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What to work on to win a Nobel prize?
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What to work on to win a Nobel prize?
Beta decay has been an excellent choice for a century!

1903

1896- Becquerel discovers spontaneous radioactivity of  
uranium, identified  with the electron 

1898- Curie-Sklodowska, Curie discover polonium and radium
β

1899- Rutherford systematized  rays, identified  with He-4α, β, γ α
1908

1934- F.&I. Joliot-Curie discovered  decay with  - positronβ+ β+

1935

1956- Lee & Yang proposed parity non conservation in -decay,  
confirmed by Wu experiment

β
1957

1961- Glashow proposed electroweak unification  
1967- Weinberg & Salam implemented Higgs mechanism 
1973- Neutral weak current discovered at CERN 1979

1973- Kobayashi, Maskawa: 3-flavor quark mixing matrix
2008
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That was the bright side…
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Niepce de Saint-Victor: observed radioactivity in 1857 
cited in Becquerel-father’s book

1930: Pauli postulated existence of neutrinos 
1934: Fermi formulated the contact theory of beta decay

Cox, McIlwraith, Kurrelmeier (1928); Chase (1929-30) 
“Apparent evidence of polarization in a beam of beta rays”

1938: Klein predicted MW ∼ 4πα 2/GF ∼ 100 GeV

1957: Wu’s experiment was crucial to prove Lee-Yang’s 
conjecture, but Chien-Shiung Wu was not awarded the NP

1963- Cabibbo: proposed 2-flavor quark mixing  
to reconcile , , K decay ratesμ β



Precision Era: V-A + Radiative Corrections
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V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded
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Radiative corrections to muon decay: important evidence for V-A theory 
RC to muon decay - UV finite for V-A but divergent for S-PS

τμ = 2196980.3(2.2)ps Gμ = 1.1663788(7) × 10−5GeV−2Muon lifetime —> Fermi constant
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V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

But: RC to neutron decay - UV divergent even in V-A theory! 
Kinoshita, Sirlin, Behrends, …

1-loop RC to spectrum:
UV cut-off

ΔP0d3p =
α
2π

P0d3p [6 ln
Λ
Mp

+ finite]
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V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

But: RC to neutron decay - UV divergent even in V-A theory! 
Kinoshita, Sirlin, Behrends, …

1-loop RC to spectrum:
UV cut-off

ΔP0d3p =
α
2π

P0d3p [6 ln
Λ
Mp

+ finite]
Is weak interaction universal for leptons and hadrons? 

1967: Sirlin applied current algebra:  
          general UV behavior of  decay rate at 1-loop β
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by
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where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

 average charge of fields involved:  but Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2

Finiteness of RC to muon decay was accidental!
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.
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was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
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is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

 average charge of fields involved:  but Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2

Finiteness of RC to muon decay was accidental!

Eventually, massive W-boson renders RC to beta decay UV-finite
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In SM the same coupling of W-boson to leptons and hadrons,  =  

Before RC were included: 

GV Gμ

GV ∼ 0.98Gμ

Large  in RC for neutron —>  

Kaon and hyperon decays? ( ) — even smaller coupling!

log(MZ /Mp) GV ∼ 0.95Gμ

ΔS = 1

|GΔS=0
V | = cos θCGμ

|GΔS=1
V | = sin θCGμ

Cabibbo: strength shared between 2 generations 

Cabibbo unitarity: cos2 θC + sin2 θC = 1

CKM unitarity - completeness of the SM:   
Top row unitarity constraint: 

VV† = 1
|Vud |2 + |Vus |2 + |Vub |2 = 1

Kobayashi & Maskawa: 3 flavors + CP violation — CKM matrix V



Detailed understanding of  decays  
largely shaped the Standard Model

β
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Cabibbo Angle Anomaly:  
Status and BSM interpretation
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|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud
(4)Vus

∼ 10−5∼ 0.95 ∼ 0.05

 and  determinations  
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Vud Vus
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K → πℓν : |Vus | = 0.2233(5)

At variance with kaon decays + Cabibbo unitarity

Unitarity → |Vud | = 1 − |Vus |2 = 0.9747(1)

K → μν
π → μν

: |Vus /Vud | = 0.2311(5)

Unitarity → |Vud | = [1 + |Vus /Vud |2 ]−1/2 = 0.9743(1)

} PDG [S = 2.5] : |Vus | = 0.2243(8)

Unitarity → |Vud | = 0.9745(2)
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CAA summary - 3 anomalies!

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

Can it be a signal of BSM?



Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Constraints on right-handed currents

30

• In SM, W couples only to LH chiral fermion states
• New physics with couplings to RH currents could explain          

both unitarity deficit and Kℓ3-Kμ2 difference
• Define ϵR = admixture of RH currents in non-strange sector

  ϵR + ΔϵR = admixture of RH currents in strange sector

From current fit:
ϵR = −0.69(27)×10−3 (2.5σ)
ΔϵR = −3.9(1.6)×10−3 (2.4σ)
ϵR = ΔϵR = 0 excluded at 3.1σ

Cirigliano et al.
PLB 838 (2023)

CAA in presence of RH currents

11
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Are all SM corrections under control?



The path from kaon decays to Vus 



Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

Vus/Vud and Kℓ2 decays

27

Inputs from theory:

δEM Long-distance EM corrections

δSU(2) Strong isospin breaking
fK/fπ→ fK±/fπ±

fK/fπ Ratio of decay constants
Cancellation of lattice-scale 
uncertainties from ratio
NB: Most lattice results already 
corrected for SU(2)-breaking: fK±/fπ±

Inputs from experiment:

From K± BR fit:
BR(K±

µ2(γ)) = 0.6358(11)
τK± = 12.384(15) ns

From PDG:
BR(π±

µ2(γ)) = 0.9999
τπ± = 26.033(5) ns

Vus / Vud from Kμ2 = K → μν

13

LQCD :  	(Nf = 2 + 1 + 1)
fK /fπ = 1.1978(22)

FLAG 2021 average

|Vus /Vud | = 0.23108(23)exp(42)lat(16)IB

(51)tot = 0.22 %

LQCD+EM :  	
 

(Nf = 2 + 1 + 1)
δSU(2) + δEM = − 0.0126(14)

Di Carlo et al, 2019
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Vus from Kℓ3 = K → πeν, πμν

Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

Determination of Vus from Kℓ3 data

3

Inputs from theory:
f+

K0π−(0) Hadronic matrix element 
(form factor) at zero 
momentum transfer (t = 0)

ΔK
SU(2) Form-factor correction for 

SU(2) breaking

ΔKℓ
EM Form-factor correction for 

long-distance EM effects

with K ! {K+, K0};  ℓ! {e, µ}, and:
CK2 1/2 for K+, 1 for K0

SEW Universal SD EW correction (1.0232)

Inputs from experiment:
Γ(Kℓ3(γ)) Rates with well-determined 

treatment of radiative decays:
• Branching ratios
• Kaon lifetimes

IKℓ({λ}Kℓ) Integral of form factor over 
phase space: λs parameterize 
evolution in t

• Ke3: Only λ+ (or λ+′, λ+″)
• Kµ3: Need λ+ and λ0
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Inputs from theory:
f+

K0π−(0) Hadronic matrix element 
(form factor) at zero 
momentum transfer (t = 0)

ΔK
SU(2) Form-factor correction for 

SU(2) breaking

ΔKℓ
EM Form-factor correction for 

long-distance EM effects

with K ! {K+, K0};  ℓ! {e, µ}, and:
CK2 1/2 for K+, 1 for K0

SEW Universal SD EW correction (1.0232)

Inputs from experiment:
Γ(Kℓ3(γ)) Rates with well-determined 

treatment of radiative decays:
• Branching ratios
• Kaon lifetimes

IKℓ({λ}Kℓ) Integral of form factor over 
phase space: λs parameterize 
evolution in t

• Ke3: Only λ+ (or λ+′, λ+″)
• Kµ3: Need λ+ and λ0

f+(0) LQCD :   	
LQCD :  

(Nf = 2 + 1) f+(0) = 0.9677(27)
(Nf = 2 + 1 + 1) f+(0) = 0.9698(17)

FLAG 2021 averages

Kℓ3 : |Vus | = 0.22330(35)exp(39)lat(8)IB

(53)tot = 0.24 %

Seng, Galviz, Meißner 1910.13208
Seng, Galviz, MG, Meißner 2103.04843
Seng, Galviz, MG, Meißner 2203.05217
Feng, MG, Jin, Ma, Seng 2003.09798
Ma, Feng, MG, Jin, Seng 2102.12048

δKℓ
EM ChPT

K0e 11.6(2)inel(1)lat(1)NF(2)e2p4 9.9(1.9)e2p4(1.1)LEC

K+e 2.1(2)inel(1)lat(4)NF(1)e2p4 1.0(1.9)e2p4(1.6)LEC

K0µ 15.4(2)inel(1)lat(1)NF(2)LEC(2)e2p4 14.0(1.9)e2p4(1.1)LEC

K+µ 0.5(2)inel(1)lat(4)NF(2)LEC(2)e2p4 0.2(1.9)e2p4(1.6)LEC

Table IV: Final result for δKℓ
EM, in units of 10−3. The ChPT result from Ref.[22] is given in the last

column for comparison.

• For (δf−)rem, the independent combinations of LECs are X1, C1 ≡ Xr
2 − Xr

3 , C2 ≡

2Kr
3 −Kr

4 and C3 ≡ Kr
5 +Kr

6 . Among them, X1 = −2.2(4)× 10−3 was fixed to good

precision with the recent lattice calculations [21], and its resulting uncertainty to δKℓ3

is negligible. Similar calculations are not yet done for C1−3, so we infer their values

at µ = Mρ from resonance models [34–36], and assign a 100% uncertainty to each of

them:

C1 = −1.4(1.4)LEC×10−3 , C2 = 4.0(4.0)LEC×10−3 , C3 = 14.4(14.4)LEC×10−3 . (29)

Meanwhile, the next three uncertainties are estimated as follows:

• The NF uncertainty in (δf+)
b,A
γW is estimated by multiplying !

V A<
γW in each channel by

M2
K/Λ

2
χ;

• TheO(e2p4) chiral uncertainty is obtained by first adding all the columns with asterisks

in Table I–III, and then multiply the sum by M2
K/Λ

2
χ;

• Finally, a conservative uncertainty of 2× 10−4 is assign to each channel to account for

the poorly-constrained contribution from (δf+)inel (see discussions in Sec.III B).

Unlike the first two, these three errors are deduced using näıve power counting and order-

of-magnitude estimations, and it is difficult to identify independent sources of uncertainties

within each type. In fact, we consider it as arbitrary to take these uncertainties to be un-

correlated as to assume any correlation. Therefore, we simply take them to be uncorrelated,

following the same strategy adopted by some of us in Ref. [25].

