

Precision test with the J-PET detector

NCN grant Nr 2020/38/E/ST2/00112

Elena Perez del Rio on behalf of the J-PET Collaboration 10th International Conference on Quarks and Nuclear Physics 8th - 12th July 2024, Barcelona, Spain

Outline

- Dark Matter fast overview
 - Dark Photon
- Mirror Matter (MM)
 - Mirror Matter in ortho-Positronium
- J-PET (Jagiellonian PET Tomograph)
- Studies using J-PET:
 - Search of MM
 - Dark Photon
 - Rare and forbidden decays of ortho-Positronium
- Conclusions

Dark Matter

The Dark Matter Nature

- Is Dark Matter (DM) a new particle?
- Constraint on DM mass and interactions
 - should be 'dark' (no e.m. interaction)
 - should weakly interact with SM particles
 - should provide the correct relic abundance
 - should be compatible with CMB power spectrum

arXiv:1903.03026

Dark Sector or Hidden Sector (DM not directly charged under SM interactions)

- "Minimal case": Dark Matter couples to Standard Model (SM) particles through a kinetic mixing term → Dark Photon A' (mixes with SM photon)
 - Decays depending in the mass of the mediator and decaying products

$$\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{EM}_{\mu\nu} F^{\mu\nu}_{DM}$$

- DM is a new type of matter → The DM has two possible scenarios
 - DM interacts with the same forces as in SM
 - DM interacts through **new forces**

- Not need to introduce new interactions
 - Super-symmetric candidates: AXIONS
- Mirror Matter

Mirror Matter

• Symmetry: feature of the system that is preserved or remains unchanged under some transformation.

C. S. Wu et al.

Phys. Rev. 105 (1956) 1413

- Symmetries in Physics are important \rightarrow Invariant \rightarrow Laws of Nature
- Standard Model 3-symmetries: C-, P- and T-symmetry
- Weak interactions violates parity (P).
 First experimental confirmations:

R. L. Garwin, L. Lederman and R. Weinrich Phys. Rev. 104 (1956) 254

- Mirror Matter (or Alice Matter) was proposed as an explanation of Parity symmetry violation [T.D., Yang C. N. Phys. Rev. 1956. V. 104. P. 254.]
 - Each particle has a mirror partner with the same properties and opposite chirality (left/right handed)
 - Mirror particles interact with normal matter mainly through gravity → DM candidates
 - γ mirror γ' interaction via kinetic mixing

$$\mathcal{L}_{\gamma\gamma'} = -\epsilon F^{\mu\nu} F'_{\mu\nu}$$

Orthopositronium

Hydrogen atom ¹H:

Ps pure leptonic system:

- Clean experimental system (no background)
- Lifetime accurately described with Quantum Electrodynamics (QED) theory

$$\Gamma(o - Ps \to 3\gamma, 5\gamma) = \frac{2(\pi^2 - 9)\alpha^6 m_e}{9\pi} \left[1 + A\frac{\alpha}{\pi} + \frac{\alpha^2}{3}\ln\alpha + B\left(\frac{\alpha}{\pi}\right)^2 - \frac{3\alpha^3}{2\pi}\ln^2\alpha + C\frac{\alpha^3}{\pi}\ln\alpha + D\left(\frac{\alpha}{\pi}\right)^3 + \dots \right]$$

Theory QED prediction

 $\Gamma = 7.039979(11) \times 10^6 \,\mathrm{s}^{-1}$

Experimental values

 $\Gamma = 7.0401 \pm 0.0007 \times 10^6 \, \mathrm{s}^{-1}$ Tokyo group

 $\Gamma = 7.0404 \pm 0.0010 \pm 0.0008 \times 10^6 \,\mathrm{s}^{-1}$ Ann Arbor group

Theory predictions 100 times more precise: 10⁻⁶ vs 10⁻⁴

S. Bass Acta Phys. Pol. B 50 no7 (2019) 1319

Mirror Matter in o-Ps

• o-Ps can be connected via one-photon annihilation to its mirror version (o-Ps') and can be confirmed in experiments

