

Results from the Muon g-2 experiment at Fermilab

Anna Driutti University and INFN Pisa on behalf of the Muon g - 2 Collaboration

Why search for new physics?

Frontiers of Particle Physics:

• **Standard Model (SM)** describes the universe remarkably well but doesn't answer all questions:

- How does gravity fit in?
- What is dark matter made of? What is dark energy?
- Why is there not more anti-matter?
- How do neutrinos obtain their mass and how heavy are they?
 ...
- Intensity Frontier: a way to probe the SM using high-intensity beams of particles
 - rare processes
 - precise measurements e.g., Muon g-2 experiment

A. Driutti (U. Pisa and INFN)

The g-factor and the muon anomaly

• **Muon:** elementary particle with spin-1/2 and magnetic moment proportional to spin through the **g-factor**:

$$\vec{\mu} = \mathbf{g} \frac{q}{2m_{\mu}} \vec{S}$$

 At first order (Dirac theory for s = 1/2 particles) g = 2 but with higher order corrections (vacuum effects) g > 2:

$$a_{\mu} = 2 (1 + a_{\mu}) \quad \Rightarrow \quad \boxed{a_{\mu} = \frac{g - 2}{2}}$$

muon anomaly

Dirac

g

 $\rightarrow a_{\mu}$ can be calculated with the SM (all particles contribute):

The g-factor and the muon anomaly

• **Muon:** elementary particle with spin-1/2 and magnetic moment proportional to spin through the **g-factor**:

$$\vec{\mu} = \mathbf{g} \frac{q}{2m_{\mu}} \vec{S}$$

 At first order (Dirac theory for s = 1/2 particles) g = 2 but with higher order corrections (vacuum effects) g > 2:

$$g_{\mu} = 2 (1 + a_{\mu}) \quad \Rightarrow \quad a_{\mu} = \frac{g - 2}{2}$$

muon anomaly

Dirac

 $\rightarrow a_{\mu}$ can be calculated with the SM (all particles contribute):

-> If new particles contribute the SM will disagree with measurement: **precise test of the SM and look for new physics**

A. Driutti (U. Pisa and INFN)

Experimental measurement vs. SM calculation (before 2021)

• Long-standing > 3σ discrepancy

• In the meantime: **FNAL Exp**. was constructed and began collecting data in 2018, continuing operations until 2023 aiming to improve uncertainty with 140 ppb goal

[E821, BNL uncertainty: 540 ppb; SM, 2020 uncertainty: 370 ppb]

SM calculation of the muon anomaly

- Calculation is continuously updated
- Largest contribution but lowest uncertainty from QED
- EW terms are also well known
- Uncertainty dominated by strong-interaction contributions (HVP and HLbL)
- Hadronic Vacuum Polarization LO-term: virtual loops with hadrons calculated with two approaches
 - data-driven: experimental data (e^+e^-) plus dispersion theory (used by WP20)
 - direct calculation with lattice QCD
 - (-) Proposal: from the shape of the μe elastic scattering cross section vs. space-like squared momentum transfer MUonE Experiment

References at https://muon-gm2-theory.illinois.edu

• In April 2021 were published:

■ a new measurement from **FNAL Muon g** – **2 Exp. Run-1 data** that confirmed result from BNL:

$$\begin{split} & a_{\mu}(\text{FNAL}) = 116592040(54) \cdot 10^{-11} \text{ (460 ppb)} \\ & a_{\mu}(\text{BNL}) = 116592089(63) \cdot 10^{-11} \text{ (540 ppb)} \\ & a_{\mu}(\text{Exp}) = 116592061(41) \cdot 10^{-11} \text{ (350 ppb)} \end{split}$$

[Phys. Rev. Lett. 126, no.14, 141801 (2021)]

• a new theoretical calculation $a_{\mu}(BMW, HVP - LO)$ based on Lattice QCD in tension with $a_{\mu}(WP, HVP - LO)$ calculation based on e^+e^- data

[Nature 593 (2021) 51-55]

• <u>In this talk</u>: review of the **FNAL Run-1** measurement and I will present you the latest **FNAL Run-2/3 result** (announced on Aug 10, 2023)

[Phys. Rev. Lett. 131, 161802 (2023)]

