_{N'},\lambda_{\gamma}\lambda_{N}}. \end{split}$$

They satisfy the symmetry properties:

,

.

$$\rho^{\alpha}_{\lambda\lambda'} = (-1)^{\lambda-\lambda'} \rho^{\alpha}_{-\lambda-\lambda'} \ , \ \ \text{for} \ \ \alpha = 0,1$$

$$\rho^{\alpha}_{\lambda\lambda'}=-(-1)^{\lambda-\lambda'}\rho^{\alpha}_{-\lambda-\lambda'}\ ,\ \ \text{for}\ \ \alpha=2,3$$

Derivation of SDMEs for Vector Mesons

The density matrix is related to the decay angular distribution:

 $W(\cos\theta,\phi) = M\rho(V)M^{\dagger}$,

Then the ρ meson decay distribution is:

 $W(\cos\theta, \phi, \Phi) = W_0(\cos\theta, \phi) - P_\gamma \cos 2\Phi W_1(\cos\theta, \phi) - P_\gamma \sin 2\Phi W_2(\cos\theta, \phi),$ where

$$\begin{split} W_0(\cos\theta,\phi) &= \frac{3}{4\pi} \left[\frac{1}{2} (1-\rho_{00}^0) + \frac{1}{2} (3\rho_{00}^0-1)\cos^2\theta - \sqrt{2} \operatorname{Re} \rho_{10}^0 \sin 2\theta \cos\phi \right. \\ &\left. -\rho_{1-1}^0 \sin^2\theta \cos 2\phi \right], \\ W_1(\cos\theta,\phi) &= \frac{3}{4\pi} \left[\rho_{11}^1 \sin^2\phi + \rho_{00}^1 \cos^2\theta - \sqrt{2} \rho_{10}^1 \sin 2\theta \cos\phi - \rho_{1-1}^1 \sin^2\theta \cos 2\phi \right] \\ W_2(\cos\theta,\phi) &= \frac{3}{4\pi} \left[\sqrt{2} \operatorname{Im} \rho_{10}^2 \sin 2\theta \sin\phi + \operatorname{Im} \rho_{1-1}^2 \sin^2\theta \sin 2\phi \right]. \end{split}$$

Thank you

BACK-UP SLIDES

July 11, 2024

Particle	Helicity Frame	Gottfried-Jackson Frame
<i>p</i> ₁	$ \vec{p_1} (\sin\theta_1, 0, \cos\theta_1)$	$ \vec{p_1} (-\sin\theta_1, 0, \cos\theta_1)$
<i>p</i> ₂	$ \vec{p_2} (0,0,-1)$	$ \vec{p_2} (-\sin\theta_2, 0, \cos\theta_2)$
q	$ \vec{q} (-\sin\theta_q, 0, \cos\theta_q)$	$ \vec{q} (0,0,1)$
<i>k</i> ₁	$\mathbf{k_1} = \vec{k_1} (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$	$k_1 = \vec{k_1} (\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$
<i>k</i> ₂	$k_2 = -k_1$	$k_2 = -k_1$

イロト イヨト イヨト イヨト

з.

Energy-dependent width Breit-Wigner function, following the parameterization provided by the Particle Data Group (PDG) [Phys. Rev. D 98, 030001 (2018)]:

$$\mathsf{BW}^{\mathsf{dep}}(s,l) = \frac{n(s)}{m_{\mathsf{BW}}^2 - s - im_{\mathsf{BW}}\Gamma_{\mathsf{tot}}(s)}, \text{ where } n(s) = \left(\frac{q}{q_0}\right)^l F_l(q,q_0)$$

æ

イロト イポト イヨト イヨト

Pion-proton Scattering

Figure: Feynman diagram for $\pi^- p \rightarrow \pi^- p$

Assuming that the intermediate pion is offshell, then the pion-proton scattering amplitude will read:

$$M_{\lambda}^{-} = \bar{u}_{\lambda}(p_2) \left[A^{-}(s,t,t_{\pi}) + \frac{1}{2} \gamma_{\mu}(q-k_1+k_2)^{\mu} B^{-}(s,t,t_{\pi}) \right] u_{\lambda}(p_1),$$

where $t_{\pi} = (q - k_1)^2$

∃ ► < ∃ ►</p>

A D F A A F F A

Pion-proton Scattering

Similarly for the positive exchanged pion:

$$M_{\lambda}^{+} = \bar{u}_{\lambda}(p_2) \left[A^{+}(s,t,t_{\pi}) + \frac{1}{2} \gamma_{\mu}(q-k_2+k_1)^{\mu} B^{+}(s,t,t_{\pi}) \right] u_{\lambda}(p_1),$$

where $t_{\pi} = (q - k_2)^2$. In the πN center of mass frame the t-channel *A* and *B* defined as follows:

$$\begin{split} \frac{1}{4\pi}A^{\pm} &= \frac{\sqrt{s}+m_p}{Z_1^+Z_2^+}f_1^{\pm} - \frac{\sqrt{s}-m_p}{Z_1^-Z_2^-}f_2^{\pm},\\ \frac{1}{4\pi}B^{\pm} &= \frac{1}{Z_1^+Z_2^+}f_1^{\pm} - \frac{1}{Z_1^-Z_2^-}f_2^{\pm}. \end{split}$$

Where f_1 and f_2 are called the reduced helicity amplitudes, $Z_i^{\pm} = \sqrt{E_i \pm m_p}$.

Pion-proton scattering

The partial wave decomposition:

$$\begin{split} f_1 &= \frac{1}{\sqrt{|\pmb{p}_1||\pmb{p}_2|}} \sum_{l=0}^{\infty} f_{l+}(s) P'_{l+1}(\cos \theta) - \frac{1}{\sqrt{|\pmb{p}_1||\pmb{p}_2|}} \sum_{l=2}^{\infty} f_{l-}(s) P'_{l-1}(\cos \theta), \\ f_2 &= \frac{1}{\sqrt{|\pmb{p}_1||\pmb{p}_2|}} \sum_{l=1}^{\infty} [f_{l-}(s) - f_{l+}(s)] P'_l(\cos \theta). \end{split}$$

In our model the pion virtuality appears clearly in the incoming proton energy (E_1), momentum (P_1) as well as our scattering angle ($\cos \theta$). Hence we can say that the scalar functions A and B in our case depends on the pion virtuality.

$$\begin{split} E_1 &= \frac{s_i - t_\pi + m_p^2}{2\sqrt{s_i}},\\ \cos\theta &= \frac{2s_i(t - 2m_p^2) + (s_i - t_\pi + m_p^2)(s_i - m_\pi^2 + m_p^2)}{\sqrt{\lambda(s_i, t_\pi, m_p^2)}\sqrt{\lambda(s_i, m_\pi^2, m_p^2)}} \end{split}$$