14

Long-distance EM RC : new approach (ChPT + Current Algebra + LQCD) 
Uncertainty reduced by 1 o.o.m. — under control

ΔEM
Kℓ

[10−3] [10−3]



The path from nuclear beta decays to Vud 



 from superallowed  nuclear decaysVud 0+ − 0+
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1. Transitions within JP=0+ isotriplets (T=1)	
2. Elementary process: p—>ne+ 	
3. Only conserved vector current	
4. 15 measured to better than 0.2%	
5. Internal consistency as a check	
6. SU(2) good —> corrections ~small

ν
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“Superallowed” beta decays of I=1, Jp=0+ nuclei

Provides the best measurement 
of V

ud
 :

➢ 23 measured transitions
➢ 15 with ft-precision better 

than 0.23% 

Hardy and Towner, 2020 PRC
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ft values: same within ~2% but not exactly!	
Reason: SU(2) slightly broken	
a. RC (e.m. interaction does not conserve isospin)	
b. Nuclear WF are not SU(2) symmetric 	
      (proton and neutron distribution not the same)

Exp.: f - phase space (Q value) 	
t - partial half-life (t1/2, branching ratio)
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Vud extraction: Universal RC and Universal Ft

17

To obtain Vud —> absorb all decay-specific corrections into universal Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′￼R)(1 − δC + δNS)(1 + ΔV

R)

QED Isospin-breaking Nuclear structure Universal RC~ Measured
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Average of 14 decays Hardy, Towner 1972 - 2020

|Vud |2 =
2984.43s

ℱt(1+ΔV
R)

|V0+−0+

ud | = 0.9737 (1)exp, nucl (3)NS (1)RC[3]total

Pre-2018: ℱt = 3072.1 ± 0.7 s

PDG 2022: ℱt = 3072 ± 2 s



Radiative Corrections to beta decay: 
Overall Setup



RC to beta decay: overall setup

19

Tree-level amplitude

Electron carries away energy E < Q-value of a decay

i = n, A(0+) f = p, A′￼(0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:

Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV

Electron mass

Decay Q-value (endpoint energy)

Λnuc = 10 − 30 MeV

Λ

Energy scales Λ
Universal 

Nuclear structure dependent  
(QCD)

Nucleus-specific

Nuclear structure independent  
(QED)



RC to beta decay: separating scales

20

Generically: only IR and UV extremes feature large logarithms! 
Works by Sirlin (1930-2022) and collaborators: all large logs under control

IR: Fermi function (Dirac-Coulomb problem) + Sirlin function (soft Bremsstrahlung)

9

W

γ ,Zb =

ν

e

h 'h

W

W

γ , ,WZb =

ν

e

h 'h

Z

ν

e

h 'h

W W

ν

e

h 'h

Z

Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment

W,Z - loops 
UV structure of SM

Inner RC:  
energy- and model-independent

UV: large EW logs + pQCD corrections

-box: sensitive to all scalesγW

10

γ

ν

e

n p

W

( ) ( ) ν
νν

π
π

NW

W

m
qT

q

q
qm

mqd
c

),(
)2(

Re8Re
2

3
22

22

22

2

4

4
2

m.d
−−

−
= ∫

Nm
qp ⋅

=ν

( ) ),(
2

})0()({
)2(

2
34

4

QT
m

qpi
nJxJTpe

qd

N
AWem

xiq ν
ν

ε
π

βα
µναβ

νµ =∫
⋅

The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

New method for computing EW boxes: dispersion theory 
Combine exp. data with pQCD, lattice, EFT, ab-initio nuclear

UV-sensitive -box on free neutron : Sirlin, Marciano, Czarnecki 1967 - 2006  γW ΔV
R

g2
V = |Vud |2 [1 +

α
2π {3 ln

MZ

Mp
+ ln

MZ

MW
+ ãg} + δHO

QED + 2 □γW ]
Nuclear structure:  

All non-enhanced terms  — only need to ~10%

δNS = 2( □Nucl
γW − □free n

γW )

∼ α/2π ∼ 10−3



Long-Range QED Corrections to   
Beta Spectrum and ft-values

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ

MZ, MW ∼ 90 GeV

IR

UV

Fermi function, corrections to beta spectrum

Universal correction ΔV
R

Nuclear structure δC, δNS



f = m−5
e ∫

E0

me

dEe | ⃗pe |Ee(E0 − Ee)2F(Ee)C(Ee)Q(Ee)R(Ee)r(Ee)

QED: Corrections to Decay Spectrum
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Fermi function: e+ in Coulomb field of daughter nucleus
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Shape factor: spatial distribution of decay 
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Atomic screening and overlap correctionsShape factor: spatial distribution of decay 
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Recoil correction

Atomic screening and overlap correctionsShape factor: spatial distribution of decay 
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Coulomb distortion numerically large: escapes the usual scaling  
Fermi function  (coherent effect, Sommerfeld and  enhancement)

α/π
F0 ∼ Zαπ/β π2



Recoil correction

Atomic screening and overlap correctionsShape factor: spatial distribution of decay 

Fermi function: e+ in Coulomb field of daughter nucleus

f = m−5
e ∫

E0

me

dEe | ⃗pe |Ee(E0 − Ee)2F(Ee)C(Ee)Q(Ee)R(Ee)r(Ee)

QED: Corrections to Decay Spectrum

Unperturbed beta spectrum 4

II. COMPLETE EXPRESSION

Apart from the electromagnetic corrections to the �
spectrum shape, several other smaller corrections are to
be included when a precision at the 10�4 level is required.
The detailed description of the allowed � spectrum shape,
including these smaller corrections, is given by

N(W )dW =
G2

V
V 2
ud

2⇡3
F0(Z, W ) L0(Z, W ) U(Z, W ) DFS(Z, W, �2) R(W, W0) RN (W, W0, M)

⇥ Q(Z, W ) S(Z, W ) X(Z, W ) r(Z, W ) C(Z, W ) DC(Z, W, �2) pW (W0 � W )2 dW

⌘ G2
V

V 2
ud

2⇡3
K(Z, W, W0, M) A(Z, W ) C 0(Z, W ) pW (W0 � W )2 dW. (4)

Here, Z is the proton number of the daughter nucleus,
W = E/mec2+1 is the total � particle energy in units of
the electron rest mass, W0 is the total energy at the spec-
trum endpoint, p =

p
W 2 � 1 the � particle momentum

in units of mec, GV the vector coupling strength in nu-
clei, and V 2

ud
= cos2 ✓C , with ✓C the Cabibbo-angle, is the

square of the up-down matrix element of the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix.

The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
trostatic in origin, R(W, W0) takes into account radiative
corrections calculated using QED (Sec. V). Moving from
an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
K(Z, W, W0, M). The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
by the name ‘finite size e↵ects’ used by di↵erent authors.
For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
E in particular aims to further discuss the overlap and
di↵erences in the di↵erent formalisms commonly found

Since Fermi fn is of order 1 —> even small corrections should be assessed. 
A myriad of corrections introduced/estimated by different people in past 9 decades!
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Coulomb distortion numerically large: escapes the usual scaling  
Fermi function  (coherent effect, Sommerfeld and  enhancement)

α/π
F0 ∼ Zαπ/β π2
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p
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ud
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an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
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Since Fermi fn is of order 1 —> even small corrections should be assessed. 
A myriad of corrections introduced/estimated by different people in past 9 decades!

Unified method of calculation (matching between them is well-defined)  
numerical solution of Dirac equation with inputs from nuclear theory and experiment
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New development:  
use isospin symmetry and known charge radii to predict the weak transition radius!
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Large factors ~Z multiply small differences
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with Zφ the atomic number of φ. For simplicity, we
will label Z,RCh of an isotriplet nuclear state |1, Tz⟩ as
ZTz

, RCh,Tz
respectively. The r.h.s of the second line

in Eq.(14) consists of two isoscalar terms and an isovec-
tor term; the last is just the nuclear matrix element of

M (1)
0 . By constructing the difference between ZφR2

Ch,φ of
two nuclei within the same isotriplet, the isosinglet pieces
drop out and the remaining isovector term can then be
related to Eq.(13) in the isospin-symmetric limit through
the Wigner-Eckart theorem:

⟨1, Tzb|M (1)
m |1, Tza⟩ = C1,1;1,Tzb

1,Tza;1,m
⟨1||M (1)||1⟩ , (15)

with C1,1;1,Tzb

1,Tza;1,m
the Clebsch-Gordan coefficient and

⟨1||M (1)||1⟩ the reduced matrix element. With this we
finally obtain:

R2
CW = R2

Ch,1 + Z0(R
2
Ch,0 −R2

Ch,1)

= R2
Ch,1 +

Z−1

2
(R2

Ch,−1 −R2
Ch,1) , (16)

where we have used Z1 = Z0 − 1 = Z−1 − 2.
Eq.(16) is the central result of this work: it says that

R2
CW can be determined model-independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the r.h.s of Eq.(16); the first
term is the MS charge radius of the most stable Tz =
+1 nucleus, while the second term involves a difference
R2

Ch,a − R2
Ch,b. Nevertheless, this term is numerically

comparable to the first term because it is multiplied to
a large factor Z; in fact, it is also the main source of
error because the experimental uncertainties in R2

Ch are
enhanced by the same factor. Therefore, we expect the
error of R2

CW determined with this method to be roughly
an order of magnitude larger than that of the individual
R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently-available data of

charge radii for nuclear isotriplets involved in measured
superallowed transitions [31–35]. One observes that in
many cases it is substantially larger than R2

Ch, which sig-
nifies the importance of the “difference” term in Eq.(16).
Also, unlike the charge radius, RCW does not seem to
increase monotonically with the mass number A, which
makes an accurate theory modeling of its value much
more difficult.

Recoil effects: Experiment vs model – Despite
being known since the 1970s, we are not aware of any lit-
erature that seriously implemented the aforementioned
idea in their numerical analysis of f ; instead, most of
them resort to nuclear models. For instance, Hardy and
Towner [36] computed the nuclear form factors directly
using the impulse approximation, where nucleons in a
nucleus are treated as non-interacting, and the nuclear
matrix element of a one-body operator Ô is expressed as

a product of the single-nucleon matrix element of Ô (with
the q2-dependence neglected) and the one-body density
matrix element, the latter is computed with shell model.
To what extent such an approximation captures the cor-
rect q2-dependence of the nuclear form factors is far from
transparent. A more traceable method was introduced
by Wilkinson [26], who estimated the difference between
R2

CW and R2
Ch using shell model and a modified-Gaussian

charge distribution:

R2
CW −R2

Ch ≈
4

3(5A′ + 2)

4n+ 2l− 1

5
R2

Ch , (17)

where {n, l} are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and
A′ is a parameter of the modified-Gaussian charge dis-
tribution fixed by the condition 2/(2 + 3A′) = Zl=0/Z
for the parent nucleus. As we will see later that the ef-
fects of S to the total decay rate can reach 0.1% or above
for medium and heavy nuclei, theory errors in the RCW-
modeling could lead to corrections at (0.01-0.1)% level
which are relevant for the precise extraction of Vud.