Experimental technique

- 1. Inject polarized muons into a magnetic storage ring
- 2. Muons circulate around the ring at the cyclotron frequency:

$$\vec{\omega}_C = \frac{q}{\gamma m_\mu} \vec{B}$$

3. Muon spin precession frequency (Larmor) is given by:

 $\vec{\omega}_S = \frac{q}{\gamma m_\mu} \vec{B} (1 + \gamma a_\mu)$

4. Muon anomaly is related to **anomalous precession frequency**:

$$\vec{\omega}_a \cong \vec{\omega}_S - \vec{\omega}_C \cong a_\mu \frac{q}{m_\mu} \vec{B}$$

5. Measure *B* and ω_a to extract the anomaly

Final formula

Muon anomaly is determined with:

$$a_{\mu} = \frac{\omega_a}{\widetilde{\omega}'_p(T_r)} \frac{\mu'_p(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

ratio of frequencies (R_{μ}) measured by us

$\omega_{\mathbf{a}}$: muon anomalous precession frequency

Extract from decay positron time spectra $N(t) = N_0 e^{-t/\tau_{\mu}} [1 + Acos(\omega_a t + \phi)]$

fundamental factors (combined uncertainty 25 ppb):

 $\mu'_{p}(T_{r})/\mu_{e}(H)$ from [Metrologia **13**, 179 (1977)]

 $\mu_{e}(H)/\mu_{e}$ from [Rev. Mod. Phys. **88** 035009 (2016)]

 m_{μ}/m_e from [2018 CODATA (Web Version 8.1)]

 $g_e/2$ from [Phys. Rev. Lett. **130**, 071801 (2023), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), and 2023 update]

 $\tilde{\omega}'_{\mathbf{p}}(\mathbf{T}_{\mathbf{r}})$: magnetic field B in terms of (shielded) proton precession frequency (proton NMR $\hbar \omega_P = 2\mu_p B$) **and** weighted by the muon distribution (shielded = measured in spherical water sample at $T_r = 34.7$ °C)

Production of the muon beam

- **Recycler Ring:** 8 GeV protons from Booster are divided in 4 bunches
- Target Station: *p*-bunches are collided with target and π⁺ with 3.1 GeV/c (±10%) are collected
- Beam Transport and Delivery Ring: magnetic lenses select μ^+ from $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ then μ^+ are separated from p and π^+ in circular ring
- Muon Campus: polarized μ⁺ are ready to be injected into the storage ring

The storage ring journey: from BNL to FNAL in Summer 2013

Storage ring magnet

- Three superconducting coils provide 1.45 T vertical magnetic field
- Vacuum chambers surrounded by a cryosystem and C-shaped **yokes** to allow the decay positrons to reach the detectors.
- Achieved 50 ppm on field uniformity thanks to low-carbon steel **poles**, **edge shims**, **steel wedges**, **surface correction coil**

final field ~ 3 times more uniform than at BNL

Injection of the muons into the ring

• Beam enters the ring through a 2.2 m-long 10 cm hole in the iron yoke

• T0 Counter (thin scintillator read out by PMTs) to measure beam time profile

• **Inflector magnet** provides nearly field free region for muons to enter the storage region

 Inflector Beam Monitoring System (scintillator fiber grids) to measure beam spatial profile

Muon storage

• Injected beam is 77 mm off from storage region center

Kicker Magnets

 3 pulsed magnets deflect beam ~10 mrad onto the closed storage orbit in less than 150 ns

Vertical focusing

Electrostatic Quadrupoles

• 4 sets of quads provide vertical beam focusing

• *E*-field component cancels out (at first order) when muons at *magic momentum*:

$$ec{\omega}_a \cong -rac{e}{m} \left[a_\mu ec{B} - \left(a_\mu - rac{1}{ec{\gamma^2 - 1}}
ight) rac{ec{eta} imes ec{E}}{c}
ight]$$

~0 if γ =29.3 *i.e.*, p_{μ} =3.094 GeV/c

Detectors and field probes

24 Calos around the ring

- Each made of 6×9 PbF₂ crystals read out by large-area SiPMs
- 1296 channels individually calibrated by 405nm-laser system

