QNP2024 - The 10th International Conference on Quarks and Nuclear Physics

Contribution ID: 181

Type: Contributed talk

Analyzing the $D^*D^*D^*$ system: Hexaquark states and the Efimov effect

Wednesday, 10 July 2024 15:00 (20 minutes)

When two particles form a nearly resonant bound state due to short-range attractive forces, an effective longrange three-body emerges giving rise to an infinite number of three-body bound states with a discrete scale invariance. This phenomena, called *Efimov effect*, was first described in the 1970's by V. Efimov [1]. The Efimov effect has been mostly studied in atomic physics, due to its experimental observation in Cesium atoms in 2006 [2]. However, its relevance has also been explored in nuclear physics, e.g., in the ${}^{12}C$ three- α structure, the triton formation or the nuclear halo of ${}^{14}Be$, ${}^{22}C$ and ${}^{20}C$ nuclei.

The existence of three-body bound states and its low-energy universality in the charm and bottom sectors has been explored in the recent literature, specially since the discovery of the X(3872) state, a loosely-bound $D^{*0}\bar{D}^{0}$ +h.c. molecule with quantum numbers $J^{PC} = 1^{++}$. The properties of the X(3872), unfortunately, rule out the existence of the Efimov effect [3]. However, the recent discovery in 2021 of the T_{cc}^{+} [4] can renew this interest.

In this talk I will analyze the $D^*D^*D^*$ system in the $J^P = 0^-$ sector with $I = \frac{1}{2}$, assuming that the isoscalar heavy partner of the T_{cc}^+ , dubbed T_{cc}^* , exists close and below the D^*D^* threshold. I find that $(I)J^P = (\frac{1}{2})0^-$ three-body bound states can be formed, with properties that suggest that the Efimov effect can be realised for reasonable values of the molecular probability and binding energy of the T_{cc}^* [5].

- [1] V. Efimov, Phys. Lett. B 33 (1970), 563-564.
- [2] T. Kraemer, Nature 440, Issue 7082, pp. 315-318 (2006).
- [3] E. Braaten and M. Kusunoki, Phys. Rev. D 69 (2004), 074005.
- [4] R. Aaij et al. [LHCb], Nature Phys. 18 (2022) no.7, 751-754.
- [5] P.G. Ortega, arXiv:2403.10244 [hep-ph].

session

B. Hadron Spectroscopy

Primary author: G. ORTEGA, Pablo (Universidad de Salamanca)

Presenter: G. ORTEGA, Pablo (Universidad de Salamanca)

Session Classification: B. Hadron Spectroscopy