Based on the data in Table I, we can immediately
study the effect of S to the total decay rate model-
independently for 13 out of 23 [2] measured superallowed
transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is
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drop out and the remaining isovector term can then be
related to Eq.(13) in the isospin-symmetric limit through
the Wigner-Eckart theorem:

⟨1, Tzb|M (1)
m |1, Tza⟩ = C1,1;1,Tzb

1,Tza;1,m
⟨1||M (1)||1⟩ , (15)

with C1,1;1,Tzb

1,Tza;1,m
the Clebsch-Gordan coefficient and

⟨1||M (1)||1⟩ the reduced matrix element. With this we
finally obtain:

R2
CW = R2

Ch,1 + Z0(R
2
Ch,0 −R2

Ch,1)

= R2
Ch,1 +

Z−1

2
(R2

Ch,−1 −R2
Ch,1) , (16)

where we have used Z1 = Z0 − 1 = Z−1 − 2.
Eq.(16) is the central result of this work: it says that

R2
CW can be determined model-independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the r.h.s of Eq.(16); the first
term is the MS charge radius of the most stable Tz =
+1 nucleus, while the second term involves a difference
R2

Ch,a − R2
Ch,b. Nevertheless, this term is numerically

comparable to the first term because it is multiplied to
a large factor Z; in fact, it is also the main source of
error because the experimental uncertainties in R2

Ch are
enhanced by the same factor. Therefore, we expect the
error of R2

CW determined with this method to be roughly
an order of magnitude larger than that of the individual
R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently-available data of

charge radii for nuclear isotriplets involved in measured
superallowed transitions [31–35]. One observes that in
many cases it is substantially larger than R2

Ch, which sig-
nifies the importance of the “difference” term in Eq.(16).
Also, unlike the charge radius, RCW does not seem to
increase monotonically with the mass number A, which
makes an accurate theory modeling of its value much
more difficult.

Recoil effects: Experiment vs model – Despite
being known since the 1970s, we are not aware of any lit-
erature that seriously implemented the aforementioned
idea in their numerical analysis of f ; instead, most of
them resort to nuclear models. For instance, Hardy and
Towner [36] computed the nuclear form factors directly
using the impulse approximation, where nucleons in a
nucleus are treated as non-interacting, and the nuclear
matrix element of a one-body operator Ô is expressed as

a product of the single-nucleon matrix element of Ô (with
the q2-dependence neglected) and the one-body density
matrix element, the latter is computed with shell model.
To what extent such an approximation captures the cor-
rect q2-dependence of the nuclear form factors is far from
transparent. A more traceable method was introduced
by Wilkinson [26], who estimated the difference between
R2

CW and R2
Ch using shell model and a modified-Gaussian

charge distribution:

R2
CW −R2

Ch ≈
4

3(5A′ + 2)

4n+ 2l− 1

5
R2

Ch , (17)

where {n, l} are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and
A′ is a parameter of the modified-Gaussian charge dis-
tribution fixed by the condition 2/(2 + 3A′) = Zl=0/Z
for the parent nucleus. As we will see later that the ef-
fects of S to the total decay rate can reach 0.1% or above
for medium and heavy nuclei, theory errors in the RCW-
modeling could lead to corrections at (0.01-0.1)% level
which are relevant for the precise extraction of Vud.

Based on the data in Table I, we can immediately
study the effect of S to the total decay rate model-
independently for 13 out of 23 [2] measured superallowed
transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is
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Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)dist(2)scr(17)QEC
134.64(17)QEC

�0.01(0)dist(2)scr
22Mg!22Na 418.27(2)dist(7)scr(13)QEC

418.35(13)QEC
�0.02(0)dist(2)scr

34Ar!34Cl 3409.89(24)dist(60)scr(25)QEC
3410.85(25)QEC

�0.03(1)dist(2)scr
38Ca!38mK 5327.49(39)dist(98)scr(31)QEC

5328.88(31)QEC
�0.03(1)dist(2)scr

42Ti!42Sc 7124.3(58)dist(14)scr(14)QEC
7130.1(14)QEC

�0.08(8)dist(2)scr
50Fe!50Mn 15053(18)dist(3)scr(60)QEC

15060(60)QEC
�0.04(12)dist(2)scr

54Ni!54Co 21137(4)dist(5)scr(52)QEC
21137(57)QEC

+0.00(2)rad(2)scr
34Cl!34S 1995.08(13)dist(36)scr(9)QEC

1996.003(96)QEC
�0.05(1)dist(2)scr

38mK!38Ar 3296.32(22)dist(63)scr(15)QEC
3297.39(15)QEC

�0.03(1)dist(2)scr
42Sc!42Ca 4468.53(340)dist(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)dist(2)scr

50Mn!50Cr 10737.9(117)dist(23)scr(5)QEC
10745.99(49)QEC

�0.08(11)dist(2)scr
54Co!54Fe 15769.4(24)dist(34)scr(27)QEC

15766.8(27)QEC
+0.02(2)dist(2)scr

74Rb!74Kr 47326(128)dist(12)scr(94)QEC
47281(93)QEC

+0.10(27)dist(3)scr
Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to
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Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT
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Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to
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Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi)

1 1.000 14 1.481 25 1.513 39 1.553 60 1.572 80 1.599
7 1.399 15 1.484 27 1.518 45 1.561 64 1.577 86 1.600
8 1.420 16 1.488 30 1.540 49 1.566 66 1.579 92 1.601
9 1.444 17 1.494 32 1.556 52 1.567 68 1.586 94 1.603
10 1.471 18 1.496 35 1.550 53 1.568 70 1.590
11 1.476 20 1.495 36 1.551 54 1.568 74 1.593
12 1.474 23 1.504 38 1.552 55 1.567 76 1.595

Table II: Hartree-Fock calculation of N(Zi) from Ref.[94].

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)rad(0)shape(2)scr(17)QEC
134.64(17)QEC

�0.01(0)rad(0)shape(2)scr
22Mg!22Na 418.27(1)rad(1)shape(7)scr(13)QEC

418.35(13)QEC
�0.02(0)rad(0)shape(2)scr

26Si!26mAl 1027.52(15)rad(12)shape(17)scr(12)QEC
1028.03(12)QEC

�0.05(1)rad(1)shape(2)scr
34Ar!34Cl 3409.89(16)rad(18)shape(60)scr(25)QEC

3410.85(25)QEC
�0.03(0)rad(1)shape(2)scr

38Ca!38mK 5327.49(14)rad(36)shape(98)scr(31)QEC
5328.88(31)QEC

�0.03(0)rad(1)shape(2)scr
42Ti!42Sc 7124.3(57)rad(8)shape(14)scr(14)QEC

7130.1(14)QEC
�0.08(8)rad(1)shape(2)scr

50Fe!50Mn 15053(18)rad(3)shape(3)scr(60)QEC
15060(60)QEC

�0.04(12)rad(2)shape(2)scr
54Ni!54Co 21137(3)rad(1)shape(5)scr(52)QEC

21137(57)QEC
+0.00(2)rad(0)shape(2)scr

26mAl!26Mg 478.097(60)rad(54)shape(82)scr(100)QEC
478.270(98)QEC

�0.04(1)rad(1)shape(2)scr
34Cl!34S 1995.076(81)rad(103)shape(364)scr(94)QEC

1996.003(96)QEC
�0.05(0)rad(1)shape(2)scr

38mK!38Ar 3296.32(8)rad(21)shape(63)scr(15)QEC
3297.39(15)QEC

�0.03(0)rad(1)shape(2)scr
42Sc!42Ca 4468.53(336)rad(52)shape(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)rad(1)shape(2)scr

50Mn!50Cr 10737.93(1150)rad(202)shape(229)scr(50)QEC
10745.99(49)QEC

�0.08(11)rad(2)shape(2)scr
54Co!54Fe 15769.4(23)rad(7)shape(34)scr(27)QEC

15766.8(27)QEC
+0.02(1)rad(0)shape(2)scr

74Rb!74Kr 47326(127)rad(18)shape(12)scr(94)QEC
47281(93)QEC

+0.10(27)rad(4)shape(3)scr

Table III: Comparison between new and old results of f . Notation: 123.12(234) means 123.12± 2.34.

Transition t (ms) (ft)HT (s) (ft)new(s)
18Ne!18F 21630± 590 2912± 79 2912± 80

22Mg!22Na 7293± 16 3051.1± 6.9 3050.4± 6.8
26Si!26mAl 2969.0± 5.4 3052.2± 5.6 3050.7± 5.6
34Ar!34Cl 896.55± 0.81 3058.0± 2.8 3057.1± 2.8
38Ca!38mK 574.8± 1.1 3062.8± 6.0 3062.2± 5.9
42Ti!42Sc 433± 12 3090± 88 3085± 86
50Fe!50Mn 205.8± 4.7 3099± 71 3098± 72
54Ni!54Co 144.9± 2.3 3062± 50 3063± 49

26mAl!26Mg 6351.24+0.55
�0.54 3037.61± 0.67 3036.5± 1.0

34Cl!34S 1527.77+0.47
�0.44 3049.43+0.95

�0.88 3048.0± 1.1
38mK!38Ar 925.42± 0.28 3051.45± 0.92 3050.5± 1.1
42Sc!42Ca 681.44± 0.26 3047.7± 1.2 3045.0± 2.7
50Mn!50Cr 283.68± 0.11 3048.4± 1.2 3046.1± 3.6
54Co!54Fe 193.495+0.086

�0.063 3050.8+1.4
�1.1 3051.3+1.7

�1.4
74Rb!74Kr 65.201± 0.047 3082.8± 6.5 3086± 11

Table IV: Summary of the experimental results of the par-
tial half-life t and the previous ft determination, both from
Ref.[1], and our updated ft values for 15 superallowed tran-
sitions.

(scr). The errors from the former two are fully corre-
lated and stem from the radial (rad) and higher-order
shape parameters (shape) in the nuclear charge distribu-
tion functions. It is apparent from our analysis that in
many cases the total theory uncertainty (rad + shape +
scr) is larger than the experimental ones (QEC). Based
on this we deem that Ref.[1] has underestimated the er-
rors in f . To be complete, we also compare the old and
new determination of the full ft value in Table IV.