2 in-vacuum straw trackers

• Each with 8 modules consisting of 128 gas filled straws

2 types of field probes

- 378 fixed NMR probes above and below storage region
 - → measure B-field 24/7
- Trolley with 17-probe NMR
 - \rightarrow 2D profile of B over the entire azimuth when beam is OFF

A. Driutti (U. Pisa and INFN)

Master formula for Muon g-2 analysis

Measuring the magnetic field seen by the muons

$$R_{\mu} = \begin{pmatrix} f_{clock} \cdot \omega_{a}^{meas} \cdot (1 + C_{e} + C_{p} + C_{ml} + C_{pa} + C_{dd}) \\ \hline f_{calib} \cdot \omega_{p}'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_{k} + B_{q}) \end{pmatrix}$$

- ω_p' is proportional to the magnetic field and it is mapped every 3 days using 17 NMR probes on a trolley
- During data taking fixed NMR probes located above and below the storage region monitor the field
- Fixed probes to interpolate the field between trolley runs
- Field maps are weighted by beam distribution (extrapolated from the decay *e*⁺ trajectory measured by the trackers and simulations)

Magnetic field corrections

Kicker transient field

- due to eddy currents produced by kicker pulses
- measured using Faraday magnetometers

Quads transient field

- due to mechanicals vibrations from pulsing the quads
- mapped using special NMR probes

 $R_{\mu} = \left(\frac{f_{clock} \cdot \omega_a^{meas} \cdot (1 + C_e + C_p + C_{ml} + C_{pa} + C_{dd})}{f_{calib} \cdot \omega_p'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_k + B_q)}\right)$

17

Measuring ω_a

Polarized muon decay:

 $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_\mu$

- High energy e⁺ are preferentially emitted in direction of μ⁺ spin (parity violation of the weak decay)
- Energy spectrum modulates at the *ω_a* frequency
- Counting the number of e^+ with $E_{e^+} > E_{\text{threshold}}$ as a function of time (wiggle plot) leads to ω_a :

 $E_{e^{\scriptscriptstyle +}}$ and t are measured by the calorimeters with a blinding factor applied to the digitization rate

Wiggle plot

- Calorimeters data is reconstructed into energies and times
 - -> 2 (Run-1) or 3 (Run-2/3) independent reconstruction routines

Wiggle plot

- Calorimeters data is reconstructed into energies and times
 - -> 2 (Run-1) or 3 (Run-2/3) independent reconstruction routines
- Different and software independently blind analysis techniques:
 - Threshold (T) Method
 - only positrons above energy threshold
 - Asymmetry-Weighted (A) Method:
 - positrons divided into energy bins and weighted by g-2 asymmetry
 - Ratio (R) Method
 - muon lifetime exponential decay removed before fitting
 - Ratio Asymmetry-Weighted (RA) Method
 - Integrated Charge (Q) Method:
 - sum of raw calorimeter traces (unique method independent of reconstruction)

Energy-Time Wiggle Plot

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

$$N_0 e^{-\frac{t}{\gamma \tau}} \left(1 + A \cdot A_{BO}(t) \cos(\omega_a t + \phi \cdot \phi_{BO}(t))\right) \cdot N_{\text{CBO}}(t) \cdot N_{\text{VW}}(t) \cdot N_y(t) \cdot N_{2\text{CBO}}(t) \cdot J(t)$$