- o-Ps oscillates into its mirror partner o-Ps'
- Only mimicked by very-rare decay from Standard Model Br(oPs $\rightarrow v\overline{v}) < O(10^{-18})$
- Precision measurements of the o-Ps decay rate and compare it to QED calculations.
- NCN grant Nr 2020/38/E/ST2/00112

The o-Ps' \rightarrow invisible decay would manifest as an increase of the observed lifetime respect to the expected value \rightarrow Precision measurement of the o-Ps lifetime

[P. Crivelli et al 2010 JINST 5 P08001]

J-PET (Jagiellonian-PET TOMOGRAPHY)

Positronium imaging with the novel multiphoton PET scanner Moskal, P. et al. **Science Advances 7 (2021) eabh4394** Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography P. Moskal, A. Gajos et al Nature Communications 12 (2021) 5658

First Positron Emission Tomography scanner built from plastic scintillator

- Multidisciplinary detector
- Portable/modular detector layer with higher detection probability High
- performance detector with high timing resolution
- High acceptance
- Trigger-less and reconfigurable DAQ system
 - Data has no filters: all data acquired is unfiltered
- GPS trilateration reconstruction of the interaction point

J-PET (Jagiellonian-PET TOMOGRAPHY)

- NCN grant Nr 2020/38/E/ST2/00112
- Mirror Matter search with J-PET detector and rare and forbidden decay studies
- New modular design of J-PET
 - Modular layer is portable
 - Re-configurable and higher efficiency
 - Allows future measurements with positron beam
 - Measurements already performed at The Cyclotron Centre Bronowice, Trento (INFN), and Warsaw University, and Cracow Hospital

Mirror Matter in J-PET: Studies

Radioactive source Na

- Source activity 1 MBq = 10⁶ e⁺/s
- o-Ps formed in vacuum chamber with probability 29%
- Number of o-Ps after 2 years

10¹³ o-Ps formed Sensitivity below O(10⁻⁵) Photon mixing strength ε < O(10⁻⁷)

Main competitor ETH Zurich

- [Phys. Rev. D 97, 092008]
 - Šlow positron beam (1.5 x 10⁴e⁺/s)

PhD thesis of Justyna Mędrala

Precise measurement of the o-Ps lifetime looking for hints of new physics

- Run 11 (ongoing) + MC production
- 3 + 1 photon
- Minimum OP angles sum > 190 deg
- Reconstructed vertex inside detector

Dark Photon with J-PET

- A model involving a dark photon U decaying into uu or light DM can be explored with the JPET data
- Monte Carlo studies to set the feasibility of the analysis using the J-PET detector
- Contact with theoretitian P. Fayet

Dark Photon with J-PET

 A model involving a dark photon U decaying into uu or light DM can be explored with the JPET data

P. Fayet and M. Mezard

• Monte Carlo studies to set the feasibility of the analysis using the J-PET detector

- Background simulation and rejection can be refined
- Full detector response to be incorporated

Acta Phys. Pol. B Proc.

Master thesis of Justyna Mędrala

Rare decays of the oPs

- JPET trigger-less acquisition ensures all data taken is unfiltered
- These decays are practically background free
- Selection of the events is similar to the case of 3 gamma events
 - Reduction of systematic uncertainties normalizing to 3 gamma decay
- •NCN grant Nr 2020/38/E/ST2/00112

C-symmetry test

(o-Ps -> 4γ)/(o-Ps -> 3γ) < 3.7 x 10⁻⁶ (90% C.L.) [S. J. Freedman P. A. Vetter. Phys. Rev. A 66 (2002) 052505]

Previous limit (1996) < 2.6 x 10⁻⁶ (90% C.L.) [Yang et al., Phys. Rev. A 54, 1952 (1996)]

QED test

(O-Ps -> 5g)/(O-Ps -> 3g) = 1.67(99)(37) x 10⁻⁶ [S. J. Freedman P. A. Vetter. Phys. Rev. A 66 (2002) 052505]