It is interesting to study the shift of the central value
of f from the previous determination. It was shown in
Ref.[57], by inspecting the analytic formula of the “pure-
QCD” shape factor CQCD(E) in the absence of electro-
magnetic interaction, that an increase of hr2cwi1/2, the MS
radius characterizing ⇢cw, in general leads smaller values
of f . Indeed, from the last column in Table III we see
that in most cases our new evaluation reduces the central
value of f at the level of 0.01%, although some of such
shifts are within the quoted (theory) uncertainties. The
magnitude of the shift obtained in this work is in general
smaller than those estimated in Ref.[57] upon accounting
for the correlated effects with the Fermi function. Never-
theless, according to Eq.(3), a coherent downward shift
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Table III: Comparison between new and old results of f . Notation: 123.12(234) means 123.12± 2.34.

Transition t (ms) (ft)HT (s) (ft)new(s)
18Ne!18F 21630± 590 2912± 79 2912± 80

22Mg!22Na 7293± 16 3051.1± 6.9 3050.4± 6.8
26Si!26mAl 2969.0± 5.4 3052.2± 5.6 3050.7± 5.6
34Ar!34Cl 896.55± 0.81 3058.0± 2.8 3057.1± 2.8
38Ca!38mK 574.8± 1.1 3062.8± 6.0 3062.2± 5.9
42Ti!42Sc 433± 12 3090± 88 3085± 86
50Fe!50Mn 205.8± 4.7 3099± 71 3098± 72
54Ni!54Co 144.9± 2.3 3062± 50 3063± 49

26mAl!26Mg 6351.24+0.55
�0.54 3037.61± 0.67 3036.5± 1.0

34Cl!34S 1527.77+0.47
�0.44 3049.43+0.95

�0.88 3048.0± 1.1
38mK!38Ar 925.42± 0.28 3051.45± 0.92 3050.5± 1.1
42Sc!42Ca 681.44± 0.26 3047.7± 1.2 3045.0± 2.7
50Mn!50Cr 283.68± 0.11 3048.4± 1.2 3046.1± 3.6
54Co!54Fe 193.495+0.086

�0.063 3050.8+1.4
�1.1 3051.3+1.7

�1.4
74Rb!74Kr 65.201± 0.047 3082.8± 6.5 3086± 11

Table IV: Summary of the experimental results of the par-
tial half-life t and the previous ft determination, both from
Ref.[1], and our updated ft values for 15 superallowed tran-
sitions.

(scr). The errors from the former two are fully corre-
lated and stem from the radial (rad) and higher-order
shape parameters (shape) in the nuclear charge distribu-
tion functions. It is apparent from our analysis that in
many cases the total theory uncertainty (rad + shape +
scr) is larger than the experimental ones (QEC). Based
on this we deem that Ref.[1] has underestimated the er-
rors in f . To be complete, we also compare the old and
new determination of the full ft value in Table IV.

It is interesting to study the shift of the central value
of f from the previous determination. It was shown in
Ref.[57], by inspecting the analytic formula of the “pure-
QCD” shape factor CQCD(E) in the absence of electro-
magnetic interaction, that an increase of hr2cwi1/2, the MS
radius characterizing ⇢cw, in general leads smaller values
of f . Indeed, from the last column in Table III we see
that in most cases our new evaluation reduces the central
value of f at the level of 0.01%, although some of such
shifts are within the quoted (theory) uncertainties. The
magnitude of the shift obtained in this work is in general
smaller than those estimated in Ref.[57] upon accounting
for the correlated effects with the Fermi function. Never-
theless, according to Eq.(3), a coherent downward shift
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More -and more precise- charge radii necessary! 
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Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)dist(2)scr(17)QEC
134.64(17)QEC

�0.01(0)dist(2)scr
22Mg!22Na 418.27(2)dist(7)scr(13)QEC

418.35(13)QEC
�0.02(0)dist(2)scr

34Ar!34Cl 3409.89(24)dist(60)scr(25)QEC
3410.85(25)QEC

�0.03(1)dist(2)scr
38Ca!38mK 5327.49(39)dist(98)scr(31)QEC

5328.88(31)QEC
�0.03(1)dist(2)scr

42Ti!42Sc 7124.3(58)dist(14)scr(14)QEC
7130.1(14)QEC

�0.08(8)dist(2)scr
50Fe!50Mn 15053(18)dist(3)scr(60)QEC

15060(60)QEC
�0.04(12)dist(2)scr

54Ni!54Co 21137(4)dist(5)scr(52)QEC
21137(57)QEC

+0.00(2)rad(2)scr
34Cl!34S 1995.08(13)dist(36)scr(9)QEC

1996.003(96)QEC
�0.05(1)dist(2)scr

38mK!38Ar 3296.32(22)dist(63)scr(15)QEC
3297.39(15)QEC

�0.03(1)dist(2)scr
42Sc!42Ca 4468.53(340)dist(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)dist(2)scr

50Mn!50Cr 10737.9(117)dist(23)scr(5)QEC
10745.99(49)QEC

�0.08(11)dist(2)scr
54Co!54Fe 15769.4(24)dist(34)scr(27)QEC

15766.8(27)QEC
+0.02(2)dist(2)scr

74Rb!74Kr 47326(128)dist(12)scr(94)QEC
47281(93)QEC

+0.10(27)dist(3)scr
Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to
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Weak radii differ significantly from Rch 
Shape factor—> Fermi Fn —> ft

New ft vs estimates by Hardy and Towner  

Relative shift downwards of 0.01-0.1% 
Non-negligible given the precision goal 0.01%
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Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi) Zi N(Zi)

1 1.000 14 1.481 25 1.513 39 1.553 60 1.572 80 1.599
7 1.399 15 1.484 27 1.518 45 1.561 64 1.577 86 1.600
8 1.420 16 1.488 30 1.540 49 1.566 66 1.579 92 1.601
9 1.444 17 1.494 32 1.556 52 1.567 68 1.586 94 1.603
10 1.471 18 1.496 35 1.550 53 1.568 70 1.590
11 1.476 20 1.495 36 1.551 54 1.568 74 1.593
12 1.474 23 1.504 38 1.552 55 1.567 76 1.595

Table II: Hartree-Fock calculation of N(Zi) from Ref.[94].

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)rad(0)shape(2)scr(17)QEC
134.64(17)QEC

�0.01(0)rad(0)shape(2)scr
22Mg!22Na 418.27(1)rad(1)shape(7)scr(13)QEC

418.35(13)QEC
�0.02(0)rad(0)shape(2)scr

26Si!26mAl 1027.52(15)rad(12)shape(17)scr(12)QEC
1028.03(12)QEC

�0.05(1)rad(1)shape(2)scr
34Ar!34Cl 3409.89(16)rad(18)shape(60)scr(25)QEC

3410.85(25)QEC
�0.03(0)rad(1)shape(2)scr

38Ca!38mK 5327.49(14)rad(36)shape(98)scr(31)QEC
5328.88(31)QEC

�0.03(0)rad(1)shape(2)scr
42Ti!42Sc 7124.3(57)rad(8)shape(14)scr(14)QEC

7130.1(14)QEC
�0.08(8)rad(1)shape(2)scr

50Fe!50Mn 15053(18)rad(3)shape(3)scr(60)QEC
15060(60)QEC

�0.04(12)rad(2)shape(2)scr
54Ni!54Co 21137(3)rad(1)shape(5)scr(52)QEC

21137(57)QEC
+0.00(2)rad(0)shape(2)scr

26mAl!26Mg 478.097(60)rad(54)shape(82)scr(100)QEC
478.270(98)QEC

�0.04(1)rad(1)shape(2)scr
34Cl!34S 1995.076(81)rad(103)shape(364)scr(94)QEC

1996.003(96)QEC
�0.05(0)rad(1)shape(2)scr

38mK!38Ar 3296.32(8)rad(21)shape(63)scr(15)QEC
3297.39(15)QEC

�0.03(0)rad(1)shape(2)scr
42Sc!42Ca 4468.53(336)rad(52)shape(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)rad(1)shape(2)scr

50Mn!50Cr 10737.93(1150)rad(202)shape(229)scr(50)QEC
10745.99(49)QEC

�0.08(11)rad(2)shape(2)scr
54Co!54Fe 15769.4(23)rad(7)shape(34)scr(27)QEC

15766.8(27)QEC
+0.02(1)rad(0)shape(2)scr

74Rb!74Kr 47326(127)rad(18)shape(12)scr(94)QEC
47281(93)QEC

+0.10(27)rad(4)shape(3)scr

Table III: Comparison between new and old results of f . Notation: 123.12(234) means 123.12± 2.34.

Transition t (ms) (ft)HT (s) (ft)new(s)
18Ne!18F 21630± 590 2912± 79 2912± 80

22Mg!22Na 7293± 16 3051.1± 6.9 3050.4± 6.8
26Si!26mAl 2969.0± 5.4 3052.2± 5.6 3050.7± 5.6
34Ar!34Cl 896.55± 0.81 3058.0± 2.8 3057.1± 2.8
38Ca!38mK 574.8± 1.1 3062.8± 6.0 3062.2± 5.9
42Ti!42Sc 433± 12 3090± 88 3085± 86
50Fe!50Mn 205.8± 4.7 3099± 71 3098± 72
54Ni!54Co 144.9± 2.3 3062± 50 3063± 49

26mAl!26Mg 6351.24+0.55
�0.54 3037.61± 0.67 3036.5± 1.0

34Cl!34S 1527.77+0.47
�0.44 3049.43+0.95

�0.88 3048.0± 1.1
38mK!38Ar 925.42± 0.28 3051.45± 0.92 3050.5± 1.1
42Sc!42Ca 681.44± 0.26 3047.7± 1.2 3045.0± 2.7
50Mn!50Cr 283.68± 0.11 3048.4± 1.2 3046.1± 3.6
54Co!54Fe 193.495+0.086

�0.063 3050.8+1.4
�1.1 3051.3+1.7

�1.4
74Rb!74Kr 65.201± 0.047 3082.8± 6.5 3086± 11

Table IV: Summary of the experimental results of the par-
tial half-life t and the previous ft determination, both from
Ref.[1], and our updated ft values for 15 superallowed tran-
sitions.

(scr). The errors from the former two are fully corre-
lated and stem from the radial (rad) and higher-order
shape parameters (shape) in the nuclear charge distribu-
tion functions. It is apparent from our analysis that in
many cases the total theory uncertainty (rad + shape +
scr) is larger than the experimental ones (QEC). Based
on this we deem that Ref.[1] has underestimated the er-
rors in f . To be complete, we also compare the old and
new determination of the full ft value in Table IV.