$$\begin{split} A_{\rm BO}(t) &= 1 + A_A \cos(\omega_{\rm CBO}(t) + \phi_A) e^{-\frac{1}{\gamma_{\rm CBO}}} \\ \phi_{\rm BO}(t) &= 1 + A_{\phi} \cos(\omega_{\rm CBO}(t) + \phi_{\phi}) e^{-\frac{1}{\gamma_{\rm CBO}}} \qquad & \omega_{CBO}, \ \omega_{2CBO} \ \text{radial oscillations} \\ N_{\rm CBO}(t) &= 1 + A_{\rm CBO} \cos(\omega_{\rm CBO}(t) + \phi_{\rm CBO}) e^{-\frac{1}{\gamma_{\rm CBO}}} \\ N_{2\rm CBO}(t) &= 1 + A_{\rm 2CBO} \cos(\omega_{\rm CBO}(t) + \phi_{\rm CBO}) e^{-\frac{1}{\gamma_{\rm CBO}}} \\ N_{\rm VW}(t) &= 1 + A_{\rm 2CBO} \cos(\omega_{\rm VW}(t) t + \phi_{\rm VW}) e^{-\frac{1}{\gamma_{\rm VW}}} \\ N_{\rm VW}(t) &= 1 + A_{\rm ycos} (\omega_{\rm VW}(t) t + \phi_{\rm VW}) e^{-\frac{1}{\gamma_{\rm VW}}} \\ N_{\rm y}(t) &= 1 + A_{\rm ycos} (\omega_{\rm y}(t) t + \phi_{\rm y}) e^{-\frac{1}{\gamma_{\rm W}}} \\ N_{\rm y}(t) &= 1 + A_{\rm ycos} (\omega_{\rm y}(t) t + \phi_{\rm y}) e^{-\frac{1}{\gamma_{\rm W}}} \\ N_{\rm y}(t) &= 1 + A_{\rm ycos} (\omega_{\rm y}(t) t + \phi_{\rm y}) e^{-\frac{1}{\gamma_{\rm W}}} \\ N_{\rm y}(t) &= 1 + A_{\rm ycos} (\omega_{\rm y}(t) t + \phi_{\rm y}) e^{-\frac{1}{\gamma_{\rm W}}} \\ M_{\rm y}(t) &= 1 + A_{\rm ycos} (\omega_{\rm y}(t) t + \phi_{\rm y}) e^{-\frac{1}{\gamma_{\rm W}}} \\ M_{\rm y}(t) &= 1 - k_{LM} \int_{t_0}^{t} \Lambda(t) dt \qquad \text{Lost muons} \\ \\ \omega_{\rm CBO}(t) &= \omega_{\rm w} t + A e^{-\frac{1}{\gamma_{\rm H}}} \\ \omega_{\rm y}(t) &= F \omega_{\rm CBO}(t) \sqrt{2\omega_{\rm c}/F} \omega_{\rm CBO}(t) - 1 \\ \omega_{\rm VW}(t) &= \omega_{\rm c} - 2\omega_{\rm y}(t) \end{split}$$

A. Driutti (U. Pisa and INFN)

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

Additional term to account for muons that hit the collimators and are lost:

A. Driutti (U. Pisa and INFN)

- Fit \rightarrow Residuals \rightarrow Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

 $N_0 e^{-\frac{i}{\gamma \tau}} \left(1 + A \cdot A_{BO}(t) \cos(\omega_a t + \phi \cdot \phi_{BO}(t))\right) \cdot N_{CBO}(t) \cdot N_{VW}(t) \cdot N_v(t) \cdot N_{2CBO}(t) \cdot J(t)$ $A_{\rm BO}(t) = 1 + A_A \cos(\omega_{\rm CBO}(t) + \phi_A) e^{-\frac{t}{\tau_{\rm CBO}}}$

 $\phi_{\rm BO}(t) = 1 + A_{\phi} \cos(\omega_{\rm CBO}(t) + \phi_{\phi}) e^{-\frac{t}{\tau_{\rm CBO}}}$

$$\begin{split} \omega_{\text{CBO}}(t) &= \omega_0 t + A e^{-\frac{t}{\tau_A}} + B e^{-\frac{t}{\tau_B}} \\ \omega_y(t) &= F \omega_{\text{CBO}(t)} \sqrt{2\omega_c / F \omega_{\text{CBO}}(t) - 1} \\ \omega_{\text{VW}}(t) &= \omega_c - 2\omega_y(t) \end{split}$$

 $\omega_{CBO_1} \omega_{2CBO}$ radial oscillations

Correction for Effects on Spin Precession $R_{\mu} = \begin{pmatrix} f_{clock} \cdot \omega_{a}^{meas} \cdot (1 + \boxed{C_{p}} + C_{ml} + C_{pa} + C_{dd}) \\ f_{calib} \cdot \omega_{p}^{meas} \cdot (1 + \boxed{C_{p}} + C_{ml} + C_{pa} + C_{dd}) \\ \end{pmatrix}$

Non-simplified spin-motion is described by:

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} - a_\mu \frac{\gamma}{\gamma + 1} \left(\vec{B} \cdot \vec{\beta} \right) \vec{\beta} \right]$$

Electric Field

- due to momentum spread around *p_{magic}*
- measured using momentum distribution provided by the calorimeters in terms of equilibrium radius