QED value(tree) = 0.9591×10^{-6}

Previous (1 event, '95) = 2.2(2.2) x 10⁻⁶ [Matsumoto et al., Phys. Rev. A 54, 1947(1996)]

Run11 data

Ph.D. thesis of **Pooja Tanty**

Rare decays of the oPs

- simplified Monte Carlo simulations for 4- and 5-gamma decay
 - 5-gamma decay GEANT4 J-PET MC ongoing
- Data analysis on-going
- Efficiencies studies
- Background characterization for Machine Learning algorithms separation

	-	~ L J
Relative eff. (in %)	4γ	5γ
ϵ_{geo}	11.75	5.9
ϵ_{det}	0.34	0.15
ϵ_{reg}	31.8	17.39
Total Eff. (in frac.)	4γ	5γ
$\epsilon_{reg} * \epsilon_{det} * \epsilon_{geo}$	$1.3 imes 10^{-4}$	$1.6 imes 10^{-5}$

Acta Phys. Pol. B Proc. Suppl. 17 (2024) 1-A9

Ph.D. thesis of Pooja Tanty

Background suppression using Machine Learning (ML)

Background suppression using Machine Learning (ML)

800

600

200

Counts

In collaboration with W. Krzemien

Vertex reconstruction:

- Trilateration-like method
- Nelder-Mead algorithm
- Loss function can be regularized with energy-momentum constraints

Work on ML application

- Boosted Decision Trees (XGBoost)
- Deep Neural Networks (PyTorch)

4-gama decay of oPs reconstruction Preliminary

Conclusions

Project:	Search for Mirror Matter as DM candidate. New type of matter. Precision test of QED theory. Measurement of rare decays of ortho-Positronium. DM mediator, U boson in ortho-Positronium.
Method:	Precise determination of the lifetime of the Positronium to compare to the QED theory expectation. Machine learning techniques to reduce the background sources and to be later on implemented in medical imaging. Monte Carlo dedicated modeling of DM mediator and rare decays.
Facility:	J-PET tomograph at Jagiellionan University High performance and timing resolution with trigger-less acquisition system. Modular/portable configuration.

Thank you

Mirror Matter in J-PET: Studies

200

150

100

50

0

50

100

150

 $\theta_2 - \theta_1$ [deg]

 $\theta_{23} + \theta_{12} = 180$

 $o-Ps \rightarrow 3\gamma$

200

 $\theta_1 + \theta_2$ [deg]

10⁴

10³

10²

10

250

K. Dulski et al. NIM A 1008 (2021) 165452

Analysis o-Ps lifetime

Machine Learning(ML) models tested for background identification and discrimination

- Number of features, different architectures, strategies, correlations, etc ... studies on-going
- Impemented in Keras + TensorFlow
- Training, validation and test performed in GEANT4 Monte Carlo (MC) simulations with J-PET detector response
- Work in collaboration with Dr. Krzemien & B. Kłósek
- Comparison with baseline model corresponding to standard selection criteria
- Main preliminary focus studies efficient signal oPs/pick-off discrimination

Preliminary results

Analysis o-Ps lifetime

Machine Learning(ML) models tested for background identification and discrimination

- Number of features, different architectures, strategies, correlations, etc ... studies on-going
- Impemented in Keras + TensorFlow
- Training, validation and test performed in GEANT4 Monte Carlo (MC) simulations with J-PET detector response
- Work in collaboration with Dr. Krzemien & B. Kłósek
- Comparison with baseline model corresponding to standard selection criteria
- Main preliminary focus studies efficient signal oPs/pick-off discrimination

 $\theta_2 + \theta_1 [deg]$

Preliminary results

Dark Matter: WIMPs

• WIMPs (Weakly Interacting Massive Particles)

arXiv:1903.03026

- Massive DM with massive mediator
- For ~100 GeV DM mass, weak-scale mediators provide reasonable annihilation rate and range of DM-scattering rates
- No signal of DM in direct detection
- Experiments don't have sensitivity (almost) to light DM (< 1 GeV)