It is interesting to study the shift of the central value
of f from the previous determination. It was shown in
Ref.[57], by inspecting the analytic formula of the “pure-
QCD” shape factor CQCD(E) in the absence of electro-
magnetic interaction, that an increase of hr2cwi1/2, the MS
radius characterizing ⇢cw, in general leads smaller values
of f . Indeed, from the last column in Table III we see
that in most cases our new evaluation reduces the central
value of f at the level of 0.01%, although some of such
shifts are within the quoted (theory) uncertainties. The
magnitude of the shift obtained in this work is in general
smaller than those estimated in Ref.[57] upon accounting
for the correlated effects with the Fermi function. Never-
theless, according to Eq.(3), a coherent downward shift
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7 1.399 15 1.484 27 1.518 45 1.561 64 1.577 86 1.600
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Table II: Hartree-Fock calculation of N(Zi) from Ref.[94].

Transition fnew fHT

fnew�fHT

fnew
(%)
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22Mg!22Na 418.27(1)rad(1)shape(7)scr(13)QEC
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Table III: Comparison between new and old results of f . Notation: 123.12(234) means 123.12± 2.34.

Transition t (ms) (ft)HT (s) (ft)new(s)
18Ne!18F 21630± 590 2912± 79 2912± 80

22Mg!22Na 7293± 16 3051.1± 6.9 3050.4± 6.8
26Si!26mAl 2969.0± 5.4 3052.2± 5.6 3050.7± 5.6
34Ar!34Cl 896.55± 0.81 3058.0± 2.8 3057.1± 2.8
38Ca!38mK 574.8± 1.1 3062.8± 6.0 3062.2± 5.9
42Ti!42Sc 433± 12 3090± 88 3085± 86
50Fe!50Mn 205.8± 4.7 3099± 71 3098± 72
54Ni!54Co 144.9± 2.3 3062± 50 3063± 49

26mAl!26Mg 6351.24+0.55
�0.54 3037.61± 0.67 3036.5± 1.0

34Cl!34S 1527.77+0.47
�0.44 3049.43+0.95

�0.88 3048.0± 1.1
38mK!38Ar 925.42± 0.28 3051.45± 0.92 3050.5± 1.1
42Sc!42Ca 681.44± 0.26 3047.7± 1.2 3045.0± 2.7
50Mn!50Cr 283.68± 0.11 3048.4± 1.2 3046.1± 3.6
54Co!54Fe 193.495+0.086

�0.063 3050.8+1.4
�1.1 3051.3+1.7

�1.4
74Rb!74Kr 65.201± 0.047 3082.8± 6.5 3086± 11

Table IV: Summary of the experimental results of the par-
tial half-life t and the previous ft determination, both from
Ref.[1], and our updated ft values for 15 superallowed tran-
sitions.

(scr). The errors from the former two are fully corre-
lated and stem from the radial (rad) and higher-order
shape parameters (shape) in the nuclear charge distribu-
tion functions. It is apparent from our analysis that in
many cases the total theory uncertainty (rad + shape +
scr) is larger than the experimental ones (QEC). Based
on this we deem that Ref.[1] has underestimated the er-
rors in f . To be complete, we also compare the old and
new determination of the full ft value in Table IV.

It is interesting to study the shift of the central value
of f from the previous determination. It was shown in
Ref.[57], by inspecting the analytic formula of the “pure-
QCD” shape factor CQCD(E) in the absence of electro-
magnetic interaction, that an increase of hr2cwi1/2, the MS
radius characterizing ⇢cw, in general leads smaller values
of f . Indeed, from the last column in Table III we see
that in most cases our new evaluation reduces the central
value of f at the level of 0.01%, although some of such
shifts are within the quoted (theory) uncertainties. The
magnitude of the shift obtained in this work is in general
smaller than those estimated in Ref.[57] upon accounting
for the correlated effects with the Fermi function. Never-
theless, according to Eq.(3), a coherent downward shift
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Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)dist(2)scr(17)QEC
134.64(17)QEC

�0.01(0)dist(2)scr
22Mg!22Na 418.27(2)dist(7)scr(13)QEC

418.35(13)QEC
�0.02(0)dist(2)scr

34Ar!34Cl 3409.89(24)dist(60)scr(25)QEC
3410.85(25)QEC

�0.03(1)dist(2)scr
38Ca!38mK 5327.49(39)dist(98)scr(31)QEC

5328.88(31)QEC
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42Ti!42Sc 7124.3(58)dist(14)scr(14)QEC
7130.1(14)QEC

�0.08(8)dist(2)scr
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15060(60)QEC
�0.04(12)dist(2)scr

54Ni!54Co 21137(4)dist(5)scr(52)QEC
21137(57)QEC

+0.00(2)rad(2)scr
34Cl!34S 1995.08(13)dist(36)scr(9)QEC

1996.003(96)QEC
�0.05(1)dist(2)scr

38mK!38Ar 3296.32(22)dist(63)scr(15)QEC
3297.39(15)QEC

�0.03(1)dist(2)scr
42Sc!42Ca 4468.53(340)dist(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)dist(2)scr

50Mn!50Cr 10737.9(117)dist(23)scr(5)QEC
10745.99(49)QEC

�0.08(11)dist(2)scr
54Co!54Fe 15769.4(24)dist(34)scr(27)QEC

15766.8(27)QEC
+0.02(2)dist(2)scr

74Rb!74Kr 47326(128)dist(12)scr(94)QEC
47281(93)QEC

+0.10(27)dist(3)scr
Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to
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Above treatment assumes isospin symmetry — but we know that it is slightly broken! 
Why isospin symmetry assumption is good enough? 

Shape factor and finite size effects are ~small corrections to Fermi function 
1-2% ISB effect on top of a RC may be assumed negligible (but needs to be tested)

Test requires that all 3 nuclear radii in the isotriplet are known; 
Currently only the case for A=38 system

ISB-sensitive combination

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

= 0 if isospin symmetry exact

1
2 (20 × 3.467(1)2 + 18 × 3.4028(19)2) − 19 × 3.437(4)2 = − 0.00(12)(14)(52)

Improvement of K-38m radius necessary! (Plans at TRIUMF on IS K-38m, K-37?)
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MF = ⟨ f |τ+ | i⟩

Tree-level Fermi matrix element
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If isospin symmetry were exact, 	

Isospin symmetry is broken in nuclear states 	
(e.g. Coulomb, nucleon mass difference, …)	

In presence of isospin symmetry breaking (ISB):	

MF → M0 = 2

|MF |2 = |M0 |2 (1 − δC)
MacDonald 1958

δC ∼ 0.17% − 1.6%!

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

ISB correction almost singlehandedly aligns ft-values!	

Crucial for  extractionVud
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Nuclear Corrections vs. scalar BSM

Once all corrections are included:	
CVC —> Ft constant

Fit to 14 transitions:  	
Ft constant within 0.02%

SUPERALLOWED 0+ → 0+ NUCLEAR . . . PHYSICAL REVIEW C 91, 025501 (2015)
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide

10C 14O 26mAl 34Cl 38mK 42Sc 46V 50Mn 54Co
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FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.
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FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, Kℓ3, Kℓ2 correct, unitarity
not satisfied. With |Vus | determined from Kℓ3 decays and
|Vus |/|Vud | from Kℓ2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from Kℓ2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on ⟨1/W ⟩, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on ⟨1/W ⟩. Since ⟨1/W ⟩
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10−4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = −1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = −1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2
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ΔM(1)
A ≡ − ⟨r2

CW⟩ + ( N1

2
⟨r2

n,1⟩ −
Z1

2
⟨r2

p,1⟩)
 used for ft-value in isospin limitΔM(1)
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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ISB-sensitive combinations of radii can be constructed

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.
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A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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Dispersion Theory of the -box

ΔV
R δNS

γW

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ

MZ, MW ∼ 90 GeV

IR

UV

Fermi function, corrections to beta spectrum

Universal correction ΔV
R

Nuclear structure δC, δNS
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Universal RC from dispersion relations

ImTμν
γW = … +

iεμναβpαqβ

2(pq)
FγW

3 (x, Q2)

Model dependence: interference  structure functionsγW

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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, (41)

where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:

Re⇤b,e
�W (Ee) =

↵

⇡

Z 1

0

dQ2 M2
W

M2
W +Q2

Z 1

⌫thr

d⌫ 0

⌫ 0
⌫ 0 + 2

p
⌫ 02 +Q2

(⌫ 0 +
p
⌫ 02 +Q2)2

F3,�(⌫ 0, Q2)

Mf+(0)
+O(E2

e )

Re⇤b,o
�W (Ee) =

2↵Ee

3⇡

Z 1

0

dQ2

Z 1

⌫thr

d⌫ 0

⌫ 0
⌫ 0 + 3

p
⌫ 02 +Q2

(⌫ 0 +
p
⌫ 02 +Q2)3

F3,+(⌫ 0, Q2)

Mf+(0)
+O(E3

e )

(42)

which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms

16

After some algebra

Structure functions are measurable or may be related to data

e−ν̄e

n → N* → p

UV large log — model independent (Parton model + pQCD) 
Sensitivity to nonperturbative QCD: inclusive hadron spectrum
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Isospin symmetry: vector-isoscalar current related to vector-isovector current
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Input into dispersion integral -  dataν/ν̄

34

Isospin symmetry: vector-isoscalar current related to vector-isovector current
Mixed CC-NC  SF (no data) <—> Purely CC WW SF (inclusive neutrino data)γW

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

Marciano, Sirlin 2006:  —> ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR (Seng et al. 2018):  —> ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC
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Confirmed by lattice QCD: 
LQCD on pion + pheno: 

LQCD on neutron:

Seng, MG, Feng, Jin, 2003.11264ΔV
R = 0.02477(24)LQCDπ+pheno Yoo et all, 2305.03198

ΔV
R = 0.02439(19)LQCDn Ma, Feng, MG et al 2308.16755



Effective Field Theory: explicit separation of scales + RGE running between	
SM —> LEFT (no H,t,Z,W) —> ChPT —> NR QED	
Formal consistency built in, RGE, transparent error estimation (naturalness)	
Precision limited by matching (LEC) and HO — relies on inputs (e.g. -box from DR)	
To improve: need to go to higher order — new LECs, still tractable?	
At present: order  — realistic to go beyond?

γW

O(α, ααs, α2)

EFT: scale separation for free n

  
[no logs]

𝒪(α)  𝒪(me /mN)
 

Extract from  
Experiment

λ = gA/gV

Matrix element 

1 MeV ℒ = − 2GFVud gV(me) ēLγμνL N̄vμτ+N
pn

eνe

 
Enhanced
π2,1/βvector 

coupling

Cirigliano et al, 2306.03138

35

Total RC: 	

Total RC from DR:

1 + ΔTOT = 1.07761(27) %

1 + ΔTOT = 1.07735(27) %
Good agreement within errors!