Pitch

due to vertical beam oscillation

 measured using the beam vertical amplitude from the trackers, calorimeter data, and simulations

Corrections for Phase-Changing Effects

$$cos(\omega_a t + \phi(t)) = cos(\omega_a t + \phi_0 + \phi' t + \dots)$$
$$= cos((\omega_a + \phi')t + \phi_0 + \dots)$$

Muon losses

- cause a phase shift because muon-phase and muon loss rate are momentum-dependent
- measured using data-driven technique

Differential Decay

 correction to account for high momentum muons having a longer lifetime

Phase acceptance

- phase changes due to early to late variations of the beam
- measured using tracker data and simulations

Simulation Tools

- Beam dynamics from simulations:
 - for beam dynamics corrections
 - to propagate the muon distribution around the ring

Muon

- Main simulation tools:
 - MARS
 - G4BEAMLINE
 - **BMAD**
 - COSY
 - GM2RingSim
- simulation tools are cross-checked against benchmarks and against each other.

Calorimeter Number

Blinding/Unblinding

Clock frequency (*fclock*):

- frequency that our DAQ clock ticks
- stable at ppt level
- hardware-blinded to have (40 ε) MHz
 - $\rightarrow \epsilon$ kept **secret** from all collaborators
- **revealed** only when physics analysis is completed:
 - -> <u>Run-1</u> result unblinded on Feb 25, 2021 during a virtual meeting
 - -> <u>Run-2/3</u> result unblinded on Jul 24, 2023 during the collaboration meeting

First production run

Statistics:

- March 26 July 7 2018 : Run1
- 1.2 × BNL after data quality selection

Main challenges:

- Non-ideal kick
 - \rightarrow low amplitude and ringing
 - \rightarrow beam not centered in storage region
- 2 of 32 HV Quad resistors were damaged
 - \rightarrow slow recovery time, enhanced C_{pa}

A. Driutti (U. Pisa and INFN)

QNP2024 - July 12, 2024

Run-1 Result

• First **FNAL** *g* – 2 result :

$$a_{\mu} = 116592040(54) \times 10^{-11} (462 \text{ ppb})$$

• Good agreement with BNL g - 2

Quantity Correction Terms Uncertainty (ppb) (ppb) (statistical) 434 ω_a (systematic) 56 C_e 489 $\overline{53}$ C_p 180 13 \dot{C}_{ml} $\mathbf{5}$ -11 C_{pa} -15875 $f_{\text{calib}}\langle \omega'_n(x,y,\phi) \times M(x,y,\phi) \rangle$ 56 -27 Br 37 B_a -17 $\mu'_{p}(34.7^{\circ})/\mu_{e}$ 22 m_{μ}/m_{e} $q_e/2$ 0 157Total systematic Total fundamental factors Totals 544462

- Run-1 result uncertainty is statistics dominated
- Major systematic uncertainties: Phase Acceptance and Quad field transients
- Next: reduce as much as possible the experimental uncertainty on g-2!

Run-2 and Run-3 Statistics Improvement

0		•		
	101	10	T 1.	CC:

• ~ 4.7 more data in Run-2/3 than Run-1

Dataset	Stat. Unc.	
Run-1	434 ppb	
Run-2/3	201 ppb	
Run-1+Run-2/3	185 ppb	

Before Run-2:

-> Replaced faulty quads HV resistors Less beam motion and reduced C_{pa}

20r

18

16

A. Driutti (U. Pisa and INFN)

QNP2024 - July 12, 2024

Good

• Before Run-2:

- -> Replaced faulty quads HV resistors
- -> Magnet covered with a thermal blanket

Before Run-2:

- -> Replaced faulty quads HV resistors
- -> Magnet covered with a thermal blanket

• Before Run-3:

-> Hall temperature control improved

Better beam centering

End of Run-3

x (mm)

Before Run-2:

- -> Replaced faulty quads HV resistors
- -> Magnet covered with a thermal blanket

• Before Run-3:

an

-20

-> Hall temperature control improved

During Run-2 and Run-3:

Run-1

-> Replaced kicker cables \Rightarrow kickers at HV design value

A. Driutti (U. Pisa and INFN)

-20 0 x [mm]