Dark Matter: mass and interaction

 Based on the direct searches outcome a first idea comes: the DM interaction is in the range of the weak force (WIMPs) but the DM particles mass in the TeV range

Light Dark Matter

- Dark Matter with a weak interaction (new force!)
- Direct Detection is (almost) impossible
 - Low energies would require a complete new technology
- Lab-based DM search
 - covers an unexplored mass region
 - We do it in our labs/colliders/accelerators

Dark Sector or Hidden Sector (DM not directly charged under SM interactions)

Main competitor

- Searches in vacuum [Phys. Rev. D 97, 09200]
 - Slow positron beam (15000 e⁺/s)
 - BR < 5.9 × 10⁻⁴ (90% C.L.)
 - Photon mixing strength

 ε < 3.1 × 10⁻⁷ (90% C.L.)

- Source activity 1 MBq = 10⁶ e⁺/s
- o-Ps formed in vacuum chamber with probability 29%
- o-Ps formation triggered by emission
 e⁺ and de-excitation gamma quanta
- Number of o-Ps after 2 years 10¹³ o-Ps formed

- Probability registering the gamma quanta in J-PET (energy dependent)
 - De-excitation quanta 20%
 - 3 gamma decay 2%
- After 2 year data taking we will have registered ~ 10¹³ o-Ps
- Sensitivity O(10⁻⁵)
- Photon mixing strength ε < O(10⁻⁷)

"zero-signal" experiment

"zero-signal" experiment performed at ETH in Zurich with common characteristics:

- Time measurement: time start by triggering on positron, time stop when detecting any of the annihilation photons
- Use of a calorimeter (BGO crystals) to measure the energy of γ from ortho positronium decay products and calculate $E_{tot} = \sum E_i$.
- Search for excess events (peak) in the spectrum below the noise level threshold
- The shape of the background (noise) below noise threshold based on MC simulations.

Searching for "zero-signal" events

- → Several measurements by ETHZ group
- → Use of slow positron beam (~15000 e⁺/s) on thin silica films (~ 30% prob. of o-Ps)
- → Micro-Channel Plate detector to tag positron (Start signal)
- → Highly hermetic BGO calorimeter (total signal efficiency ~92%)
- → Decay of o-Ps in a vacuum cavity

 $BR(o-Ps \rightarrow invisible) < 5.9 \times 10^{-4}$, 90% C.L.

 $\varepsilon < 3.1 \times 10^{-7} (90\% \text{ C. L.})$

The main experimental challenge:

pick-off effect

Mirror Matter in J-PET: Studies

- **4-gamma events** to reconstruct the lifetime
- Accurate measurement/Precision Frontier
 - High purity/high statistics

- Event pre-selection/identification:
 - 4 hit multiplicity
 - 3 annihilation gamma + de-excitation
 - Time-Over-Threshold (TOT) selection → Compton edges
 - Ortho-Ps angular identification
 - Other decay features

Mirror Matter in J-PET: Studies

- Machine Learning studies with MC simulations
 - Deep Neural Network
 - Challenge: Imbalanced dataset (oPs/Pick-off ratio very small)
 - **Different strategies tested-ongoing:** undersampling,over-sampling(bootstrap), NN reweighting
 - Goal classification model robust to the variation in the oPs/Pick-off ratio
 - In collaboration with Dr. Krzemien & B. Kłósek

Rare decays of the oPs

Monte Carlo simulations for 4- and 5-gamma decay in preparation

5-gamma

- Data analysis on-going
- Efficiencies studies in evaluation

In collaboration with W. Krzemien

4-gamma

Mirror Matter in J-PET

- NCN grant Nr 2020/38/E/ST2/00112
- Mirror Matter search with J-PET detector
- Development of a tagger system
 - Positron tagger implementation to trigger the start of the reaction
 - Reduction of background
 - Additional start measurement
 - Extra measurement to trigger the formation of positronium
- Use of modular layer J-PET for a higher efficiency
 - Modular layer is portable
 - Allows future measurements with positron beam
 - Measurements already performed at The Cyclotron Centre Bronowice, Trento (INFN), and Warsaw University