Nuclear-Structure RC δNS



History of : -box on nucleiδNS γW

 and W on same nucleon —> already in : drop!γ ΔV
R

Jaus, Rasche 1990

Towner 1994
Nucleons are bound — free-nucleon RC modified: δA

NS

 and W on distinct nucleons —> only in nuclei: γ δB
NS

Jaus, Rasche 1990; Hardy, Towner 1992-2020

Implementation: 
Nuclear shell model with “semi-empirical” Woods-Saxon potential 
One-body nucleon currents only (axial + magnetic) 
No nuclear Green’s function between the em and weak vertices  
Parameters fixed to reproduce selected properties within each isotriplet 
Predictive power questionable, but tailored to the task 
Systematic uncertainty unclear and hard to quantify
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 from dispersion relationsδNS

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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where Emin ⌘ (⌫ 0 +
p

⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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(42)

which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms

16

NS correction reflects extraction of the free box 
DR: a framework to control this subtraction! δNS = 2[ □VA, nucl

γW − □VA, free n
γW ]

Same formulas for free neutron and nuclei; 
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Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".
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which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the
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W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms
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NS correction reflects extraction of the free box 
DR: a framework to control this subtraction! δNS = 2[ □VA, nucl

γW − □VA, free n
γW ]

Same formulas for free neutron and nuclei; 

e−ν̄e

Ai → A* → Af

e−ν̄e

n → N* → p

Differences due to: 

Richer excitation spectrum in nuclei 

Different quantum numbers 
(spin, isospin)



 in ab-initio nuclear theoryδNS

Low-momentum part of the loop: account for nucleon d.o.f. only 
First case study:  in No-Core Shell Model (NCSM) 
Many-body problem in HO basis with separation  and up to 

10C → 10B
Ω N = Nmax + NPauli

27

Evaluate T
3
 using No Core Shell Model (NCSM)

➢ Utilizes discrete harmonic oscillator (HO) basis up to 
N=N

max
+N

Pauli

➢ HO basis allows separation of CM and internal DOFs
➢ Test of convergence is possible with increasing N

max

➢ W-independence as another consistency check
➢ Nuclear interactions from Chiral EFT:

 NN-N4LO+3N
lnl

 NN-N4LO+3N*
lnl

Entem, Machleidt and Nosyk, 2017 PRC;
Gysbers et al., 2019 Nature;
Kravvaris, Navrátil, Quaglioni, Hebborn and Hupin, 2023 PLB
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Matrix element of the nuclear Green’s function evaluated 
with the Lanczos continued fraction method 

Step 1: Choose a initial vector

Step 2: Construct an n-vector basis through the following
             recursion

“Lanczos coefficients”:

Initial values:

Difficulty:
Inverting a 
large matrix!

Evaluate the m.e. of nuclear Green’s function

Lanczos continuous fraction method

39

M. Gennari, M. Drissi, MG, P. Navratil, C.-Y. Seng, arXiv: 2405.19281
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Numerical results

From “res,T
3
” From “res,T

3
”

➢ “res,T
3
” contribution is numerically the largest

➢ Different nuclear forces cause substantial re-distribution
between different contributions, but small change to the sum

Ab-initio : numerical resultsδNS

40
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T = Tz = 0, JP = (1+)

T = 1, Tz = − 1, JP = (0+)
T = 1, Tz = 0, JP = (0+)

GT M1

Large negative contribution: low-lying 1+ level in 10B 
Large GT and M1 rates favor a two-step process
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Fast convergence with increasing N
max

→ Intruder states are not an issue 

Check Ω-independence and convergence w.r.t. N
max 

:

Natural in EFT language; see Wouter Dekens’ talk

%

δNS = − 0.406(39) %

δNS = − 0.347(35) %
δNS = − 0.400(50) %

Final result for :10C → 10B

Compare to Hardy-Towner (old-fashion SM)

(2014)
(2020)

arXiv: 2405.19281

T = Tz = 0, JP = (1+)

T = 1, Tz = − 1, JP = (0+)
T = 1, Tz = 0, JP = (0+)

GT M1

Large negative contribution: low-lying 1+ level in 10B 
Large GT and M1 rates favor a two-step process



Nuclear Matrix Elements 
14O →14 N

 independentEe

pn

e
νe

N N

e
νe

pn

NN

γ

p p
e

νe

pn

• Total: 

• For  gNN
V1,V2 = 1/(4mNF2

π)

• Magnetic/spin-orbit correspond to  
`traditional’   

• Similar result:  

δNS,B

δNS,B = − 1.96(50) ⋅ 10−3

δ(0)
NS = − (1.76+0.11±0.88) ⋅ 10−3

Towner ’94; Hardy, Towner ‘20

Ab-initio  in EFT:  
 with Variational Monte Carlo

δNS
14O → 14N

Nuclear Matrix Elements 
14O →14 N

 independentEe

pn

e
νe

N N

e
νe

pn

NN

γ

p p
e

νe

pn

• Total: 

• For  gNN
V1,V2 = 1/(4mNF2

π)

• Magnetic/spin-orbit correspond to  
`traditional’   

• Similar result:  

δNS,B

δNS,B = − 1.96(50) ⋅ 10−3

δ(0)
NS = − (1.76+0.11±0.88) ⋅ 10−3

Towner ’94; Hardy, Towner ‘20

Compare to Hardy-Towner 2020:

V. Cirigliano et al, arXiv: 2405.18469

Uncertainty:  
assuming unknown  
counter term to be of 
 “natural size”

PT- EFT matchingχ χ
PT 

  
χ

100 MeV
EFT 

  
χ

pn

e
νe

N N

e
νe

pn

NN

γ

e
νe

pn

NN

• Long-range diagrams proportional to 

• Lepton-energy:  corrections 

• NLO vertices:  corrections  

•  lead to contact interactions 

• Needed to absorb divergences induced by 

𝒪(me/mπ α) ∼ ϵπα

𝒪(mπ /mN α) ∼ ϵχα

gNN
V1,V2

Vmag

VE ∼
e2Ee,ν

� ⃗q �4 Vmag ∼ Vrecoil ∼ e2

mN

1
⃗q2

Vcontact ∼ e2gNN
V1,V2

e
νe

pn

NN

Vi

Integrate out 
pions,  γsoft,pot

Nuclear Matrix Elements 
14O →14 N
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pn
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p p
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• Total: 
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π)

• Magnetic/spin-orbit correspond to  
`traditional’   

• Similar result:  

δNS,B

δNS,B = − 1.96(50) ⋅ 10−3

δ(0)
NS = − (1.76+0.11±0.88) ⋅ 10−3

Towner ’94; Hardy, Towner ‘20
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Promising avenue: all logs under control and are consistent 
Downside: EFT non-renormalizable —> unknown counter terms external to the theory 
Need extra input (dispersion theory; explicit modeling; fit to data)



Summary & Outlook
Cabibbo Angle Anomaly at 2-3  
Nuclear uncertainties under scrutiny:  in ab-initio and EFT 

 &  for 15 decays from  to  — Community effort required! 

Future experiments:  

Neutron: UCN , SPECT ( ); PERC, Nab ( ) 
Competitive! But: resolve existing discrepancies (e.g. “beam-bottle” lifetime) 

Kaon decays: NA62, BELLE II  (+ Lattice effort!) 
Pion:  PIONEER @ PSI ( BR: 0.3%—>0.03%) 
Nuclear charge radii across superallowed isotriplets 

Stable: µ-atoms @ PSI, radii of unstable nuclei @ ISOLDE, TRIUMF 
Neutron skins of stable daughters with PVES @ MESA 

Interplay with the nuclear EoS program: neutron skin via symmetry energy vs. ISB 

Cabibbo anomaly interpretable in terms of BSM  

Superallowed decays: bounds on scalar BSM from dataset consistency

σ
δNS

δC δNS
10C 74Rb

τ τ δτn : 0.4 → 0.1s δgA : 4 → 1 × 10−4

Kℓ3 vs Kμ2
π+ → π0e+ν δ

42



International workshop on Electroweak Precision InterseCtions 
EPIC 2024 

September 22-27 2024, Cala Serena Beach Resort (Geremeas)

Bring together different communities: 
Particle, Nuclear, Atomic, Neutrino, Astro, GW 
Study existing synergies & elaborate new ones! 
1-day pre-workshop school for PhD students 
1st event this year, plan for biennial workshop series

EPIC 2024
22-27 Sept 2024 CalaSerena, Geremeas IT

EPIC WEBSITE REGISTER HERE LOCATION

SCIENTIFIC PROGRAM 
COMMITTEE
Sonia Bacca (JGU Mainz)
Matteo Cadeddu (INFN Cagliari)
Nicola Cargioli (INFN Cagliari) 
Francesca Dordei (INFN Cagliari)
Mikhail Gorshteyn (JGU Mainz)

ORGANIZED BY

EPIC 2024 is the first
workshop dedicated to
precision electroweak
physics, with focus on:

Ø Precision tests of the
Standard Model and
beyond with atomic
nuclei

Ø Lepton- and neutrino-
nucleus interactions

Ø Nuclear matter 
across energy scales 
and multi-messenger 
astronomy

Electroweak Physics Intersections

PRE-WORKSHOP SCHOOL
Ø One-day lectures on precision physics 

with atoms, neutrino physics, and 
nuclear EoS in the multimessenger era. 

Ø Dedicated poster session for students 
at the workshop with teaser-talk event.
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BSM searches with superallowed beta decays

45

J. C. HARDY AND I. S. TOWNER PHYSICAL REVIEW C 91, 025501 (2015)

standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, Kℓ3, Kℓ2 correct, unitarity
not satisfied. With |Vus | determined from Kℓ3 decays and
|Vus |/|Vud | from Kℓ2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from Kℓ2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on ⟨1/W ⟩, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on ⟨1/W ⟩. Since ⟨1/W ⟩
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.

025501-20

Induced scalar CC —> Fierz interference bF

ℱtSM → ℱtSM (1 + bF
me

⟨Ee⟩ )

Independently of Vud and CKM unitarity: internal consistency of the data base with SM!	
Like  does not require other experimental inputs to make a statement on (B)SM	

Entangled with nuclear theory uncertainties — a global effort of nuclear theory community needed

Δ(3)
CKM
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Figure 14: (Left) 90% CL constraints on ✏S,T at µ = 2 GeV from �-decay data, cf. Eq. (87), with ��2 = 4.61, (black ellipse), from the
analysis of pp ! e + MET + X at the 8-TeV LHC (20 fb�1) [12] (blue ellipse), and from radiative pion decay, cf. Eq. (118) [23] (orange
band). The green band shows the 90% CL bound (��2 = 2.71) using only superallowed Fermi decays. (Right) Same figure but using projected
�-decay data, cf. Eq. (100) (black) and projected LHC bounds from pp ! e+MET+X searches with 14 TeV and 300 fb�1 [23] (blue).