QNP2024 - July 12, 2024

Run-2 and Run-3 Measurement Improvements

- Improved ω_a analysis technique:
 - added new positron reconstruction algorithms
 - improved pile-up subtraction technique
- Improved **quadrupole field transient** (*B_q*) uncertainty by measuring all azimuthal locations

 $\delta_{B_q}: 92 \text{ ppb} \rightarrow 20 \text{ ppb}$

• Improved **kicker field transient** (*B_k*) uncertainty by performing new measurements and a cross-check with a new magnetometer

$$\delta_{B_k}: 37 \text{ ppb} \rightarrow 13 \text{ ppb}$$

A. Driutti (U. Pisa and INFN)

Run-2/3 Result

Both Run-1 and Run-2/3 results uncertainties are statistics dominated

- Run-2/3 systematic uncertainty of 70 ppb is lower than our TDR goal of 100 ppb!
- Run-1+ Run-2/3 combination uncertainty of 203 ppb (assuming systematics 100% correlated)

• New (2023) FNAL g – 2 result :

 $a_{\mu} = 116592057(25) \times 10^{-11} (215 \text{ ppb})$

• Good agreement with FNAL Run-1 BNL g – 2

Ourantitus	Correction	Uncertainty
Quantity	[ppb]	[ppb]
ω_a^m (statistical)	-	(201)
ω_a^m (systematic)	-	25
C_e	451	32
C_p	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}} \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	-	46
B_k	-21	13
B_q	-21	20
$\mu'_{p}(34.7^{\circ})/\mu_{e}$	-	11
m_{μ}/m_e	-	22
$g_e/2$	-	0
Total systematic	-	(70)
Total external parameters	-	\times
Totals	622	215

Experimental world average and field dependence

• Combined world average dominated by **FNAL value**:

 $\mathbf{a}_{\mu}(\mathbf{Exp}) = 116592059(22) \cdot 10^{-11} (190 \text{ ppb})$

• Measurements were taken at different Magnetic Fields:

Experimental measurement vs. SM calculation

- 5.1 σ discrepancy between 2023 World average and WP (2020)
- BMW result (*i.e.*, changing in WP (2020) result the HVP term from dispersion with lattice-QCD calculation) falls in between WP (2020) and the experiment

Experimental measurement vs. SM calculation

- 5.1 σ discrepancy between 2023 World average and WP (2020)
- BMW result (*i.e.*, changing in WP (2020) result the HVP term from dispersion with lattice-QCD calculation) falls in between WP (2020) and the experiment
- New $e^+e^- \rightarrow \pi^+\pi^-$ result from CMD-3 in tensions with previous exp. results
- A clarification of the theoretical prediction is needed for the comparison.

What's next?

- Completed all runs (collected > 21×BNL): there is more data still to analyze!
 In Run-4/5/6 not only statistical improvement:
 - improved running conditions (quad RF in Run-5/6 reduced horizontal beam oscillations)
 - extensive systematic measurements & Studies in Run-6 for better understanding and modeling of beam dynamics also with new detectors (scintillating fibers) for direct beam measurements

Not only Muon g-2 measurement

- EDM previous searches statistical limited $(10^{-19}e \text{ cm})$, goal to reach $10^{-21}e \text{ cm}$. Search for an up-down oscillation, out of phase with ω_a .
- CPT/LV using long period of data collected we can look if the spin precession rate changes over a sidereal day (as predicted by Standard-Model Extension).
 - DM Muon g 2 experiment enables the direct search for two (scalar and pseudoscalar) ultralight dark matter candidates that primarily interact with muons.

Summary and Conclusions

- FNAL g 2 Experiment goal is to measure a_μ with a precision of 140 ppb (4×BNL precision)
- The result from the analysis of the Run-1/2/3 data **confirmed** result from BNL experiment
- With **Run-2 and Run-3 data** measurement achieved a factor 2 uncertainty reduction both in statistics and systematics!
- Next: analysis of **Run-4**, **Run-5** and **Run-6** (expect to achieve the uncertainty goal), also other analysis EDM, CPT/LV and Dark Matter searches are been developed.

Enjoy the latest paper: PRL **131**, 161802 (2023) and stay tuned for the next result!

Bonus Slide: A journey inside the storage ring:

Click here to Start the Muon g-2 trolley journey