Requiring that the leading logarithmic part of the 2-loop correction is not larger than current bounds on the neutrino
mass, the following bounds were found [13]

|✏̃L| . 10�2
, (129)

|✏̃S ± ✏̃P | . 2⇥ 10�3
, (130)

|✏̃T | . 0.5⇥ 10�3
, (131)

where µ = 1 TeV was used as the initial running scale. The bounds on scalar and tensor interactions are about 3 times
stronger than those derived from LHC data in Eqs. (121)-(122) and orders of magnitude stronger than those from � decay,
cf. Section 4.5. The bound on the pseudoscalar coupling is also 3 times stronger than the LHC one, but still weaker than
that from pion decay, cf. Eq. (114). Finally, the neutrino-mass considerations above o↵er a valuable alternative probe for
the ✏̃L coupling, which can also be accessed through CKM unitarity, but with slightly less accuracy, cf. Eq. (79).

5.5. Electric dipole moments

It can be shown that in the SMEFT framework, the same dimension-6 e↵ective operators generating CP-violating
e↵ects in � decay would also generate at tree- or one-loop-level a non-zero nuclear and neutron Electric Dipole Moment
(EDM) [473]. As a result one can translate the stringent EDM bounds [474] in indirect limits on the �-decay CP-
violating coe�cients, such as D or R, which are two orders of magnitudes stronger than their direct limits from �-decay
measurements [13]. This takes into account the calculation of Ref. [475] that relaxed the EDM bound by an order of
magnitude with respect to Ref. [473].

In principle, these indirect bounds can be avoided through a fine-tuned cancellation with additional dimension-6
operators contributing to the EDMs, or using dimension-8 operators. The precise realization in specific models is however
nontrivial, as shown for instance for leptoquark models, where the connection with EDMs is still present, although the
indirect bounds can be relaxed in this case [473]. Finally, the EDM bounds can be avoided abandoning altogether the
SMEFT framework, introducing for example light new particles. Thus, current measurements of CP-violating coe�cients
in � decay can be considered as probes of the SMEFT framework itself, or at least its simpler realizations where large
fine-tunings are not considered. A recent and detailed review of the connection between EDMs and �-decay measurements
is presented in Ref. [13].

6. Conclusions

We have reviewed the role of precision measurements in nuclear and neutron � decay, as useful tools to improve our
understanding of fundamental interactions. Transitions with small nuclear-structure uncertainties (or none in neutron
decay) are used to learn about QCD, to extract the values of fundamental SM parameters such as Vud, and to search for
new physics.

First, we have introduced the theoretical formalism that describes � decay at the elementary level with special attention
to the latest developments, such as the precise calculations of the hadronic charges in the lattice, or the SMEFT framework
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Beta decay vs. LHC on S,T	
Complementarity now and in the future! 

Gonzalez-Alonso et al 1803.08732

 ~ consistent with 0bF = − 0.0028(26)

S, T interaction flips helicity:	
Suppressed at high energy
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Vud from neutron decay
|Vud |2 =

5024.7 s
τn(1 + 3gA2)(1+ΔV

R)Neutron decay: 2 measurements needed

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501

Experiment: factor 3-5 uncertainties improvement; discrepancies in  and τn gA

UCN  F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501τ

aSPECT M. Beck et al, Phys. Rev. C101 (2020) 5, 055506; 2308.16170

BL1 (NIST) Yue et al, PRL 111 (2013) 222501

gA = − 1.27641(56)

gA = − 1.2677(28)
3.4σ

τn = 877.75(28)+16
−12

τn = 887.7(2.3)
4σ

RC : bottleneck since 40 years 

Since 2018: DR+data+pQCD+EFT+LQCD 

 uncertainty: factor 2 reduction

ΔV
R

ΔV
R

C-Y Seng et al., PRL 2018; PRD 2019 
A. Czarnecki, B. Marciano, A. Sirlin, PRD 2018 
K. Shiells et al, PRD 2021; L. Hayen PRD 2021 
P-X Ma, X. Feng, MG, L-C Jin, et al 2308.16755

Pre-2018:  Marciano, Sirlin PRL 2006	
Post-2018:  MG, Seng Universe 2023

ΔV
R = 0.02361(38)

ΔV
R = 0.02479(21)

|V free n
ud | = 0.9740 (2)τn

(3)gA
(1)RC[4]total

Single best measurements onlyPDG average
|V free n

ud | = 0.9743 (3)τn
(8)gA

(1)RC[9]total

Future exp coming! RC under control

https://arxiv.org/abs/2308.16755
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|Vπℓ3
ud | = 0.9739 (27)exp (1)RC

Pion decay : theoretically cleanest, experimentally toughπ+ → π0e+νe

|Vud |2 =
0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1

Future exp: 1 o.o.m. (PIONEER @ PSI)

RC to semileptonic pion decay  uncertainty: factor 3 reductionδ

ChPT:    Cirigliano et al, 2003; Passera et al, 2011	
DR + LQCD + ChPT:  Feng et al, 2020; Yoo et al, 2023

δ = − 0.0334(10)LEC(3)HO
δ = 0.0332(1)γW(3)HO

Vud from semileptonic pion decay
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Status of Cabibbo Unitarity



-box from DR + Lattice QCD inputγW

49

Currently available neutrino data at low  - low quality; 
Look for alternative input — compute Nachtmann moment  on the lattice

Q2

M(0)
3

First direct LQCD computation π− → π0e−νe Feng, MG, Jin, Ma, Seng 2003.09798
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Q2

M(0)
3

First direct LQCD computation π− → π0e−νe Feng, MG, Jin, Ma, Seng 2003.09798

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

5 LQCD gauge ensembles at physical pion mass 
Generated by RBC and UKQCD collaborations  
w. 2+1 flavor domain wall fermion
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At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
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Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

5 LQCD gauge ensembles at physical pion mass 
Generated by RBC and UKQCD collaborations  
w. 2+1 flavor domain wall fermion

10

First lattice QCD calculation

(integral range, 64I)

Estimate of major systematic effects:
● Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
● pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
● Higher-twist effects at large Q2: Estimated from lattice calculation of type (A) diagrams  

Final result:

1% precision!

(before cont. extrapolation) (after cont. extrapolation)

Match onto pQCD at Q2 ∼ 2 GeV2

Yoo et all, 2305.03198

Independent calculation by Los Alamos group

□VA, π
γW = 2.830(11)stat(26)sys

□VA, π
γW = 2.810(26)stat+sys



First lattice QCD calculation of -boxγW

Significant reduction of the uncertainty! δ : 0.0334(10)LEC(3)HO → 0.0332(1)γW(3)HO

50

Direct impact for pion decay π+ → π0e+νe |Vud |2 =
0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1

Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003 Previous calculation of   — in ChPTδ



First lattice QCD calculation of -boxγW

Significant reduction of the uncertainty! δ : 0.0334(10)LEC(3)HO → 0.0332(1)γW(3)HO

50

Direct impact for pion decay π+ → π0e+νe |Vud |2 =
0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1

Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003 Previous calculation of   — in ChPTδ

Indirectly constrains the free neutron -box 
— requires some phenomenology  
Based on Regge universality & factorization

γW

12

Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Seng, MG, Feng, Jin, 2003.11264

Independent confirmation

ΔV
R = 0.02467(22)DR → 0.02477(24)LQCD+DR



Much more challenging than pion:  

Numerically heavier 
Excited state contamination requires longer time 
Large contribution from low Q  absent for pion∼ gA μV

First LQCD calculation of -box on the neutronγW

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

Quark contractions for nucleon 4-point correlation
functions

The connected insertions encompass 10 distinct con-
traction types, as illustrated in Fig. S 1. Notably, types
(b) and (d) do not contribute to the axial-vector and vec-
tor �W -box diagrams. This is because the quark current
associated with the W boson, altering the isospin, cannot
be inserted between isospin-0 diquark blocks.

⊗

⊗

(a)

⊗

⊗
(b)
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Figure S 1. 8 out of the 10 quark contraction types are per-
tinent to the neutron �W -box diagrams. The symbols of ⊗
indicate the insertions of the vector or axial-vector current.

Demonstration of Eq. (10)

Here we demonstrate that once the ground-state dom-
inance is satisfied at �t� ≥ tg, the spatial summation of the
hadronic function H(t, �x) can be written in terms of gA,

µp and µn. We start with the expression

✏µ⌫↵0Q↵H̃V A
µ⌫ (t ≥ tg, �Q)

= ✏µ⌫↵0Q↵ � d
3�xe−i �Q⋅�xHV A

µ⌫ (t ≥ tg, �x)

= ✏µ⌫↵0Q↵
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(mN−E �Q)t
2E �Q

×
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Tr �mN(1 + �0)Vµ �E �Q�0 − i �Q ⋅ �� +mN�A⌫� ,
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where

Vµ = �µF1(Q2) −
�µ�Q�

2mN
F2(Q2),

A⌫ = �⌫�5GA(Q2) + Q⌫

2mN
�5G̃P (Q2). (S 2)

In the small � �Q� limit, the above expression can be sim-
plified as
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+O(� �Q�3)
= 2i� �Q�2GM(0)GA(0) +O(� �Q�3), (S 3)

where GA(0) = gA. GM(Q2) = F1(Q2) + F2(Q2) is the
magnetic form factor. For t ≥ tg, we have GM(0) = µp.
For t ≤ −tg, the expression is similar as Eq. (S 3), albeit
with GM(0) = µn. We thus have
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In the small �Q limit, it yields
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Combining Eqs. (S 3) and (S 6), we obtain

� d
3�x H̄(tg, �x) = −3gA(µp + µn). (S 7)

In our calculation, we find that the lattice results for the
24D, 32Dfine ensembles, and the continuum extrapola-
tion are all consistent with the PDG value, as depicted
in Table S I.
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3�x H̄(tg, �x) = −3gA(µp + µn). (S 7)

In our calculation, we find that the lattice results for the
24D, 32Dfine ensembles, and the continuum extrapola-
tion are all consistent with the PDG value, as depicted
in Table S I.
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a more e�cient control over statistical uncertainties. We
refer to the calculation ofMLD

n using Eq. (8) and Eq. (11)
as the “direct” and “substitution” methods, respectively.

We introduce a four-momentum squared scale Q
2
cut

which separates the Q
2 integral into two regimes,

�V A
�W = �

V A,≤Q2
cut

�W + �V A,>Q2
cut

�W (13)

= ��
Q2

cut

0

dQ
2

Q2
+�

∞
Q2

cut

dQ
2

Q2
� m

2
W

m
2
W +Q2

Mn(Q2).

For �V A,≤Q2
cut

�W we use lattice results as inputs. Con-

versely, for �V A,>Q2
cut

�W , we utilize the perturbative QCD
and employ the leading twist contribution from the
operator product expansion [23–25]. Further details can
be found in Ref. [18]. A common representative value
for the scale of Q

2
cut is 2 GeV2. It is also feasible to

vary this value to investigate potential systematic e↵ects.

Numerical analysis: We use two lattice QCD gauge
ensembles at the physical pion mass, generated by RBC
and UKQCD Collaborations using 2 + 1-flavor domain
wall fermion [26]. The ensemble parameters are out-
lined in Table I. Both ensemble utilize Iwasaki + DSDR
action. For each configuration we produce 1024 point-
source and 1024 smeared-source propagators at ran-
dom spatial-temporal locations and calculate the corre-
lation function � p(tf)Jem

µ (x)JW,A
⌫ (y) †

n(ti)� with tf =
max{tx, ty} + �tf and ti = min{tx, ty} − �ti using the
random sparsening-field technique [27, 28]. Local vector
and axial vector current operators are contracted with
the renormalization factors quoted from Ref. [29]. We
calculate all the connected insertions, discarding discon-
nected insertions which vanish under the flavor SU(3)
limit.

Ensemble m⇡ [MeV] L T a
−1 [GeV] Nconf

24D 142.6(3) 24 64 1.023(2) 207
32D-fine 143.6(9) 32 64 1.378(5) 69

Table I. Ensembles used in this work. For each ensemble we
list the pion mass m⇡, the spatial and temporal extents, L
and T , the inverse of lattice spacing a

−1 [30], the number of
configurations used, Nconf.

To demonstrate the necessity of using the IVR method
in our calculation, we use the ensemble 24D as an exam-
ple and present in Fig. 2 the results of MSD

n (Q2
, ts) as

a function of Q2 for di↵erent values of ts. Notably, even
when increasing ts to 1.17 fm while maintaining �ti+�tf

fixed at 0.77 fm (resulting in a total source-sink separa-
tion of nearly 2 fm), significant temporal truncation ef-
fects persist. To incorporate the LD contribution, the
appropriate values for tg and ts must be determined.

We calculate the LD contribution to �V A,≤2GeV2

�W using

M
LD
n (Q2

, ts, tg) as inputs, labelling the relevant part of

Figure 2. SD and LD contributions to Mn(Q2) as a function
of Q2 with various choices of ts for 24D. �ti+�tf is set at 0.77
fm. The error band denoted as “SD+LD” is the lattice result
which incorporates the reconstruction of the LD contributions
using IVR.

Figure 3. The ratio defined in Eq. (14) as a function of ts.
Here, we employ 24D as an illustrative example. �ti +�tf is
fixed at 0.77 fm.

the box contribution as �V A,≤2GeV2

�W (ts, tg). For small
tg values, a visible contamination from excited states
is anticipated. To extend this analysis, we calculate

�V A,≤2GeV2

�W (ts, ts) with tg = ts for various ts values and
construct a ratio

Ratio =
�V A,≤2GeV2

�W (ts, tg)

�V A,≤2GeV2

�W (ts, ts)
, (14)

2

lier works by Marciano and Sirlin [11, 12] to more re-
cent dispersive analyses by Seng et al [6, 13]. The latter,
in particular, improved the nonperturbative contribution
for loop momentum square Q2 ≤ 2 GeV2 and unveiled the
tension with the first-row CKM unitarity, which was also
observed in several follow-up works [14–17]. In the mean-
time, while the radiative correction to the axial charge gA
does not directly a↵ect the �Vud� extraction, it is neces-
sary for comparing the experimentally measured gA with
that computed using lattice QCD. The study of �V V

�W has
so far included estimations inspired by the holographic
QCD model [17] and dispersion relations [10].

Lattice QCD o↵ers a direct nonperturbative approach
to compute the box correction �V A

�W , especially for Q2 ≤ 2
GeV2. First lattice calculations of �V A

�W were successfully
conducted in the pion [18] and kaon channel [19, 20], and
have recently been confirmed by an independent lattice
calculation [21]. The data reported in [18] were also used
for a joint lattice QCD - dispersion relation analysis [15].
This letter extends this calculation to the neutron decay
channel, which entails a direct computation of the
nucleon four-point function at the physical pion mass.
We also briefly discuss our numerical result of �V V

�W , and
its implication to the radiative correction to axial charge.

Methodology: The notations used in this work align
with those used in [18]. We define the hadronic function
H

V A
µ⌫ within Euclidean space

HV A
µ⌫ (t, �x) ≡ �Hf(P )�T �Jem

µ (t, �x)JW,A
⌫ (0)� �Hi(P )�, (3)

where Hi�f represents the neutron and proton state, re-
spectively. The computation of box contribution �V A

�W
involves a momentum integral

�V A
�W =

3↵e

2⇡ �
dQ

2

Q2

m
2
W

m
2
W +Q2

Mn(Q2). (4)

Mn(Q2) is a weighted integral of the hadronic function
H(t, �x) = ✏µ⌫↵0x↵HV A

µ⌫ (t, �x), defined as

Mn(Q2) = −1
6

�
Q2

mN
� d

4
x!(t, �x)H(t, �x), (5)

with mW and mN the masses of the W -boson and the
nucleon. The weighting function is

!(t, �x) = �
⇡
2

−⇡
2

cos3 ✓ d✓

⇡

j1 �� �Q���x��
��x�

cos (Q0t) , (6)

where � �Q� =
�
Q2 cos ✓, Q0 =

�
Q2 sin ✓ and jn(x) are the

spherical Bessel functions.
To evaluate Mn(Q2) as prescribed in Eq. (5), it is

necessary to extend the temporal integration range suf-
ficiently to reduce truncation e↵ects. However, as the
time separation between the two currents increases, the
lattice data tend to exhibit greater noise-to-signal ratio.

Here we employ the infinite volume reconstruction (IVR)
method [22] to incorporate the long-distance (LD) con-
tribution arising from the region where �t� > ts. Here, ts
is the time slice at which the short-distance (SD) and
LD contributions are separated. The IVR method, in
addition to eliminating the power-law suppressed finite
volume error, can also reduce the lattice statistical error
in the long distance region. To elaborate, we divide the
integral into SD contribution, weighted by !(t, �x), and
LD contribution, weighted by !̃(t, �x)

Mn(Q2) =MSD
n (Q2

, ts) +MLD
n (Q2

, ts, tg) (7)

with

M
SD
n (Q2
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and
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E �Q −mN + iQ0
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Here, H̄(t, �x) = [H(t, �x) +H(−t, �x)]�2, E �Q =
�

m
2
N + �Q2

and tg is chosen to be large enough to ensure the ground-
intermediate-state dominance. Once tg is fixed, ts can be
varied to further verify the ground-state dominance. In
the final results, it is natural to choose ts = tg.
Due to the factor 1�Q2 in Eq. (4), we observe that
�V A
�W encounters a notably increased noise originating

from Mn(Q2) at small Q2 region. To mitigate this noise,
we can use the model-independent relation

� d
3�x H̄(tg, �x) = −3gA(µp + µn) (10)

to substitute M
LD
n (Q2

, ts, tg) with
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LD
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!̃0gA(µp + µn). (11)

Above, µp and µn are the proton and neutron magnetic
moments, respectively. Furthermore, !̃0 is defined as
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, with ⌧ = Q
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4m2
N

. (12)

Importantly, the convergence of the integral with !̃−!̃0 at
Q

2 → 0 is considerably faster than that with !̃, enabling

The result slightly lower than DR; 
Finer lattice calculations underway
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a more e�cient control over statistical uncertainties. We
refer to the calculation ofMLD
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�W we use lattice results as inputs. Con-

versely, for �V A,>Q2
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�W , we utilize the perturbative QCD
and employ the leading twist contribution from the
operator product expansion [23–25]. Further details can
be found in Ref. [18]. A common representative value
for the scale of Q

2
cut is 2 GeV2. It is also feasible to

vary this value to investigate potential systematic e↵ects.

Numerical analysis: We use two lattice QCD gauge
ensembles at the physical pion mass, generated by RBC
and UKQCD Collaborations using 2 + 1-flavor domain
wall fermion [26]. The ensemble parameters are out-
lined in Table I. Both ensemble utilize Iwasaki + DSDR
action. For each configuration we produce 1024 point-
source and 1024 smeared-source propagators at ran-
dom spatial-temporal locations and calculate the corre-
lation function � p(tf)Jem

µ (x)JW,A
⌫ (y) †

n(ti)� with tf =
max{tx, ty} + �tf and ti = min{tx, ty} − �ti using the
random sparsening-field technique [27, 28]. Local vector
and axial vector current operators are contracted with
the renormalization factors quoted from Ref. [29]. We
calculate all the connected insertions, discarding discon-
nected insertions which vanish under the flavor SU(3)
limit.
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−1 [GeV] Nconf

24D 142.6(3) 24 64 1.023(2) 207
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Table I. Ensembles used in this work. For each ensemble we
list the pion mass m⇡, the spatial and temporal extents, L
and T , the inverse of lattice spacing a

−1 [30], the number of
configurations used, Nconf.

To demonstrate the necessity of using the IVR method
in our calculation, we use the ensemble 24D as an exam-
ple and present in Fig. 2 the results of MSD

n (Q2
, ts) as

a function of Q2 for di↵erent values of ts. Notably, even
when increasing ts to 1.17 fm while maintaining �ti+�tf

fixed at 0.77 fm (resulting in a total source-sink separa-
tion of nearly 2 fm), significant temporal truncation ef-
fects persist. To incorporate the LD contribution, the
appropriate values for tg and ts must be determined.

We calculate the LD contribution to �V A,≤2GeV2
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Figure 2. SD and LD contributions to Mn(Q2) as a function
of Q2 with various choices of ts for 24D. �ti+�tf is set at 0.77
fm. The error band denoted as “SD+LD” is the lattice result
which incorporates the reconstruction of the LD contributions
using IVR.

Figure 3. The ratio defined in Eq. (14) as a function of ts.
Here, we employ 24D as an illustrative example. �ti +�tf is
fixed at 0.77 fm.

the box contribution as �V A,≤2GeV2

�W (ts, tg). For small
tg values, a visible contamination from excited states
is anticipated. To extend this analysis, we calculate

�V A,≤2GeV2

�W (ts, ts) with tg = ts for various ts values and
construct a ratio
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Split into long/short distance separated by ts

RBC/UKQCD 2+1 domain wall fermion


